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Abstract

The Forestry and Agriculture Sector Optimization Model with Greenhouse Gases (FASOMGHG) 

has historically relied on regional average costs of land conversion to simulate land use change 

across cropland, pasture, rangeland, and forestry. This assumption limits the accuracy of the land 

conversion estimates by not recognizing spatial heterogeneity in land quality and conversion costs. 

Using data from Nielsen et al. (2014), we obtained the afforestation cost per county, then 

estimated nonparametric regional marginal cost functions for land converting to forestry. These 

afforestation costs were then incorporated into FASOMGHG. Three different assumptions for land 

moving into the forest sector (constant average conversion cost, static rising marginal costs, and 

dynamic rising marginal cost) were run in order to assess the implications of alternative land 

conversion cost assumptions on key outcomes, such as projected forest area and cropland use, 

carbon sequestration, and forest product output.

Introduction

Global land-use sectors have the potential to provide greenhouse gas (GHG) abatement 

through activities that decrease land clearing, reduce emissions from crop and livestock 

production activities, and increase carbon sequestration on working croplands or through 

afforestation. Afforestation, or extensive margin expansion of forestland, has long been 
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recognized as a key potential mitigation strategy in regions, such as the United States, where 

land is relatively fungible between forests and alternative uses, and productivity of planted 

forest systems is high. Several studies have evaluated the mitigation potential of 

afforestation in the United States and elsewhere, applying a wide range of economic 

frameworks (Lubowski, Plantinga, & Stavins, 2006; Nielsen, Plantinga, & Alig, 2014; Tian, 

Sohngen, Baker, Ohrel, & Fawcett, 2018). These studies typically represent economic and 

natural resource systems by adopting key biophysical functions and/or data inputs to 

characterize the economic returns to forestry and/or agriculture activities. However, the 

underlying economic assumptions vary widely across studies, especially those considering 

land conversion costs. Cost assumptions about land-use change are a key consideration for 

economic analyses that seek to project potential afforestation on alternative land uses under 

alternative policy or market scenarios.

Incorporation of land-conversion costs into an economic analysis varies depending on the 

methodology. In reduced form or econometric frameworks such as Lubowski et al. (2006), 

and Nielsen et al. (2014), costs are often based on observed land-use change and differences 

in rental rates. These studies apply estimated regression coefficients to simulate land-use 

change under exogenous policy assumptions. General equilibrium models and integrated 

assessment models often rely on land supply elasticities and/or land-use change cost 

parameters, simulating endogenous land-use change across policy alternatives (e.g., 

Palatnik& Roson, 2012; Wise, Calvin, Kyle, Luckow, & Edmonds, 2014; and Havlik et al. 

2014). Partial-equilibrium models assume constant or rising conversion costs (e.g., Baker et 

al., 2010), or land rental functions (e.g., Tian et al., 2018). Regardless of the assumed form, 

these functions are typically aggregated to relatively large spatial regions or forest-type 

aggregates. Such aggregation ignores spatial heterogeneity in land-conversion or 

management costs within regions, which can lead to biased projections of afforestation or 

environmental benefits of increased forest area (e.g., GHG mitigation). Within a partial 

equilibrium framework, dynamic simulations often assume the same cost structure in each 

simulation period, ignoring endogenous changes in land-conversion costs as land-use change 

occurs at the extensive margin. Disregarding such temporal dependency in land conversion 

costs can also bias mitigation cost estimates for afforestation in dynamic economic analyses.

