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Introduction

With increasing use of Mechanical Circulatory Support (MCS) in the last decade and

its evolution currently as a standard therapy for patients with end stage heart failure (HF),

it is becoming imperative to derive better risk prediction models to improve outcomes.

The evolution of MCS and the transition from the older pulsatile-assist devices to the

newer continuous flow pumps have ushered in an era of benefits for the HF with reduced

ejection fraction population (1–8). However, challenges still persist in post implantation

management in the long and short terms. Risk predictionmodels impact patient selection

and, in turn, post-implantation outcomes. One of the most important factors influencing

morbidity and mortality in the patients with left ventricular assist device (LVAD) is

right ventricular failure (RVF). RVF can occur in ∼10–40% of cases, depending on the

definition used to describe such failure (3–8). Several risk prediction models exist in the

current literature, which predict RVF in patients with LVAD (9–16). This article attempts

to address the need for improved risk prediction models using artificial intelligence

(AI) technology.

Impact of RV failure on outcomes in the LVAD
population

RVF after LVAD implantation is a major cause of morbidity and mortality in

this population. Hence, early recognition of risk factors and taking appropriate steps

to prevent RVF remain safest options. RVF occurs due to pre-implantation clinical

characteristics of the patient, as well as intraoperative/perioperative issues that occur

during these periods.

Preoperative RV dysfunction is a major factor in patients with end-stage HF

whether ischemic or non-ischemic. Predisposing factors include development of

chronic secondary pulmonary hypertension, mitral regurgitation (MR), and primary

disease of the myocardium. Several parameters determined by invasive hemodynamic

parameters from preoperative right heart catheterization, such as low RV stroke work
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index (RVSWI), central venous pressure (CVP) to the

pulmonary capillary wedge pressure (PCWP) ratio, with

a ratio >0.63 associated with RV failure and pulmonary

arterial pulsatility index (PAPi), are valuable in predicting

RVF (11, 14, 17). Additionally, echocardiographic parameters,

such as RA/RV size, the RV/LV ratio, left atrium volume index

(LAVI), tricuspid annular plane systolic excursion (TAPSE), RV

global free wall strain, and RV fractional area change (RVFAC),

have all been used to predict RVF and tricuspid regurgitation

severity (18).

RVF post LVAD implantation can be classified as acute

(<48 h), early (>48 h–<14 days) and late (>14 days). De novo

RV dysfunction can develop after LVAD implantation, while

mild to moderate preoperative RV dysfunction can progress

to frank RV failure due to intraoperative and perioperative

factors. Cardioplegia leading to relative stunning of the RV

myocardium has been noted. Cardiopulmonary bypass can

itself initiate cytokine release, systemic inflammatory response

syndrome (SIRS), and increased pulmonary vascular resistance

(PVR) resulting in RVF.

Additionally, intraoperatively, myocardial ischemia, air

embolism, mechanical compression of the PA, tamponade, and

impact of LVAD circulation can result in RVF. Increased flow

from the LV/LVAD and the consequent increase in venous

return to the RV lead to increased RV preload. Loss of the

septal contribution to overall RV function with paradoxical

septal motion post LVAD implant can contribute to RVF.

Despite the decrease in afterload post LVAD implant, the

CVP/PCWP ratio worsens early after LVADdue to poor early RV

adaptation, which progressively improves with time. Increased

venous return to the RV due to rapid stepping up of LVAD

speed leads to bulging of the interventricular septum into the

LV, causing RV dilation and, therefore, worsening tricuspid

regurgitation. Acute hypoxemia and resultant pulmonary

vasoconstriction, worsening PVR, will cause RVF. Acute renal

failure with increased CVP and metabolic and/or respiratory

acidosis contribute to RVF. Increased risk of perioperative

bleeding secondary to redo sternotomy and transfusion has been

associated with SIRS and worsening RV function. Sustained

atrial and ventricular tachyarrhythmias deteriorate RV function

in addition.

RVF treatment should include cautious optimization of

LVAD speed, diuresis/ultrafiltration, and volume optimization.

Inhaled nitric oxide should be provided for pulmonary

hypertension and increased RVR or use oral phosphodiesterase-

5 inhibitors. Arrythmias should be treated, and, if RVF

still persists despite medical management, mechanical support

should be provided (RVAD/ECMO). Late RV failure can occur

in the presence or absence of normal LVAD function and is

difficult to treat with poor long-term outcomes. Bodymass index

(BMI) >29, BUN >41, and diabetes mellitus were significant

predictors of late RVF. Late RVF is associated with worse 5-year

posttransplant survival compared with patients who did not

develop RVF (19).

LVADs may be designed for long-term hemodynamic

support, but RVF still remains a challenge in >30% of patients

in the early post LVAD period. RVF causes a significant

increase in morbidity and mortality, whether they are bridged

to transplantation or are on it as destination therapy. Therefore,

RVF should be prevented by robust patient selection using

appropriate preoperative risk prediction tools to identify the best

LVAD candidates and by efficient perioperative management.

