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Abstract: Flavonoids are one of the vital classes of natural polyphenolic compounds abundantly
found in plants. Due to their wide range of therapeutic properties, which include antioxidant,
anti-inflammatory, photoprotective, and depigmentation effects, flavonoids have been demonstrated
to be promising agents in the treatment of several skin disorders. However, their lipophilic nature
and poor water solubility invariably lead to limited oral bioavailability. In addition, they are
rapidly degraded and metabolized in the human body, hindering their potential contribution to the
prevention and treatment of many disorders. Thus, to overcome these challenges, several cutaneous
delivery systems have been extensively studied. Topical drug delivery besides offering an alternative
administration route also ensures a sustained release of the active compound at the desired site
of action. Incorporation into lipid or polymer-based nanoparticles appears to be a highly effective
approach for cutaneous delivery of flavonoids with good encapsulation potential and reduced
toxicity. This review focuses on currently available formulations used to administer either topically
or systemically different classes of flavonoids in the skin, highlighting their potential application as
therapeutic and preventive agents.

Keywords: antioxidant; inflammation; skin research; topical delivery; transdermal delivery

1. Introduction

For centuries, flavonoids have been used to treat various human diseases, and de-
spite the fast-growing development of new and innovative synthetic drugs, continuous
use of these natural compounds has prevailed to this day [1,2]. Flavonoids are one of
the key classes of bioactive compounds abundantly found in plants and have a general
structure of a 15-carbon backbone, consisting of two benzene rings connected by a 3-carbon
bridge, which forms a heterocycle. They are low-molecular-weight polyphenolic com-
pounds derived from plant metabolites, and the presence of different substitutes creates
different subclasses (Figure 1) [3–5]. Due to their broad spectrum of biological activity
and attractive pharmacological properties, which include antioxidant, anti-inflammatory,
antiproliferative, photoprotective, and antiaging effects, flavonoids have been explored
as a therapeutic option towards a great number of diseases, including several skin dis-
orders [6,7]. However, their lipophilic nature, which results in a reduced capacity to be
orally absorbed, and the fact that they undergo extensive first-pass metabolism and rapid
elimination hamper their oral bioavailability [8–10]. Thus, alternative research focuses on
the development of the cutaneous delivery of flavonoids, with high patient compliance and
potential to surpass drawbacks associated with oral and parental routes of administration.
Although skin acts as a physical barrier to drug absorption, the development of delivery
systems, such as nanoparticles, hydrogels, and microneedles, allows for the delivery of
both hydrophilic and lipophilic compounds as well as drugs with shorter half-time and
limited therapeutic index. This results in a higher bioavailability at the target site under a
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controlled release rate and avoids interactions with gastric and intestinal fluids as well as
flavonoid degradation [11,12].

Figure 1. Classification of flavonoids based on their chemical structure.

This review focuses on the therapeutic potential of flavonoids, including their mech-
anisms of action and influence of several delivery systems for topical application on the
improvement of their bioavailability, safety, and therapeutic capacity. In addition, current
in vitro and in vivo studies of different classes of flavonoids under study for its application
on the treatment of skin conditions are highlighted.

2. Human Skin: Structure and Function

The skin is the largest organ of the body and acts as a physical barrier that separates
the body from the external environment. It constitutes a first line of defense in protecting
the body against physical, chemical, and microbial insults and assists in a wide range
of functions such as prevention of body’s dehydration, thermoregulation, sensation, and
synthesis of vitamin D.

The skin is divided into three major layers, namely the epidermis, dermis, and hy-
podermis [13–16]. The epidermis is the outermost viable layer of the skin and constitutes
a barrier between the body and the external environment. As represented in Figure 2,
the epidermis is composed of four layers: the stratum basale, stratum spinosum, stratum
granulosum, and stratum corneum (SC). An additional layer, the stratum lucidum, which
is often considered the lower part of the stratum corneum as opposed to an individual
epidermal layer, can be found on the palm and sole of the foot, parts of the body with
thickened skin. In addition, appendageal features such as hair follicles and sweat ducts are
transversal to multiple skin layers [14].

The dermis, with a thickness of typically 1–2 mm, comprises the bulk layer of the skin
and provides its elasticity, flexibility, and tensile strength. It is composed of collagenous and
elastin fibbers, which accommodate epidermally derived appendages such as hair follicles,
nails, sebaceous glands, and sweat glands as well as sensory nerve endings, lymphatic
vessels and blood capillaries, which extend to the dermal side of the dermo-epidermal
junction, thus allowing for metabolic exchanges and waste removal between the epidermis
and the blood system [15]. The dermis contains resident cells, primarily fibroblasts that
synthesize type I collagen for the extracellular matrix, as well as cells from the immune
system, including macrophages and dermal dendritic cells (DCs). Below this layer, the
fibrous connective tissue starts to transition to the adipose tissue of the hypodermis, where
adipocytes interconnect with the collagen fibers, forming a thermal barrier for energy
storage and protection from physical shock [15,17].
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Figure 2. Detailed structure of the epidermis, composed of four distinct strata: the stratum basale,
stratum spinosum, stratum granulosum, and stratum corneum.

The hypodermis is the innermost layer of the skin and may be considered part of the
endocrine system. It provides the nerves, and the lymphatic and blood vessels, which
permeate into the upper layers, thus playing a critical role in re-epithelization, wound
healing, and angiogenesis [14,18].

3. The Skin as an Immune Organ

The skin is undoubtably a complex organ that harbors a highly specialized im-
mune microenvironment essential for maintaining tissue homeostasis, defense, and repair.
Through a sophisticated network of resident immune and non-immune cells, biomolecules,
and skin structures, the skin is able to protect the host from pathogen invasion as well as
chemical and physical stress [13–15].

Resident immune cells (e.g., melanocytes and Langerhans cells) ensure tissue function
in homeostasis and actively seek environmental antigens. Following an infection or tissue
injury, these cells create a defense network in order to fight the insult and to restore the
tissue to its original state [19,20]. Both epidermal keratinocytes and Langerhans cells (LCs)
as well as dermal DCs, mast cells, and macrophages function as sentinels that not only
provide a protective barrier but also trigger an early response to pathogen invasion by
releasing stored antimicrobial peptides (AMPs), chemotactic proteins, and cytokines [20].

3.1. Non-Immune Cells as Key Immunological Mediators

Keratinocytes in response to multiple stimuli produce large amounts of interleukins
(ILs), tumor-necrosis factor (TNF), and antimicrobial peptides, which trigger local immune
responses. Moreover, they produce chemokines and immunoregulatory cytokines that
act on resident immune cells such as DCs, mast cells, and macrophages, triggering the
upregulation of inducible mediator expression and the recruitment of additional immune
cells to the site of inflammation [21].

Similar to keratinocytes, fibroblasts also exert key immunomodulatory features.
They express pattern recognition receptors (PRRs), produce AMPs, and synthesize
many cytokines.