In this study, we apply a detailed partial-equilibrium model of the US forestry and 

agriculture sectors to assess the relative importance of alternative afforestation cost 

assumptions. Specifically, three alternative cost specifications are included in this study: the 

first assumes an average cost of land conversion within each model region; the second 

assumes static rising regional marginal costs based on spatially explicit information 

depicting intra-region heterogeneity of land productivity; and the final scenario assumes 

dynamic rising regional marginal cost functions. The dynamic marginal cost considerations 

assume continuously increasing marginal costs throughout the simulation horizon, as 

opposed to the static supply curves, which begin at the same reference point in each 

simulation period. Using baseline macroeconomic assumptions and multiple hypothetical 

GHG mitigation policy scenarios, we assess the implications of alternative land conversion 

cost assumptions on key outcomes. The results of this study are focused on projected forest 

area and cropland use, carbon sequestration, and forest-product output. Simulation analysis 

for this study is performed using an updated 2018 version of the Forest and Agriculture 
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Sectors Optimization Model with Greenhouse Gases (FASOMGHG). Recent changes to the 

model include updated historical agricultural factors included production, trade, and prices 

and an updated forest-sector model based on the Land Use and Resource Allocation (LURA) 

model framework described by Latta, Baker, and Ohrel (2018). One of the benefits of 

FASOMGHG is the market and land-use interactions across the forest and agriculture land-

use sectors. This partial-equilibrium model endogenously allocates land to either forestry or 

agriculture based on maximizing the net present value of the future stream of benefits.

FASOMGHG has been used extensively to project agricultural and forest land management 

across different market, policy, and environmental change scenarios. A seminal report by 

Murray et al. (2005) projected GHG mitigation potential from the US land-use sectors 

across a wide range of mitigation price scenarios and found a large portion of abatement 

(>400 TgCO2e at mitigation prices about $30/tCO2 or about 30 percent of total US 

mitigation potential) from afforestation of cropland and pasture. Baker et al. (2010) 

quantified the implications of climate and renewable energy policy incentives on net farm 

income and found that incentivizing afforestation through offset payments can provide large 

economic welfare benefits to farmers. Alig et al. (2010) used FASOMGHG to examine 

afforestation and forest management changes under mitigation policies combined with 

alternative urban development scenarios. Latta, Adams, Alig, and White (2011) evaluated 

afforestation under voluntary GHG mitigation incentives, and Latta, Baker, Beach, Rose, and 

McCarl (2013) explored land-use dynamics across alternative hypothetical biomass 

electricity policy scenarios.

In these previous analyses, the FASOMGHG model relied on constant average cost 

assumptions for afforestation on cropland, cropland pasture (meaning managed land suitable 

for crop production that is currently being used as pasture but could be converted to crop 

production or forestland), and pasture. This cost specification is limited in that it does not 

reflect the heterogenous quality of agricultural lands and the costs of converting these lands 

to forestry. This analysis seeks to add to the rich literature on agriculture and forest-sector 

interactions using economic modeling frameworks by improving the representation of 

marginal land conversion costs—both spatially and temporally. We develop non-parametric, 

upward sloping marginal cost curves, specific to US regions and agricultural land-use types. 

We use this information to inform a scenario analysis designed to evaluate the relative 

importance of afforestation cost specifications on projections of land-use change and 

management under different policy assumptions.

Data

To create regional supply curves for individual land types moving into forestry, the quantity 

of land available for conversion across varying prices is needed. The primary data used to 

create the supply curves in this analysis are from Nielsen et al. (2014), who report county-

level cost estimates for converting land to forestry from alternative agricultural land uses. 

Nielsen et al. (2014) base their land conversion cost estimates on data from the Conservation 

Reserve Program (CRP), a federal conservation initiative administered by the US 

Department of Agriculture Farm Service Agency designed to encourage land owners to set 

aside marginal agriculture and grazing land or to fully convert it to forestry. In return, land 
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owners receive yearly rental payments and early adopters of the program also received 

subsidies up to 50 percent of the cost of initial planting. The goal of the program is to help 

improve water quality, prevent soil erosion, and reduce loss of wildlife habitat. The program 

also provides co-benefits of increasing carbon storage through the expansion of forestland.

Using the payout information from the CRP, Nielsen et al. (2014) estimated the average cost 

of planting forestland per county. The initial goal of the CRP was to enroll large areas of 

erodible cropland, while over time, the focus moved to a more targeted approach to identify 

parcels with the potential to increase environmental benefits. Because of this, Nielsen et al. 