Early diagnosis of RVF is the key to improving outcomes. There

is, therefore, a need for identifying early predictors of RVF

and further refinement of treatment strategies to achieve better

outcomes (20).

The effect of RV failure on LVAD outcomes includes

increased mortality, deteriorating renal function and longer

length of stay in the ICU, all of which contribute to increased

morbidity in addition to its effects on mortality (21).

Current risk prediction scores and
their limitations

There are a number of risk prediction scores at the present

time, all of which have their advantages and limitations. The

earliest of the models, which has been the Michigan RVF

risk score put forth in 2008, was a single-center retrospective

study. Other models have been compared to this. It was the

most validated at 16, with a median c-statistic of 0.61. It

used 4 binary pre-LVAD clinical variables. There was a higher

concern for risk of bias due to variable RVF definition in

the validation studies and indication bias due to inclusion of

planned BIVAD patients and overfitting resulting in low RVF

rates (8, 9).

The EUROMACS model was similarly a retrospective study

involving multiple centers using five binary variables for early

RVF. It was validated 5 times with a median c-statistic of 0.65.

In this model, risk of bias was uncertain because the validation

studies had variable definitions of RVF. Registry data were used,

which had the inherent problem of missing data. The size of the

cohort in the derivation study was large; hence, the applicability

concern was low (8, 10).

The Pennmodel put forth in 2008 was a retrospective single-

center study for severe early RVF and used 6 binary variables. It

was validated 5 times with a median c-statistic of 0.63. Patients

with planned BIVAD resulted in indication bias. RVF definitions

varied and the study was impacted by missing data and low RVF

risk patients being excluded (8, 11).

The Utah model was a single-center, retrospective study,

with eight categorical variables for early RVF. It was validated

seven times with a median c-statistic of 0.55. The variables were

overfitted, inadequately powered; patients with missing data,

Frontiers inCardiovascularMedicine 02 frontiersin.org

https://doi.org/10.3389/fcvm.2022.848789
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org


Nair 10.3389/fcvm.2022.848789

selection bias, and varied RVF definitions were problems with

this model too (8, 12).

The CRITT model, which is also a single-center,

retrospective study, used central venous pressure

>15mm Hg, severe RV dysfunction, pre-op mechanical

ventilation/intubation, severe tricuspid regurgitation, and

tachycardia for predicting risk for RVF. It was validated 5

times with a median c-statistic of 0.63. It was a single-center

retrospective study. This model had indication bias due

to inclusion of planned BIVADs in the derivation study.

Applicability was a concern due to large number of pulsatile

LVADs in the derivation batch and non-uniformRVF definitions

in the validation batches (8, 13).

The model put forth by Kormos et al. used 3 binary variables

to predict early RVF. It was validated five times with a median c-

statistic of 0.61. This model was derived from a post-hoc analysis

of a cohort of belonging to the multicenter HeartMate II trial,

and, hence, universal applicability was a concern. The model

exhibited an inclusion bias because it only included a highly

selected population who were all bridged to transplantation.

This model had variable RVF definitions and lacked adequate

power for analysis (8, 14).

The Pittsburgh Decision Tree uses AI. It was a single-center,

retrospective study. It used eight binary variables for early severe

RVF. It was validated two times with a median c-statistic of 0.53.

Variable RVF definitions and low RVF rates and overfitting were

all noted in this model (8, 15).

Overall multiple limitations were noted in all of the existing

risk models, making them difficult to be universally applicable

for RVF. The definitions for RVF used were highly varied. The

percentage of continuous flow pumps was a variable in the

different studies, making it less predictable for the present day

as pulsatile LVADs have essentially phased out. Not all models

reported calibration. Validation groups appear to have not been

stringent in patient selection or RVF definition, making them

less reliable. Additionally, the type of RVF predicted whether

acute, early or late was highly varied. This leads to heterogeneity,

depending on the variability from institution to institution of

medical vs. device therapies for RVF. Additionally, the existing

models have lower-than-ideal c-statistics, ranging from 0.55 to

0.65 (8–15).

Utilizing AI technology to predict risk

Use of machine learning (ML) in developing risk scores

for HF mortality seems to have an edge over conventional

methods and is currently looking encouraging. The MARKER-

HF score has a c-statistic of 0.88 and has been validated in 2

external study cohorts. This model used a boosted decision tree

algorithm to derive a model based on automated training using

two well-defined cohorts—the low and high groups (22). In

another study, telemetry data analyses from a wearable monitor

used a general machine learning similarity-based modeling,

which was used to predict HF hospitalization. Receiver operating

characteristic curves showed a c-statistic of 0.86–89 using the

analytics platform. The alert from such prediction models

could help clinicians intervene before an HF hospitalization

occurs (23). Prediction of mortality post LVAD implantation,

in general, has been attempted using Bayesian network analysis

with a c-statistic of 0.7 for 1-, 3-, and 12-month mortality (24).