3.2. Immune Skin Cells

Langerhans cells are the only myeloid cell type in the epidermis. These cells act as key
immunological mediators, with both an antigen-presenting role and a possible tolerance
induction during an infection. These cells take up and process microbial fragments and
lipid antigens and present them to effector T cells [19]. LCs are naturally migratory cells
that continuously search the skin for signs of infection and that drain lymph nodes in order
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to build tolerance in homeostasis or to initiate adaptive immune responses. In addition,
they can further exert immunoregulatory and tolerogenic functions [22–24].

Mast cells are commonly found in the upper dermal layer of the skin, actively pro-
tecting it and responding to infections, venoms, and stress caused by wound healing [20].
Mast cells produce and release significant amounts of histamine, thus being naturally
involved in allergic reactions, and are recognized as typical allergy cells. Recent studies
show their critical role in wound healing, inflammation, angiogenesis, immune tolerance,
and cancer [19].

Dermal DCs, similar to LCs, are prime antigen-presenting cells, the main role of which
is to provide immunosurveillance against pathogens. These cells activate and promote
the clonal expansion of skin-resident memory CD4+ or CD8+ T cells. T cell-derived pro-
inflammatory cytokines and chemokines can in turn stimulate epithelial and mesenchymal
cells, therefore intensifying the inflammatory response [25]. Plasmacytoid DCs are a type
of DC found in the skin exclusively during an inflammatory stage. These cells produce
large quantities of interferon-α (IFN-α), essential for viral defense. In addition, they have
also been implicated in autoimmune disease such as psoriasis as well as fibrosis [26].

Table 1 summarizes the functions of the main cell types found in the skin and their
role in the skin immunology, which leads the outcome of molecules delivered cutaneously.

Table 1. Main immunological functions of skin cells.

Cell Type Location in the Skin Immunological Role Ref.

Langerhans cells Epidermis

Sentinel role

[19,25]Migration to lymph nodes to induce
adaptive immune responses

Induction of tolerance
Production of pro-inflammatory

cytokines and chemokines

Dermal DCs Papillary dermis Antigen presentation [25]Cytokine and chemokine secretion
Plasmacytoid DCs Dermis Production of IFN-α [21,25]

Macrophages Papillary and reticular dermis

Antimicrobial activity

[19,25]Production of pro- and
anti-inflammatory mediators
Production of cytokines and

chemokines
Phagocytosis of pathogenic agents

and necrotic debris

Mast cells Papillary and reticular dermis

Production of inflammatory
mediators involved in allergic

responses and asthma [19]
Recruitment of immune cells

Production of inflammatory cytokines

B lymphocytes Reticular dermis
Production of autoantibodies [27,28]specific to components of the skin

Non-immune cells (keratinocytes and
fibroblasts)

Epidermis and reticular dermis
Provide physical barrier and

structural integrity [20–22,25]
Production of inflammatory cytokines

and AMPs in response to injury or
pathogen invasion

Neutrophils Reticular dermis

Phagocytosis during pathogen
invasion [29,30]

Release of chemo-attractants to recruit
other neutrophils to the site of

inflammation
Eosinophils Reticular dermis Defense against parasites [31]

4. The Skin as a Barrier in Cutaneous Delivery

Cutaneous delivery is one of the most attractive routes of administration for drugs
and cosmetics, since it can overcome the many drawbacks of most common routes (e.g.,
parenteral and oral), including low bioavailability and cytotoxicity, while ensuring a
sustained drug release at the desired site of action [32]. However, normal skin presents
a serious barrier to drug absorption, mostly due to the unique lipid composition and
organization of the SC, which plays a key role in skin permeability and therefore drug
permeation through the skin [32–34].
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Despite recent advances in the identification and elucidation of the mechanisms of
drug transport through the skin and the generation of structure–activity relations that
allow for an accurate prediction of the permeation profile of a drug, the development of
new formulations and drug delivery systems capable of improving drug uptake via the
skin barrier are still needed [5]. This is particularly relevant when it comes to routes for
flavonoid administration. It is now well-established that, due to its lipophilic nature, the
cutaneous route is the best delivery approach for flavonoids. In fact, an array of novel
formulations for topical delivery have been developed and optimized in order to increase
the solubility and permeability of flavonoids across the skin barrier [5]. Nonetheless, there
are still major challenges to overcome in order to successfully deliver these compounds
to the skin for therapeutic purposes, including inadequate residence time and sustained
release profile as well as the scalability of formulation and manufacturing process [1,3–5].

Targeting the optimal skin penetration pathway is an essential step for effective topical
drug delivery. On that matter, drugs can be administrated through the skin in an invasive
and noninvasive way. In the invasive route of administration, drugs can permeate through
the skin via needle injections (subcutaneous, intramuscular, or intravenous routes) or
via the implantation of a device [35]. In the subcutaneous route, the needle is inserted
directly into the fatty tissue, thus reaching the bloodstream. For instance, insulin, similar
to other proteins that are destroyed in the digestive tract, is administrated through this
route. For larger volumes of drugs, the intramuscular route is preferred in comparison with
the subcutaneous one. On the other hand, in the intravenous route, the drug is delivered
directly into the bloodstream, in a well-controlled and rapid manner. The implantation of
a device inserted under the skin is another invasive drug administration method and is
usually considered when a controlled release of the drug with time is needed.

Regarding noninvasive drug administration methods, there are four possible path-
ways of drug permeation across the skin: the intracellular, intrafollicular, transcellular,
and polar pathways (Figure 3) [36]. The intrafollicular route, sometimes classified as the
appendageal route, encompasses drug permeation through the skin appendages, such as
lipophilic follicular ducts, sebaceous glands, or hydrophilic sweat ducts [14,37]. In the most
commonly used pathway, the intercellular one, the drug travels through the lipid matrix
that occupies the intercellular spaces between the corneocytes, thus making it the preferred
permeation route for lipophilic molecules. On the other hand, in the transcellular way,
also known as the intracellular pathway, the drug diffuses through the various skin layers
and dead cells, allowing for the transport of hydrophilic or polar molecules. Finally, in the
polar pathway, the drugs permeate through the skin via polar pores available at its surface.
This observed flux of drugs across the various layers of the skin is called transdermal drug
delivery [15,18,38,39].

Figure 3. Schematic representation of different entry pathways for molecules into the skin.

After passing through the SC and diffusing through the viable epidermis and dermis,
the drug becomes available for its uptake into the systemic circulation [5]. Systemic absorption
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depends on the application site, its area, and the nature of the delivery system. Another alternative
to the oral administration of drugs is topical delivery, in which the drug is intended to be absorbed
at specific areas of the skin rather than being targeted for systemic delivery. Examples of drugs
topically delivered to the skin include corticosteroids, antifungals, antivirals, antibiotics, antiseptics,
and local anesthetics [40].

5. Flavonoids: Relevant Biochemical and Biological Properties

In addition to their well-reported strong antioxidant activity, flavonoids also exhibit
the ability to modulate key cellular signaling pathways and enzymatic reactions involved
in a wide range of pathophysiological events such as cell proliferation, inflammation,
immune response, platelet aggregation, and cytotoxicity [41–45]. Studies indicate that the
biological properties of flavonoids are beneficial in solving or controlling skin disorders.
The following subsections briefly describe the antioxidant, anti-inflammatory, anticancer,
and antibacterial activities of flavonoids, elucidating the molecular targets and mechanism
of actions with an effect on skin disorders (Table 2).