(2014) chose to limit observations from the CRP to its early years (1986–1993). It was 

assumed that each landowner received the full 50 percent subsidy toward the cost share of 

trees, and the authors calculated the average CRP payment within a county (which was then 

doubled to estimate the full cost associated with conversion). For counties with no available 

data, the authors used a two-stage Heckman model to regress the CRP payments on 

physiographic variables to estimate the cost of land conversion across the nation (see Figure 

1). Combining these regression results with CRP payment data, county-level afforestation 

costs across the nation can be estimated.

To estimate the amount of land available for conversion to forestry, Nielsen et al. (2014) 

used data on the total amount of private land within each county currently used as cropland, 

pasture, and rangeland, as classified by Holdridge Life Zones (Holdridge, 1967).

Methods

Combining the county-level estimates of land available with the estimated afforestation costs 

by county, we created spatially explicit afforestation supply curves. Then, we assigned land 

conversion costs for each county for both cropland and pasture, respectively, to one of the 11 

primary agroforestry regions in FASOMGHG (described in Beach et al., 2010). For each 

region, we arranged county-level conversion cost estimates from low to high price to create 

stepwise afforestation supply curves. Using each county as an incremental step in the supply 

function, we horizontally summed all acres available for conversion at each price increment, 

creating a nonparametric supply curve. Operationally, each nonparametric supply curve was 

incorporated into FASOMGHG using separable programming techniques. All conversion 

costs were inflated to reflect 2010 US dollars, to be consistent with other commodity and 

input prices in FASOMGHG. Figure 2 presents regional supply curves for cropland, and 

other agriculture lands.

Establishment costs across all FASOMGHG regions and land-use types range from 

approximately $0 to $5,606 per acre with this updated method. In the previous version of the 

model, average conversion and planting costs for establishing forest on cropland and pasture 

ranged from $38 to $240 per acre. Although the cost of forest establishment has a much 

higher ceiling price using the data from Nielsen et al. (2014), total afforestation potential is 

still high at prices below the previous maximum of $240 per acre (approximately 65 million 

acres). Given increased market demand for forest products or policy incentives that 

encourage afforestation, large areas of cropland, and other agricultural lands could 

potentially convert to planted forest with this new rising marginal cost specification. In 
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addition to reflecting the rising opportunity costs of land conversion, rising marginal costs of 

afforestation offer an implicit market-driven upper bound on the amount of land available to 

be converted to forestry.

These regional supply curves for cropland, rangeland, and pasture were incorporated into 

FASOMGHG. To compare afforestation results across alternative afforestation cost 

scenarios, we develop constant average cost (1), static rising marginal cost (2), and dynamic 

(or cumulative) rising marginal cost (3) specifications for each region and original land-use–

type combination. Figure 3 presents a conceptual representation of these three specifications 

in a two-period example, where the green and red lines represent afforested acres in period 1 

and 2, respectively. The constant average cost (1) specification uses a spatially weighted 

average cost of land conversion (Pt) for each region and is constant over the quantity 

converted in each period (Qt) and across each period (P1 = P2). In the static rising cost (2) 

scenario, the marginal costs start at the same point (P1) on the supply curve for each 

simulation period (t), regardless of land-use change in prior periods. This approach assumes 

that land is highly fungible and there is a constant supply of relatively cheap land available 

for afforestation at each time period. In this scenario, the price of land conversion in 

simulation period 1 (P1) can be greater, equal, or less than the costs in simulation period 2 

(P2), depending on the amount of land converted in each period. If more land is converted at 

period1 than period 2, the price of land conversion might be greater at period 1 than period 

2. Conversely, if less land is converted at period 1 than period 2, the price of land conversion 

can be less in period 1 than period 2. Finally, the dynamic rising cost (3) specification uses 

the same supply curves as the static specification but assumes that marginal costs in each 

subsequent period do not start at the origin, meaning that the marginal cost of positive 

afforestation in every period will have a lower bound equal to the marginal cost in the 

previous period. In this scenario, P2> P1 over time if net afforestation is positive. Note that 

as a discount factor is included in the model for all types of land conversion cost, the 

discount factor will also be applied to the cost of afforestation in all specifications of the 

model.