Applications of machine learning algorithms to assess

tricuspid annulus excursion on 2-dimensional (2D) and 3-

dimensional (3D) echocardiography have been attempted with

considerable success in assessment of RV function. Application

of an automated segmented model based on neural network

architecture was used in a 2D echo image analysis. An ML

algorithm was trained and tested in a 6-fold cross validation

approach. Tricuspid annular displacement measurements using

manual and automated ML segmentation showed that the

automated approach was comparable to MRI data. The ROC

curves used to test the model showed a c-statistic of 0.69–

0.73 in a small population studied. The ML-driven assessment

used a deep learning framework and was time efficient with a

processing time of <1 s (25). In another study using ML-based

algorithms using 3D echocardiographic images, RV volumes

and ejection fraction measurements were made with excellent

reproducibility, suggesting that automated analysis of data may

be more efficient (26).

A Bayesian network analysis-driven model for acute, early,

and late RVF post LVAD implantation published in 2016 was

based on the INTERMACS registry. The acute, early, and late

RVF models comprised of 33, 34, and 33 preoperative variables

(from demographics, hemodynamics, laboratory values, and

medications), respectively. The performance of this model was

superior to earlier models (c-statistic of 0.53–0.65) with c-

statistics of 0.9, 0.83, and 0.88 for acute, early, and late RVF,

respectively (27). The study had limitations, such as missing

data, which are inherent to registry data.

Figure 1 summarizes possible applications of AI technology

to develop risk prediction models for RV dysfunction in

the LVAD population. Risk prediction helps with improving

outcomes if applied to patient selection and management

pre-, peri-, and post-device implantation. Incorporating

hemodynamic parameters from invasive hemodynamics as

well as LVAD parameters and speed can predict RV failure.

In a small, single-center study, a new hemodynamic index

generated using mean arterial pressure, the ratio of pulmonary

artery wedge pressure and central venous pressure, and the

ratio of the set pump speed to maximum pump speed in a

ramp study showed that this index can be used to predict

RV failure. A c-statistic derived from the Area Under the

Curve using a Receiver Operative Curve was high at 0.86

(28). A combination of clinical and hemodynamic parameters

can be used to generate better and robust risk models. Large

databases maybe generated by data pooling from different
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FIGURE 1

Use of AI technology to predict risk of right ventricular failure in left ventricular assist device patients.

smaller databases. AI technology can then be applied following

data generation and normalization. The AI technology can then

be used to generate risk models for patient selection pre-LVAD,

a bridge to transplant and destination populations. The type of

AI technology used will depend on the type of database used

for analysis. The pros and cons for each different type of AI

technology should be considered for each individual analysis

undertaken, depending on the size of the database and its

tendency to overfit data, time factor, and ease of interpretation.

Considering the impact of RVF on post-LVAD outcomes, risk

stratification for RV failure is one of the major determinants for

patient survival and becomes the most important strategy to

improve patient outcomes (29–31).

In summary, the four major aspects of machine learning are

collection of data, building an appropriate mathematical model,

constructing a learning algorithm, and defining at the final

model for decision. Large data sets are ideal, especially for deep

learning, which can be derived by combining smaller datasets.

The right mathematical model should precisely represent the

data and key properties of the problem in question. To achieve

best predictive performance flexible models such as those based

on the deep neural networks or the Gaussian process should

be used. The learning algorithm is then used for computation

of variables inherent in the model using the data set. The final

process is building the algorithms for precise prediction (32–34).

Discussion

In summary, this review shows that existing literature points

to increased efficiency in data analysis and developing risk

models using AI technologies. The performance of these models

appears to be better than those developed using conventional

systems in the present studies, which are largely retrospective.

However, testing in larger prospective longitudinal populations

still remains to be proven.

Models for prediction of RVF generated by conventional

methods have limitations mainly due to universal assumptions

of linearity. Regression models are simple and easy to perform

as well as understand, but their use in model prediction

is not as efficient as ML-based methods. ML methods are

based on unbiased classification/clustering of attributes in the

setting of a decision tree, neural network or algorithm. Hence,

ML technology needs to be used in the setting of a balance

between minimal training errors, especially as the models get

more complex and its universal applicability. Additionally,

recognition of important covariates to be used as input data is

another major part of successful generation of risk prediction

models. Improving interpretability of machine learning models

of prediction is another area to consider.

Future directions and challenges

Standardization of clinical behavior and accuracy of data

collection remains a challenge. Algorithms for guideline-

derived medical therapy vary across the globe, making

it difficult to standardize the data collection. Prospective

collection of data is, definitely, a requirement to generate

large databases. Generation of large prospective databases will

be the crux of generating robust risk prediction models,

and validation of results using independent data sets

will possibly help develop better risk prediction models.

Developments of novel technologies for acquisition of
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bio signals and biosensors and secure data transmission

could help generate more robust prospective databases

contributing toward standardization of input and output

variables. Finally, a multimodal approach to data collection

will be more powerful in developing risk prediction

models. Using powerful risk prediction models will open

up new ways of approaching diagnosis and treatment in

diverse subpopulations representing different races and

socioeconomic strata.
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