Table 2. Synopsis of the main molecular targets and mechanisms of action of flavonoids.

Flavonoid Molecular Targets Biological Role Mechanisms of
Action Ref.

Catechin,
Epigallocatechin

ERK, NF-kB, Rac1,
AP-1, p38 Anticarcinogenic

Inhibition of iNOS
expression [46–49]

Reduction of NF-kB
and AP-1 activity

Apigenin Akt, ERK, caspase-12,
caspase-3, MAPK,
ROS, COX-2, IL-6,

TNF-α, IL-1β, iNOS,
PGE2

Anti-inflammatory,
Anticarcinogenic

Inhibition of
intercellular

adhesion molecule-1
(ICAM-1), VCAM-1,

and E-selectin
expression

[9,46,47,50,51]

Inhibition of
prostaglandin

synthesis and IL-6
production

Luteolin
Akt, ERK, caspase-12,

caspase-3, MAPK,
ROS, COX-2, IL-6,

TNF-α, IL-1β, iNOS,
PGE2

Anti-inflammatory,
anticarcinogenic

Inhibition of the
upregulation of

monocytes adhesion
and VCAM-1

expression and
NF-kB activity

[9,46,47,50,51]

Quercetin
PKC, AP-1, H2O2,

iNOS, MDA, citrate
synthase, MMP-9,

MMP-2, COX-2, ERK

Antioxidant,
anti-inflammatory

Inhibition of NO
production and iNOS

protein expression [46,47,52]

Inhibition of
cyclooxygenase and

lipoxygenase
activities

Hesperetin

GSH reductase,
iNOS,

3-nitropropionic acid,
COX2, NF-kB, IL-1,

TNF-α

Antioxidant

Blood lipid-lowering
and

cholesterol-lowering
agents

[46,47,52]

5.1. Antioxidant Properties

One of the best-described properties of flavonoids is their capacity to act as powerful
antioxidants. In fact, flavonoids have the ability to act as free-radical scavengers and metal
ion chelators as well as the capacity to affect enzymatic and non-enzymatic systems that
regulate cellular redox balance [41,45,53]. Their mechanisms of antioxidant action can
include (1) the suppression of reactive oxygen species formation (ROS) either through
inhibition of certain enzymes or by chelating trace elements involved in the generation
of free radicals, (2) scavenging ROS, and (3) the upregulation or protection of antioxidant
defenses [3].

Depending on their structure, there is considerable evidence that flavonoids are
effective scavengers of ROS, such as peroxyl, alkyl peroxyl, hydroxyl, and superoxide
radicals as well as reactive nitrogen species (RNS), in particular, nitric oxide (NO) and
peroxynitrite (ONOO−). Due to the presence of vicinal hydroxyl groups, several flavonoids
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can also act as chelators of redox-active metal ions, such as copper and iron, thus preventing
free radical formation and lipid peroxidation [54–57].

Free metal ions enhance the formation of ROS through the reduction of hydrogen
peroxide to the highly reactive hydroxyl radical. Flavonoids, due to their lower redox
potential are able to reduce highly oxidizing free radicals such as hydroxyl, superoxide,
and peroxyl radicals by donating a hydrogen atom. The presence of a 3′,4′-catechol group
in the flavonoid structure, for example, is known to enhance their capacity to inhibit
lipid peroxidation. This trait makes flavonoids highly effective scavengers of peroxyl,
superoxide, and peroxynitrite radicals [58–61]. Epicatechin and rutin, for instance, were
shown to be strong radical scavengers and inhibitors of lipid peroxidation in vitro [3].
Moreover, they are known to inhibit enzymes involved in ROS formation, such as the case
of xanthine oxidase, myeloperoxidase, and NADPH oxidase.

On the other hand, flavonoids have the capacity to upregulate both enzymatic and
non-enzymatic systems involved in the removal and detoxification of oxidant species, par-
ticularly reduced glutathione (GSH), GSH peroxidase, GSH reductase, GSH S-transferase,
superoxide dismutase, and catalase, as it has been demonstrated in animal models for rutin;
quercetin; daidzein; and to a lesser extent, genistein [62,63]. Certain flavonoids, such as
quercetin and the catechins, have been shown to regenerate ascorbate and α-tocopherol via
electron transfer reactions, thus displaying an additional antioxidant mechanism [64–66].

It is noteworthy that, under certain conditions, flavonoids might also exert a marked
pro-oxidant activity, becoming cytotoxic. In fact, they can undergo transition metal or
peroxidase-catalyzed reactions, which lead to the formation of highly reactive oxygen
species that can damage proteins and DNA [67].

5.2. Anti-Inflammatory Properties

Inflammation is a biological response to tissue injury, microbial infection, and chemical
irritation. During an inflammatory process, the migration of immune cells from blood
vessels and the release of mediators to the site of damage are followed by the recruitment
of inflammatory cells and the release of ROS and pro-inflammatory cytokines that work
together to eliminate pathogens and to repair injured tissues. Flavonoids are known to
significantly affect the immune system [47,68]. For instance, hesperidin, apigenin, and
quercetin are among a broad spectrum of flavonoids known for their anti-inflammatory and
analgesic capacity. In fact, studies have shown that, both in vitro and in vivo, flavonoids
have the capacity to downregulate the expression of a wide range of pro-inflammatory
genes, including the inducible nitric oxide synthase (iNOS), cyclooxygenase (COX), lipoxy-
genase (LOX), and several key cytokines, mainly through the inhibition of the mitogen-
activated protein kinase (MAPK)- and nuclear factor-kappa B (NF-κB)-mediated signaling
pathways [68–70]. This ability to inhibit the arachidonic acid pathway at the level of
phospholipase A2, COX and LOX is of particular importance since it results in a decrease
in the production of prostaglandins and leukotrienes, essential mediators of the acute
inflammatory response [71,72]. Flavonoids are in fact known to modulate several steps of
the inflammatory cascade both in human and animal cell types. Quercetin, kaempferol,
genistein, and epigallocatechin-3-gallate (EGCG) are among the flavonoids that have been
extensively studied on their ability to affect iNOS activity and NO production. They have
been found to inhibit iNOS expression via the downregulation of extracellular signal regu-
lated protein kinase 1/2 (ERK 1/2) and p38 MAPK phosphorylation and by preventing the
binding of NF-κB to the iNOS gene promoter [71,73–77]. In addition, several flavonoids
have been shown to interfere with the production and function of various pro-inflammatory
cytokines, chemokines, and adhesion molecules, such as TNF-α; IL-1β, -6, and -8; monocyte
chemotactic protein-1 (MCP-1); macrophage inflammatory protein-2 (MIP-2); vascular cell
adhesion molecule (VCAM); and P-selectin by inhibiting the MAPK pathways, by blocking
NF-κB nuclear translocation, and via COX-2 synthesis [78–84].
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5.3. Anticancer Properties

Recent studies have demonstrated a direct link between flavonoids and their ability
to prevent the development of different types of malignant tumors both in human and
animal models. In fact, it is now well-established that flavonoids exert an anticarcinogenic
effect by quenching oxidative stress and inflammatory response; by inducing apoptosis;
by suppressing MMP secretion; and by inhibiting cell growth, tumor cell invasion, and
angiogenesis [85–91].