To calculate consumer surplus for downward-sloping demand functions or producer surplus 

for upward-sloping supply functions we first produce a linear representation of the nonlinear 

function. We convert these nonlinear functions into linear representative functions using 

stepwise linear approximation through separable programming (McCarl & Spreen, 1997). 

For example, the afforestation cost in the model is represented as the stepwise linear 

approximation described as:

Objective function component:Cost = ∑r, i, s, t pr, i, s, tqr, i, s, tλr, i, s, t

Identity:Qr, i, t  = ∑sqr, i, s, tλr, i, s, t

Condition:0 ≤ λr, i, s, t ≤ 1,
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where r, i, s and t denote region, land type, step, and time periods in FASOMGHG, 

respectively. Regions in the FASOMGHG model include source regions into forestland, 

from cropland, range, and pastureland. Steps depict the number of linear steps included to 

represent the nonlinear function, ranging from 1 to several hundred, varying by region and 

land type. pr, i, s, t and qr, i, s, t are the sth grid point conversion price, in $/acre, and number of 

acres, in million acres, from the land-use change supply curve that Figure 2 shows. Qr,i,t is 

the decision variable portraying the number of acres converted from land-use change. λr,i,s,t 

is a weighting parameter between 0 and 1, allowing for linear combinations across sth grid 

points to make up Qr,i,t. This weighting parameter allows for the solution quantity to span 

across linearized steps, rather than constraining solution values to a single step. Total land-

use change cost Cost, a component of the objective function, is the area under the supply 

curve, equaling to the sum of the multiplication of pr, i, s, t, qr, i, s, t and λr,i,s,t.

pr, i, s, t and qr, i, s, t are constant at all steps in the constant average cost case but differ by step 

in the static and dynamic rising marginal cost specifications. Furthermore, an additional 

constraint exists for the dynamic cost specification, where sum of λr,i,s,t would be less than 

1:

∑tλr, i, s, t ≤ 1.

As land with cheapest cost would be converted first and at earlier periods, this constraint 

would ensure that land conversion at period 2 starts at the highest cost ended at period 1 and 

then moves upward along the land-supply curve.

We applied each of the three afforestation cost-specification scenarios to three policy 

scenarios, including a baseline scenario with no additional policy incentives and two 

hypothetical mitigation policy cases. Each mitigation scenario starts with a mitigation price 

that incentivizes both increased carbon sequestration in the agriculture and forest sectors and 

reduced emissions from crop, livestock, and forestry production activities. The mitigation 

scenarios include initial price incentives of $20 per ton of CO2, rising annually at 1 percent 

for the low-growth scenario and 3 percent for the moderate-growth scenario.

Results

The results show that afforestation cost specifications play a vital role in simulated land-use 

decisions in sectoral modeling. In this section, we focus on how the land-use cost 

specifications can provide substantially different estimates of land-use change, carbon 

storage in forestland, and agricultural and forestry commodity production under common 

policy assumptions.

In our baseline policy scenario, forestland and agricultural land decline slightly over time, 

driven by development encroaching on these lands as well as intensive practices of both 

crops (through assumed increased yields) and forestry (through replacement of naturally 

regenerated stands with plantation-style management systems). Once an incentive is put into 

place aimed at decreasing carbon emissions/increasing carbon sequestration, forestland 
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expands. Figure 4 presents the baseline scenario results for land use across sectors, and the 

difference from baseline for the low and moderate mitigation scenarios. These results are 

then compared across all three afforestation cost scenarios, average (1), static (2), and 

dynamic (3). Expectedly, the average cost specification (1) results in afforestation rates that 

fall between the other scenarios. Next, the static marginal cost specification (2) leads to the 

highest rates of afforestation due to the constant availability of low-cost forestland. On the 

other hand, the dynamic marginal cost specification (3) had the lowest amount of 

afforestation, as land conversion costs were continuously increasing over the simulation 

horizon. The availability of lower cost land for conversion under the static specification 