Flavonoids might act on the initial steps of cancer development by preventing the
DNA damage that can be induced by free radicals and carcinogens. In addition, flavonoids
have been demonstrated to inhibit various types of cancer cell proliferation by inducing cell
cycle arrest at the G1/S or G2/M phases through the downregulation of cyclins and cyclin-
dependent kinases. They were also shown to stimulate apoptosis through the activation of
caspases 3, 9, and 8 and proapoptotic proteins p53, p27, and Bax as well as via the inhibition
of antiapoptotic proteins (Bcl-2 and Bid) and the release of cytochrome c [92–98].

Their antiproliferative and proapoptotic activity might implicate the inhibition of
growth factors and its receptors such as platelet-derived growth factor (PDGF), PDGF
receptor (PDGFR), and epidermal growth factor receptor (EGFR) in addition to the acti-
vation of NF-κB and the inhibition of the Akt/PI3K, ERK and activating protein-1 (AP-1)
pathways [99,100]. For instance, flavonoids such as EGCG, quercetin, genistein, luteolin,
and the anthocyanins were able to reduce angiogenesis, a key event in tumor growth, inva-
sion, and metastasis via the downregulation of VEGF, VEGFR, PDGF, PDGFR, EGFR, and
MMP. Other flavonoids were also shown to affect cancer cell adhesion and movement by
inducing cytoskeletal modifications, by inhibiting cell adhesion to fibronectin, by reducing
integrin expression and disrupting the stress fibers, and by reducing myosin II regulatory
light chain phosphorylation [86–88,101–103].

5.4. Antibacterial Properties

Flavonoids are naturally synthesized by plants in response to microbial infection.
Similarly, it has been found that they exert in vitro antimicrobial activity against a wide
range of microorganisms. In fact, flavonoids such as apigenin, galangin, flavonol glycosides,
isoflavones, and flavanones have all been shown to possess strong antibacterial activity [1].
Given their antibacterial properties, flavonoids are being used as wound healing agents.

6. Bioavailability of Flavonoids

One of the major concerns regarding the use of flavonoids as therapeutic agents is
their relatively low bioavailability. Even in the presence of a large daily intake of flavonoids
in dietary sources, their plasma and tissue concentrations are often insufficient to exert
the desired pharmacological effects [3]. Due to several factors that include chemical struc-
ture and molecular weight, relatively low water solubility, absorption and metabolism
in the gastrointestinal tract, lack of site specificity in distribution, and rapid elimination,
flavonoids have generally low bioavailability, which largely affects their therapeutic poten-
tial. Moreover, this class of compounds is highly susceptive to degradation upon oxygen
exposure, temperature changes, ultraviolet radiation, or pH change [104–106].

After being absorbed by the intestinal epithelium, flavonoids undergo extensive
biotransformation into conjugated products, namely glucuronides, sulphates, and methy-
lated derivatives, first in the intestine and then in the liver, where they are secreted into
bile [107,108]. Thus, the bioavailability and the subsequent cell and tissue accumulation of
the different flavonoids essentially depend on the multidrug-resistance-associated proteins
(MRP-1 and MRP-2), ubiquitously expressed as ATP-dependent efflux transporters. The ac-
tual flux of a flavonoid from the gut lumen to the blood stream and the various organs
depends on the tissue distribution of MRP-1 and MRP-2 as well as on their substrate’s
affinity. This metabolic pathway is called phase III metabolism. However, it appears that
certain phase II metabolic derivates of flavonoids can act as competitive substrates of the
MRP-mediated membrane transporters and the potential use of flavonoids as a mean to
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overcome transporter-mediated chemotherapy resistance due to the frequent overexpres-
sion of MRP in several types of cancer is based on this property. The intestinal absorption
of quercetin, for instance, is favored in the aglycone form, and its metabolism in the gut and
liver appears to be relatively high, so that less than 2% of ingested quercetin is recovered on
the plasma [3]. Additionally, after oral administration of flavonoids, a significant amount
can reach the colon and can interact with microbiota. Microbiota can, for instance, metabo-
lize some flavonoids to smaller phenolic compounds with similar biological effects and
improved bioavailability; however, on the other hand, it can also extensively metabolize
flavonoids via the glucuronidase and sulfatase enzymes, cleaving the heterocycle break
and producing inert polar compounds that are rapidly excreted without producing any
biological effect [104].

In addition, flavonoids have been reported to significantly inhibit the activity of the
cytochrome P450 system, which can result in an increase of the half-life and concentration of
many drugs, thus enhancing their toxicity and side effects [109].
Flavonoids such as quercetin, ECG, EGCG, and sylibin have been shown to downregulate
the cytochrome CYP3A4, which is the major cytochrome P450 isoenzyme in the intestine
and is responsible for the metabolism of approximately 50% of all prescribed drugs, thus
increasing the risk of potential toxicity, especially of drugs with a limited therapeutic
window [110]. Flavonoids can also interact with ATP-binding cassette (ABC) transporters,
inhibiting them, which can increase the bioavailability of poorly available drugs, on the
one hand, but it can also potentiate the toxicity of other ABC transporters substrates [111].
Thus, flavonoid encapsulation in effective nano-carrier systems can not only improve their
pharmacokinetics and therapeutic potential but also avoid enhancement of the toxicity and
side effects of drugs that can concomitantly be administrated with these compounds [104].

The rapid metabolic elimination of flavonoids, together with the evidence that they
are able to interact with the metabolism of other drugs, highlights the need to develop
novel ways to improve the delivery of flavonoids. Cutaneous administration emerges as
an alternative option to common oral and parenteral routes [112,113]. Skin drug delivery
is one of the most preferred administration routes with higher patient compliance and
satisfaction. The advantages also include the avoidance of liver first pass metabolism
effects, metabolic degradation associated with oral administration, and minimal systemic
side effects.

7. The Need for Nanocarriers in Cutaneous Flavonoid Delivery

Despite flavonoids’ pharmacological potential, dietary flavonoids present several dis-
advantages, mentioned in Section 6, hindering their clinical potential. In addition, the fact
that flavonoids can suffer an enhanced complexation or precipitation when ingested with
other food components as well as degradation by microbiota greatly reduces their bioavail-
ability and stability. On that matter, cutaneous delivery is one of the most advantageous
routes in overcoming the challenges associated with flavonoid administration [3,104].

Nonetheless, the impermeable nature of the skin presents a serious challenge to cuta-
neous delivery, where in most of the cases the therapeutic effect produced by the conven-
tional drug dosage is not sufficiently effective. Thus, the development of nano-engineered
delivery systems for flavonoids capable of increasing the solubility and bioavailability
and of providing a site-specific delivery with improved pharmacokinetic properties is
imperative. Thus far, gels are the most common form of topical drug administration,
including hydrogels and olegels. However, other delivery systems such as lipid and
polymeric nanoparticles, microparticles, and transferosomes, among others, are currently
being developed (Figure 4). These carriers can later be formulated into creams and gels,
improving patient compliance [5].
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Figure 4. Schematic representation of nano-delivery systems used for topical skin delivery.

7.1. Nano-Delivery Systems: Advantages and Limitations

The development of novel drug delivery systems, which allow for the cutaneous
delivery of otherwise poorly effective compounds with undesirable physicochemical and
pharmacokinetics parameters, can improve their efficacy and safety. Nanotechnology tools
designed for skin drug delivery include microdevices (1–1000 µm) and nanodevices
(1–1000 nm) for drug delivery [112]. Micro-delivery vehicles can act as reservoirs for
a drug that is released into the tissue interstitial space. Due to their size, they can cross
the skin barrier and directly deliver the drug to the site of action, minimizing toxicity and
prolonging release [3,51].

Despite great progress, the development of a successful drug delivery system is still a
challenging task that requires meticulous selection of the vehicle according to the active
agent. In fact, the safety of the chosen materials, eventual harmful degradation products,
and high cost of the final product are major limitations that need to be addressed.

The use of nanocarriers allows for an improvement in crucial drug properties, includ-
ing solubility, diffusivity, blood circulation half-life, and immunogenicity. However, there
are some essential prerequisites for the development of a successful targeted drug deliv-
ery vehicle, including the physicochemical and biological properties of the vehicle [114].
For instance, size, charge, and surface hydrophilicity are all properties that can impact
the circulating half-life of the particles as well as their biodistribution. Small molecule-,
peptide-, or nucleic acids-loaded nanoparticles are not as easily recognized by the immune
system; in addition, the presence of targeting ligands can increase the interaction of drug
delivery systems with the cells and can enhance cellular uptake by receptor-mediated en-
docytosis [115]. Nevertheless, there are some limitations on the use of nanocarriers, namely
storage, generation of pro-oxidant chemical species, and unexpected pro-inflammatory
response, which need to be considered in their design.

In summary, the advantages of nanocarriers application for cutaneous drug delivery
include (1) targeted delivery, with maximized efficacy and minimized systemic side effects;
(2) controlled drug release; (3) prolonged half-life in the systemic circulation; (4) improved
patient compliance; (5) improved drug solubility and permeability; (6) protection against
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degradation; (7) delivery of multiple drugs with a synergistic effect; and (8) improved
biocompatibility [3,115–117].

7.2. Nano-Delivery Systems Applied for Flavonoid Cutaneous Administration

Among the numerous nano-based drug delivery systems that have been developed
so far, lipid-based nanoparticles, including liposomes and lipid nanoparticles as well
as polymeric-based nanoparticles, are most commonly used for flavonoid delivery [3].
Liposomes are concentric vesicles consisting of an aqueous core surrounded by a membra-
nous lipid bilayer that, thanks to their structure, can encapsulate hydrophilic, hydrophobic
(in the lipid bilayers), and amphipathic molecules. To avoid the rapid elimination of lipo-
somes from the blood by the cells of the reticuloendothelial system (RES), primarily in the
liver and spleen, their structure can be modified by coating their surface with inert and
biocompatible polymers such as polyethylene glycol (PEG) [118–121].

Solid lipid nanoparticles (SLN) are nanocarriers composed by a solid hydrophobic core
and stabilized by a surfactant. Among the main advantages of using SLN as drug carriers,
their high stability and capacity to protect the incorporated drugs from degradation,
the controlled drug release, site-specific targeting, and good biocompatibility stand out.
However, they often display low loading capacity as well as a short storage time with
frequent drug expulsion. SLN can be administered by the parenteral, oral, transdermal,
dermal, and ocular routes. In addition, they have higher stability compared with liposomes
and, due to their easy biodegradability, are less toxic than polymeric nanoparticles, making
them highly versatile drug delivery vehicles. Their primary applications target skin
disorders; for example, curcumin loaded in SLNs featured a controlled drug release over
24 h and effective skin deposition for the reduction in pigmentation and inflammation in
Balb/c mouse skin [117,122,123].

Regarding its potential application as a cutaneous drug delivery system, SLN-enhanced
SC permeation is attributed to (1) prolonged contact with the skin surface; (2) their occlu-
sive nature, since they form a film on the surface of the skin that combines with the skin
lipids promoting a reduction in water loss and hydration of the skin; and (3) the interaction
between the lipids in the nanoparticles and SC lipids, which facilitates permeation of
lipid-soluble compounds.

The use of cationic lipids on the nanoparticle’s composition allows for an interac-
tion with the negatively charged skin surface. For instance, a highly positively charged
(+51 mV) SLN using cationic phospholipids, tween 20 as a surfactant, tricaprin as a solid
lipid core, and encapsulating plasma DNA was shown to have enhanced in vitro perme-
ation into mouse skin and the expression of mRNA in vivo after topical application [124].

Liquid lipids (oils) can be added to a solid lipid, creating an irregular lipid matrix,
called the nanostructured lipid carriers (NLC). The lipids’ spatial structure allows for an
increased drug loading capacity and better stability compared with SLN. Studies have
shown that both NLC and SLN display similar mechanisms of skin permeation enhance-
ment, through occlusion and mixing between the formulation and the SC lipids, although
the presence of a liquid lipid is known to increase the solubilization and loading capacity,
thus resulting in greater skin deposition [3,124].

Polymeric nanoparticles are colloidal structures composed of natural or synthetic
polymers. Depending on their shape, they can be classified as nanocapsules, vesicular
systems with the drug in a core surrounded by a polymeric membrane, and nanospheres,
which are porous matrixes in which the drug is uniformly dispersed [125,126]. The most
common synthetic polymers used in the preparation of these nanoparticles are poly(lactic
acid) (PLA), poly(lactide-co-glycolide) (PLGA), poly(methyl methacrylate) (PMMA), and
poly(alkylcyanoacrylate) (PACA) [127–132]. In addition, natural polymers such as alginate,
gelatin, chitosan, and albumin are also frequently used since they are less toxic compared
with synthetic polymers. Polymeric nanoparticles feature biocompatibility, biodegrad-
ability, stability, and surface modification potential, therefore allowing for the controlled
release of both hydrophobic and hydrophilic compounds as well as proteins, peptides,
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or nucleotides to the specific site of action. To avoid rapid removal from blood and to
reduce its cytotoxicity, polymeric nanoparticles can be covered with a non-ionic surfac-
tant or coated with hydrophilic substances such as PEG or carbohydrates, thus reducing
opsonization [3].