(below the average cost threshold) resulted in greater near-term afforestation levels relative 

to the other cost specifications. By mid-century, in the moderate growth mitigation scenario, 

privately managed forestland increased approximately 13 percent (~55 million acres) under 

the static specification (2), 10 percent (~41 million acres) under average costs (1), and 5 

percent (~21 million acres) under the dynamic cost specification (3). Cropland was relatively 

constant across all three costs specifications. In the moderate growth scenario, at the mid-

century there was between 4 percent (14 million acres) and 6 percent (18 million acres) less 

cropland area compared with the baseline. Conversely, other agricultural lands showed a 

large variation in total area across the three cost specifications. Large declines in other 

agricultural lands occurred in both the average cost specification (23 percent difference from 

base in the moderate growth scenario), and the static cost specification (34 percent 

difference from base in the moderate growth scenario). When dynamic rising marginal costs 

of afforestation are considered, about a 5 percent decline occurs in other agricultural land 

area. This difference is driven by the increased price of afforestation, which allows 

alternative mitigation activities on other agriculture lands to be at a lower relative cost 

compared with afforestation. This difference in price exists for a shorter period of time in the 

moderate growth scenario which is why there is not a large increase in other agricultural 

lands in this scenario. This discrepancy between cost scenarios could significantly alter 

mitigation potential from the land-use sectors.

With all cost specifications, most of the projected afforestation occurs in the southeast due to 

the high productivity and prevalence of plantation-style forests in this region. These forests 

are relatively quick growing, and a forward-looking model such as FASOMGHG balances 

the expected future benefits from increased future yields with the additional costs that 

intensive management incurs in the current period. Afforestation is slightly delayed in the 

dynamic marginal cost specification to lessen the effect of higher relative conversion costs 

by waiting until carbon prices have increased. Furthermore, for all cost specifications, 

afforestation occurs mostly on other agricultural lands, including pasture in the southeast, 

which have lower conversion costs and net opportunity costs relative to cropland.

Figure 5 presents cumulative GHG mitigation potential from the forest sector under the low-

and moderate-growth mitigation scenarios. These estimated values represent projected 

cumulative forest carbon stock changes, disaggregated between changes in carbon storage in 

existing forests and carbon stock changes driven by afforestation. Such results are driven by 

management changes (including forest rotation extension and pre-harvest thinnings) and 

reduced land conversion. Potential mitigation on afforested lands represents aboveground 
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forest carbon changes on new forestlands that have been converted from alternative land 

uses.

Across the low- and moderate-growth mitigation scenarios, cumulative mitigation potential 

in the forest sector between the years 2020 and 2050 ranges between 3.3 and 4.9 GtCO2, 

representing an average annual sequestration increase of more than 200 million tCO2e/year. 

These projected carbon stock changes are attributed mostly to existing forests in the near 

term, but over time in the average (1) and static cost specifications (2), more mitigation is 

met through afforestation. Between 2030 and 2050, afforestation accounts for approximately 

26 percent of the cumulative carbon gains for the average and static conversion cost 

specifications, whereas only 10 percent of cumulative carbon gains are from afforestation 

between 2020 and 2030. The dynamic cost specification (3) shows the lowest potential 

mitigation overall and the lowest relative contribution from afforestation (only 16 percent of 

cumulative carbon gains is from afforestation between 2030 through 2050). Furthermore, 

there is a delay in afforestation investments for the dynamic cost specification relative to the 

average and static cost specifications, which see early extensive margin investments in new 

forestry for both the low and moderate growth mitigation scenarios. This result illustrates the 

importance of temporal considerations for conversion costs for projections and policy 

analysis.

Furthermore, mitigation potential from existing forests is lower overall for the dynamic 

marginal cost specification (3) relative to the average (1) and static (2) cases. This result 

suggests that mitigation from extensive margin shifts (afforestation) are complementary to 

mitigation at the intensive margin on existing forestlands. Lower afforestation levels 

resulting from the dynamic cost specification reduce forest inventories overall, resulting in 

less systematic flexibility to extend rotations or increase carbon sequestration through other 

management interventions on existing forests. Delayed investments in new plantation 

systems reduces net mitigation potential from other forest management activities on existing 

forests. Thus, the magnitude, timing, and relative portfolio of mitigation contributions from 

afforestation and existing forests are all affected by land conversion cost assumptions.

In addition to forestry land-use and carbon stock changes, the alternative cost specifications 

can affect simulated agricultural production and crop area variables. The agriculture sector 

faces higher opportunity costs of production when forest mitigation incentives are in place, 

leading to a decline in agricultural production in both the low- and moderate-growth 

scenarios when compared with the baseline (selected baseline results, and percent changes 

from baseline are shown in Tables 1a–d and Tables 2a–d, respectively).

Early in the simulation horizon and across all three cost assumptions, cropland moves into 

forestry under the influence of the mitigation price incentives. Under the moderate growth 

scenario, a second decline in cropland and other agricultural lands occurs toward mid-

century in both the dynamic and static cost specifications due to the relatively higher 

mitigation price incentives realized in later simulation periods. Projected land-use change for 

cropland and other agricultural lands use are lower under the average afforestation cost 

specification, in which more land moves out of agricultural production early in the 

moderate-growth scenario simulation horizon.
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Changes in regional land use, forest product output, and agricultural commodity production, 

as well as national totals, are displayed in Tables 2a–d, which show cumulative (or total) 

percent changes in key output variables in 2050 relative to the baseline for the moderate-

growth mitigation scenario. National changes are relatively small for most land-use and 

commodity production categories. Net national land-use change is minimal for croplands 

and forestlands; the former declines slightly overall, whereas the latter increases. The largest 

land-use changes occur in other agriculture lands in the average and static cost 

specifications. Sawtimber production decreases nationally as harvest levels for hardwood 

sawtimber stands slow. Pulpwood production increases commensurate with the shift to 

faster-growing plantation systems induced by the mitigation price incentive. Corn 

production decreases slightly (less than 3 percent), whereas relatively less profitable crops 

(soy and wheat) decline approximately 5 percent. Rice production also decreases under the 

influence of the mitigation price, as reductions in methane from rice cultivation are directly 

incentivized.

The Southeast (SE) region shows the greatest net changes and variability in regional land use 

and product output across all cost specifications and mitigation scenarios. Land is highly 

fungible in this region, both at the intensive and extensive margin, so changes to land 

conversion cost specifications have a dramatic impact on land-use and management 

projections. Intensive margin changes include more forest-planting and crop-mix changes, 

whereas total agricultural land declines significantly in the SE as more land is afforested and 

crop production shifts to other regions. Agricultural production and associated emissions 

increase in the Southwest (SW) region as corn and soybean production expands in this 

region to compensate for lost production elsewhere in the system (hence, leakage from 

afforestation in more productive crop producing regions). Crop mix changes occur in other 

regions, and these crop mix changes are also sensitive to cost specifications (e.g., the South 

Central [SC]).

The regional effects are more variable with dynamic afforestation cost specification (3), 

suggesting that interregional allocation of land-use and management changes in response to 

carbon policies are more sensitive to land conversion cost specifications than national-level 

results.

Discussion and Conclusions

This analysis compares alternative afforestation cost specifications using a detailed 

intertemporal economic model of US forestry and agriculture. Although previous literature 

has evaluated afforestation potential under different policy drivers or has provided 

comparisons of mitigation outputs across multiple models (van Meijl et al., 2018), few 

studies have focused on the implications of alternative land conversion cost specifications 

within a single modeling framework. We seek to fill this gap by differentiating two 

commonly used frameworks (average and static rising marginal costs), plus a newly 

developed dynamic marginal conversion cost specification. To provide a direct comparison 

of conversion cost representations, we develop projections of afforestation and other relevant 

variables on a regional scale across a baseline and two hypothetical GHG mitigation policy 

scenarios.
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Projecting afforestation potential under alternative policy assumptions remains important 

given the current state of voluntary carbon markets in the United States and elsewhere, in 

which markets are incentivizing conversion of marginal agricultural lands to forestry (Van 