8. Cutaneous Delivery Systems of Flavonoids for Treatment of Skin Pathologies

Cutaneous delivery of flavonoids is a powerful strategy to avoid systemic toxicity
while restricting the therapeutic effects to the specific site of action. However, one of the
major challenges that a topical delivery system faces is the ability to overcome the SC
barrier against foreign substances [5]. In addition, most flavonoids are highly lipophilic
compounds and their permeation across the SC into viable skin layers is hindered by their
affinity for SC components and the tendency to be retained in this layer. Thus, there has
been a growing interest in the use of nanotechnology as a strategy for a more efficient
flavonoid delivery to the human body (Figure 5). Nano-delivery systems are in fact excel-
lent tools to overcome the challenges associated not only with the cutaneous absorption
of the drug per se but also with flavonoid pharmacology, including low solubility, short
half-life, and poor bioavailability [5,124].

Figure 5. Limitations and advances on cutaneous flavonoid delivery.

8.1. Examples of Nanocarriers Designed for Flavonol Cutaneous Delivery

Flavonols are O-glycosidic ketonic compounds with a sugar moiety at the 3-position
that act as powerful antioxidants, protecting the skin from ROS formation.
Compounds belonging to this family of flavonoids are quercetin, kaempferol, and myricetin,
among others [133].

Quercetin, one of the best studied and most common flavonoid found in nature, was
shown to have poor permeability across excised human skin [4]. For that, this flavonoid has
been incorporated into different delivery systems, including nanoemulsions, nanocapsules,
lipid nanoparticles, and microemulsions, to increase its solubility and skin permeabil-
ity [5]. Casagrande and colleagues incorporated quercetin into two different oil-in-water
emulsions with a distinct lipid content in order to evaluate their potential application
as a topical delivery system. The in vivo results demonstrated that these formulations
were an effective vehicle for topical application of quercetin with the goal of controlling
ultraviolet B (UVB)-induced skin damage [4,134]. Based on these results, other studies
were conducted to design novel delivery systems to increase quercetin effectiveness when
topically applied. For example, quercetin was incorporated into a liquid, crystalline for-
mulation and the influence of this vehicle in the antioxidant activity of this flavonoid was
evaluated in vitro. The presence of a liquid, crystalline structure allowed for an easier
diffusion through the skin and a considerable solubilizing capacity for both oil- and water-
soluble compounds. Scalia and colleagues also demonstrated that the incorporation of
quercetin in lipid microparticles improved its photostability and chemical stability as well
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as its biocompatibility [135,136]. In another study, Tan and colleagues investigated the
potential of using lecithin-chitosan nanoparticles as a topical delivery system for quercetin.
Compared with quercetin in its free form, the quercetin-loaded nanoparticles displayed
higher permeation ability and significant accumulation of quercetin in the skin, particularly
in the epidermis. In addition, microstructure observations of the skin surface following
administration showed that the interaction between constituents of the nanoparticles and
the skin surface markedly changed the morphology of the SC and disrupted the corneocyte
layers, therefore facilitating permeation and accumulation of quercetin in the skin [137].

Nan and colleagues evaluated the efficacy of topically applying quercetin-loaded
chitosan nanoparticles against UVB radiation. The authors demonstrated that quercetin, if
entrapped into chitosan nanoparticles, could be efficiently up taken by HaCaT cells (ker-
atinocytes) and could easily permeate through the epidermis layer while displaying better
stability and lower cytotoxicity. Moreover, they also found that quercetin-loaded nanoparti-
cles could enhance the effects of this flavonoid when inhibiting the NF-kB/COX-2 signaling
pathway as well as when ameliorating the skin edema caused by UVB radiation [138].

Bose and Michniak-Kohn developed a solvent-free NLC formulation of quercetin
using probe ultrasonication and evaluated the feasibility for topical delivery. Formulation
factors such as the nature of the lipid (solid/combination of solid and liquid) in the SLN
and NLC systems and the drug loading capacity were evaluated to produce the optimal
formulation with an adequate physical stability. Overall, the NLC system showed the
highest improvement in the topical delivery of quercetin, manifested by the amount of
quercetin retained in full-thickness human skin compared with a control formulation with
a similar composition and particle size in the micrometer range, thus demonstrating the
feasibility of NLC systems for improved cutaneous delivery of this compound [139].

Penetration enhancer containing vesicles (PEVs) are also known to be powerful en-
hancers for dermal delivery due to the presence of both phospholipids and penetration
enhancers (PE), which provide a synergistic effect on skin permeation. PE increases the
fluidity of the lipids of the SC, facilitating the delivery of drug-loaded vesicles and its sub-
sequent diffusion through the skin [5]. Hence, in 2011, Chessa and colleagues developed
quercetin-loaded PEVs, formulated using four different hydrophilic PE, and character-
ized them by size, surface charge, loading capacity, and morphological and viscoelastic
features. In addition, their penetration capability and distribution through pig skin were
assessed to obtain the optimal formulation for the delivery of quercetin to the skin [140].
In another study, performed by Caddeo and colleagues, quercetin-loaded phospholipid
vesicles, in particular liposomes and PEVs, were developed in order to study their effi-
cacy on 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced skin inflammation. In vivo
results demonstrated that the vesicles, in particular PEVs, were capable of delivering the
drug to the inflammation site, that is the dermis, inhibiting oxidative stress and leuko-
cyte accumulation as well as stimulating the repair of skin damaged induced by TPA.
Through this work, the authors highlighted the use of vesicular systems, particularly PEVs,
as a delivery vehicle for flavonoids, with a therapeutic potential to treat inflammatory skin
disorders [141].

Kaempferol is another well-known flavonol with antioxidant, anti-inflammatory, an-
ticancer, and antiallergic properties [142]. In fact, Wang and colleagues reported that
kaempferol inhibited the iNOS mRNA expression and prostaglandin E2 production in
a dose-dependent manner, by inhibiting in part the NF-kB signaling pathway [143].
Furthermore, Park et al. reported that kaempferol was also able to inhibit the activation
of inflammatory NF-kB transcription factor via nuclear factor-inducing kinase (NIK)/IkB
kinase (IKK) and MAPKs in aged rat kidney [120]. Nonetheless, studies have shown
that this flavonoid undergoes excessive first pass metabolism and, as a consequence, dis-
plays a bioavailability rate of only 2%, thus making it a good candidate for cutaneous
application [142]. Keeping that in mind, Yun Chao and colleagues developed submicron
emulsions to be employed as a delivery system for the topical application of kaempferol.
These submicron emulsion systems are oil-in-water dispersions with small droplet sizes in
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the range of 100–600 nm. In comparison with traditional drug delivery vehicles, they are
easy to manufacture, are more thermodynamically stable, and exhibit enhanced drug solu-
bilization as well as increased drug permeation rates. Additionally, submicron emulsions
were demonstrated to be a potential vehicle for the transdermal and topical delivery of
lipophilic and hydrophilic drugs. In this study, kaempferol-loaded submicron emulsions
with different water/oil/surfactant/cosurfactant ratios were prepared, and different phys-
iochemical properties (e.g., viscosity, droplet size, permeation rate, lag time, and deposition
amount in skin) were determined in order to evaluate the effectiveness of this delivery
system for the cutaneous application of kaempferol. Overall, the authors demonstrated
that, based on the permeation parameters, including the increase in the cumulative amount
of drug over 12 h and deposition in the skin, in addition to a shorter lag time, submicron
emulsions may be a promising vehicle for cutaneous application of kaempferol [142].

8.2. Examples of Nanocarriers Designed for Other Flavonoid Classes’ Topical Delivery

Isoflavones, are naturally occurring isoflavonoids mainly found in soybeans, soy
foods, and legumes. They are non-steroidal compounds that act as phytoestrogens as they
exert pseudohormonol activity by binding to estrogen receptors in mammals. The most
common isoflavones are genistein and daidzein [5]. Huang and colleagues assessed the
potential topical delivery and dermal use of soy isoflavones genistein and daidzein, using
α-terpineol and oleic acid as PE, both in vitro and in vivo. As demonstrated in vivo, there
was an increase in the uptake of genistein an daidzein, with no toxic effects, and a decrease
in the erythema. In vitro studies showed an inhibition of UVB-induced intracellular H2O2
production and the consequent protection of keratinocytes against UVB radiation, suggest-
ing that a reduction in photodamage to the skin via the topical application of antioxidants
could be an efficient way to enrich the endogenous cutaneous protection system [143,144].

Apigenin is a hydrophobic, polyphenolic flavonoid known to possess antioxidant,
antimicrobial, anti-inflammatory, antiviral, antidiabetic, and tumor inhibitory activities.
In particular, this flavonoid was demonstrated to act as a chemo-preventive by inhibiting
the enzyme CYP2C and by preventing the metabolism of many drugs and xenobiotics.
Similar to the already mentioned flavonoids, the clinical potential of apigenin is suppressed
by its poor aqueous solubility, low oral bioavailability, and rapid metabolism. Thus, the
development of novel formulations is a necessary step to overcome these limitations and to
improve apigenin delivery [5]. On that matter, several formulations have been developed
so far, including liposomes, nanocrystal gel formulations, and self-micro-emulsifying
drug delivery systems. Munyendo and colleagues reported that the formulation of
D-α-tocopherol acid and polyethylene glycol 1000 succinate (TPGS) stabilized the mixed
micelles of apigenin and phospholipids, creating an effective drug delivery vehicle capa-
ble of enhancing the bioavailability of this flavonoid [145]. Karthivashan and colleagues
prepared “flavonosomes”, which are phytosomes loaded with multiple flavonoids, using
phosphatidylcholine as a carrier and evaluated their in vitro pharmacokinetics and tox-
icity [146]. Shen and co-workers evaluated a novel topical delivery system for apigenin
by using soy lecithin-based ethosomes, demonstrating a higher skin targeting capacity
and a significant reduction in COX-2 levels in mouse skin inflammation induced by UVB
light [147].

Luteolin is another promising flavonoid with potential antiarthritic activity. In addi-
tion, due to its lipophilicity, it can be used in topical formulations to treat psoriasis [148].
Niosomes are non-ionic surfactant-based colloidal systems that have the ability to en-
capsulate both hydrophobic and hydrophilic drugs. Abidin and co-workers prepared
luteolin-loaded niosomes using different non-ionic surfactants and characterized them
for their in vitro and in vivo antiarthritic activity. The optimized formulation was later
converted into gel using Carbopol as a gelling agent for enhanced transdermal luteolin
delivery. The in vivo bioactive studies revealed that the niotransgel formulation of luteolin
was able to provide good antiarthritic activity, with the results being comparable with stan-
dard diclofenac gel formulation [149]. In another study, Shin and colleagues, established a
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nanoemulsion-based follicular delivery system, in which luteolin was incorporated into
oil-in-water nanoemulsions. In vivo studies proved that these luteolin-loaded nanoemul-
sions possessed hair-growth promotion ability. In fact, when nanoemulsions are formed
by the assembly of amphiphilic polymers at the oil/water (O/W) interface, they provide
an efficient system for the encapsulation of poorly water-soluble substances, resulting in
better bioavailability, accurate dosing, and minimal side effects [150].

Catechins are a group of flavonoids that belong to the flavanol family and are
present in high concentrations in a variety of plant-based fruits, vegetables, and beverages.
Belonging to this family are catechin, epicatechin (EG), and EGCG. EGCG, in particular,
has captured a lot of attention due to its broad spectrum of biological properties, includ-
ing antioxidant, photoprotective, antiviral, and antibacterial as well as anticancer and
neuroprotective effects. Nevertheless, its clinical use has been limited due to its poor
systemic absorption and low bioavailability [5]. With the goal to overcome this problem
and to increase EGCG clinical applicability, Avadhani and co-workers developed nano-
transfersomal formulations of EGCG for an efficient permeation into the SC and delivery
into the skin [151]. In addition, hyaluronic acid (HA) was also encapsulated in the trans-
fersomes not only because it is widely distributed in connective tissues and is a main
component of the extracellular matrix but also because it is a non-irritating biopolymer
and antiaging agent with high biocompatibility, specific viscoelasticity, and hydration
and lubrification properties. The optimized transfersomal formulation containing EGCG
and HA displayed a high free radical scavenging effect while showing no cell toxicity.
In addition, the formulation was able to suppress the MDA and ROS levels to a significant
extent in human keratinocytes as well as the expression levels of MMP-2 and MMP-9.
The encapsulation of EGCG in the transfersomes resulted in higher skin permeation and
deposition of this flavonoid in the skin, compared with plain EGCG. Interestingly, the
co-entrapment of HA in the formulation increased both the skin permeation and deposition
of EGCG, thus demonstrating that this system constitutes a useful and effective EGCG
cutaneous delivery vehicle, with synergistic antiaging and antioxidant benefits [151].

Fang and colleagues assessed the possibility of using multilamellar phosphatidyl-
choline (PC) liposomes studied for topical and intratumor delivery administration of
catechin, EC, and EGCG in nude mice [152,153]. The authors showed that the inclusion of
anionic species such as deoxycholic acid and dicetyl phosphate increased the encapsulation
of the catechins and the permeability of the lipid bilayers. EGCG performed differently
due to its higher lipophilicity. In addition, the authors reported an even higher EGCG
encapsulation for deoxycholic acid-liposomes prepared in the presence of 15% ethanol as
well as an increased catechin in vitro and in vivo skin permeation and deposition in basal
cell carcinomas compared with both the free form and ethanol-free liposomes. This might
be attributed to the fact that ethanol-enriched liposomes penetrate easily in the skin due
to the increased elasticity conferred by the insertion of alcohol into the PC membranes.
The results showed that optimization of the physicochemical features and composition
of liposomes could control and improve the delivery of catechins. Moreover, the results
suggested that the intratumor administration of liposomes might be an effective approach
for the local treatment of solid tumors [152,153].