Winkle et al., 2017). Incorporating spatial heterogeneity in conversion cost assumptions can 

aid in planning for public or private entities interested in offset market development or 

investment. Furthermore, recent literature has emphasized the potential contributions of 

land-based mitigation strategies for achieving long-term climate stabilization goals (Tian et 

al., 2018; Rose et al., 2012). Recent integrated assessment modeling literature discusses the 

critical role of the global land-use sectors in supporting negative emissions technologies 

such as bioenergy with carbon capture and sequestration, plus traditional carbon 

sequestration pathways through afforestation (Havlík et al., 2014; Doelman et al., 2018). 

Furthermore, a recent US government report suggested that significant investments in new 

forests will be required if the United States pursues a mid-century climate action pathway 

consistent with the long-term ambitions of the Paris Agreement (The White House, 2016). 

Thus, increased attention to afforestation as a key mitigation strategy supports the need to 

improve land conversion cost assumptions to more accurately assess large-scale land-use 

change potential and associated economic costs, especially over long time frames.

If policy efforts include afforestation in mitigation, more robust estimates of conversion 

costs can improve methodologies designed to evaluate the potential spatial extent and costs 

of afforestation, which in turn can help improve policy design. Even in the absence of GHG 

policy goals, improving afforestation cost specifications in projections-modeling frameworks 

is important in regions such as the United States, where changes in forest-product market 

demand (e.g., increased demand for wood pellets) can increase investment in forests at the 

intensive and extensive margins (Tian et al., 2018; Galik & Abt, 2016).

Results of our analysis indicate the potential sensitivity of land-use change, carbon 

sequestration, and commodity production projections to alternative afforestation cost 

specifications, especially in light of a meaningful GHG mitigation price incentive. Models 

that rely on regional average conversion cost assumptions may overstate afforestation 

potential in response to a policy or market incentive by not accounting for the diminishing 

returns associated with varying land qualities. That is, developing upward sloping marginal 

cost functions based on heterogenous land quality and conversion costs can improve land-

use change projections for market models that are represented by regional aggregates. 

(Example modeling frameworks include FASOMGHG and most partial-equilibrium, 

computable general equilibrium, and integrated assessment models.)

Furthermore, relying on upward-sloping marginal cost functions that are not dynamic in 

nature can also bias simulation results, as relatively inexpensive land is available to convert 

to forestry in all simulation periods. To address this potential bias, we develop new marginal 

cost functions based on county-level estimates adapted from (Nielsen et al., 2014) and a 

dynamic conversion cost specification that aligned to the intertemporal modeling framework 

applied in this framework. These dynamic marginal cost estimates better reflect trade-offs 

that landowners face, which leads to more robust projections of mitigation potential. Our 

results show substantial differences in the magnitude, timing, and portfolio of GHG-

mitigation contributions from afforestation and existing forests and other regional outputs 
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under the dynamic marginal cost specification. Thus, simplified average land conversion 

cost assumptions can result in both temporal and spatial bias.
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Figure 1. Estimated per acre cost of afforestation
Source: Adapted from Nielsen et al. (2014).
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Figure 2. Land-use change supply curves for cropland to forest and other agriculture lands 
(range and pasture lands) to forest
Notes: Cropland to forest (top); other agriculture lands (range and pasture lands) to forest 

(bottom). The average cost scenario assumption is represented as the highlighted point along 

each curve.
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Figure 3. Graphical representation of land-use change cost specifications
Notes: (1) constant average cost, (2) static rising marginal cost, and (3) dynamic rising 

marginal cost.
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Figure 4. Change in land use for forestry, cropland and other agriculture lands
Notes: Baseline land-use projections for forestry, cropland and other agriculture lands (top); 

difference from baseline of total land area for low growth scenario (middle); difference from 

baseline of total land area for moderate growth scenario (bottom).
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Figure 5. 
Cumulative mitigation of forest sector in Gt CO2e across alternative cost specifications and 

mitigation scenarios
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