Overall, there are several strategies that can be adopted to increase the solubility
and subsequent bioavailability of flavonoids with therapeutic potential. Although much
progress has been recently made, novel drug delivery systems suitable for an optimized
topical application should continue to be explored [112,154–157]. A summary of the
therapeutic application of flavonoids and the different nanocarriers used to enhance their
delivery to the skin is described in Table 3.
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Table 3. In vitro and in vivo studies using different nanocarriers for enhanced topical delivery of
flavonoids to the skin.

Flavonoid Nanoformulation Skin Model Therapeutic
Application Ref.

Quercetin

Solid lipid
nanoparticles Human skin

Delay UVB
radiation-

mediated cell
damage and

necrosis

[139]

Non-ionic
emulsion with

high lipid
content

Pig ear skin

Inhibition of
UVB-induced

cutaneous
oxidative stress

and
inflammation

[4]

Anionic
emulsion with

low lipid content
Pig ear skin

Inhibition of
UVB-induced

cutaneous
oxidative stress

and
inflammation

[4]

Lecithin-
chitosan

nanoparticles

Male Kunming
mice

Topical delivery
system with a
wide range of
applications

[137]

Lipid
microparticles n.a.

Enhance
quercetin

stability in
topical

formulations

[136]

Colloidal silica
emulsion Human skin

Optimization of
a formulation
with enhance

penetration into
human SC

[156]

Chitosan
nanoparticles HaCaT cells

Potential
therapeutic

agent for topical
use against UVB

radiation

[138]

Penetration
Enhancer

containing
Vesicles (PEVs)

New born pig
skin

New
formulation for
dermal delivery

of quercetin,
with various
therapeutic
applications

[140]

Polylactide
nanocapsules;
Multilamellar

liposomes;
Niosomes

Subcutaneous
injection in
amistogote-

infected
hamsters

Antileishmanial
agent [3,157]

Liposomes with
penetration
enhancing

vesicles (PEV)

Female CD-1
mice

Anti-
inflammatory

agent
[5,157]

Lipid
nanocapsules

Acute monocytic
leukemia cell
line (THP1–1

cell)

Antioxidant,
anti-

inflammatory
agent

[5,158]

Nanoparticle
suspension Mice Antioxidant

agent [5,149]
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Table 3. Cont.

Flavonoid Nanoformulation Skin Model Therapeutic
Application Ref.

Catechins

Multilamellar
phosphatidylcholine-

liposomes

Female nude
mouse

(Balb/c-nu, 6–8
weeks old)

Use of liposomes
for the local

delivery,
including skin

and tumor
deposition, of
polyphenols

[3,151]

Ethanol enriched
liposomes

Female nude
mouse

(Balb/c-nu, 6–8
week)

Antioxidant and
chemopreven-

tive
activity

[152]

Cream Iranian rabbits Wound healing
effect [5,159]

Tansfersomes
containing
EGCG and

hyaluronic acid
(HA)

HaCaT cells

Synergize the
UV radiation-

protective ability
of EGCG and

HA along with
imparting

antioxidant and
antiaging effects

[5,150]

Genistein Nanoemulsion Pig ear skin

New
formulation for
dermal delivery

of genistein,
with various
therapeutic
applications

[3,160]

Kaempferol Submicron
emulsions

Sprague Dawley
rat

Promising
vehicle for

topical
kaempferol
application

[142]

Resveratrol Solid lipid
Nanoparticles Porcine skin

Protection from
photodegrada-

tion
[161]

Resveratrol +
curcumin

Lipid-core
Nanocapsules Human skin

Increase skin
delivery of
resveratrol

[162]

Niosomes Cell rabbit skin

Increase skin
delivery of
resveratrol
Increased

antioxidant
activity

[163]

Hesperetin,
hesperidin

Microemulsion Guinea pigs Whitening effect [5,164]

Topical matrix
film Albino rabbits

Release of
hesperetin in

posterior of eye
[5,165]

Microemulsion
based ointment Wistar rats Skin irritation [5,166]

Naringenin Gel HRS/J mice

Antioxidant and
anti-

inflammatory
agent

[5,162]

Nanoparticles Wistar rats
Photoprotective,

antioxidant
agent

[5,162]
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Table 3. Cont.

Flavonoid Nanoformulation Skin Model Therapeutic
Application Ref.

Apigenin
Phospholipid
phytosomes Albino rats Antioxidant

agent [5,167]

Ethosomes Konmin mice
Anti-

inflammatory
agent

[5,168]

Anthocyanin Niosome gel Male Wistar rats
Anti-

inflammatory
agent

[5,169]

Luteolin

Luteolin in olive
oil ICR mice

Anti-
inflammatory

agent
[5,170]

Luteolin-loaded
nio-

somes/Niosomal
transgel

Albino Wistar
rats

Treatment of
arthritis [148]

Nanoemulsion C57BL/6 mice Growth
promoting effect [149]

9. Concluding Remarks

In the last few years, flavonoids have been extensively studied for their remarkable
antioxidant, anti-inflammatory, anticancer, and antibacterial properties. However, their
lipophilic nature and poor aqueous solubility invariably lead to limited oral bioavailabil-
ity. In addition, flavonoids are rapidly degraded and metabolized in the human body,
which greatly hinders their clinical application. Thus, oral delivery faces many challenges,
and recently, there has been a shift towards the development of new formulations and
alternative delivery routes, namely cutaneous administration. Flavonoid encapsulation
is also an effective way not only to improve their pharmacokinetics but also to avoid
degradation and improve safety. Various novel formulations aiming at cutaneous delivery
have been developed with the goal to increase the solubility and permeability of flavonoids
across the skin barrier, with minimal adverse effects. However, there is still the need to
overcome limitations, such as a sustained release profile and skin retention time, to achieve
an effective therapeutic dosage. Within the literature, different experimental protocols have
been applied, hampering comparisons and progress to clinical evaluation. There is some
indication of a relation between flavonoid’s chemical structure and the most suitable deliv-
ery system, but given the diversity of the skin models used, it is not possible to establish
such a relation. Other technical issues can limit the translation to industrial process, as
laboratorial methods are a challenge to scale up.

Currently, several cutaneous formulations for flavonoids have been described in the
literature and some have been patented, which indicates the relevance of these natural
compounds, and the difficulty to certify for safety and efficacy towards translation to
the market. Stakeholders need to come forward and to support long clinical trials that
allow for the evaluation of adverse effects and for the identification of a dosage scheme.
Clinical trials must be based on solid preclinical results obtained in appropriate models.
The use of animal models (e.g., mice and rabbits) in preclinical studies present limitations
related to a lack of similarity to human skin. The research community’s awareness to
the search for alternative models finds solutions on mimetic skin models (e.g., reconsti-
tuted human epidermis and phospholipid-based permeation assays) as data show a good
correlation to human skin absorption and permeability features.

Flavonoids will continue to be explored both as a therapeutic and preventive tool for
several disease conditions, alone or in combination (several synergistic effects have been
described). A continuous growth in the search for novel strategies to empower flavonoid
use is expected given their demonstrated potential as active agent. In the future, limitations
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on the cutaneous application of flavonoids will be overcome and translational advances
towards commercialization will bring novel skin products to the market and to society.
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