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We present the novel docking algorithm based on the Tensor Train decomposition and the TT-Cross global opti-
mization. The algorithm is applied to the docking problemwith flexible ligand andmoveable protein atoms. The
energy of the protein-ligand complex is calculated in the frame of theMMFF94 force field in vacuum. The grid of
precalculated energy potentials of probe ligand atoms in the field of the target protein atoms is not used. The en-
ergy of the protein-ligand complex for any given configuration is computed directly with theMMFF94 force field
without any fitting parameters. The conformation space of the system coordinates is formed by translations and
rotations of the ligand as a whole, by the ligand torsions and also by Cartesian coordinates of the selected target
protein atoms. Mobility of protein and ligand atoms is taken into account in the docking process simultaneously
and equally. The algorithm is realized in the novel parallel docking SOL-P program and results of its performance
for a set of 30 protein-ligand complexes are presented. Dependence of the docking positioning accuracy is inves-
tigated as a function of parameters of the docking algorithm and the number of protein moveable atoms. It is
shown that mobility of the protein atoms improves docking positioning accuracy. The SOL-P program is able to
performdocking of a flexible ligand into the active site of the target proteinwith several dozens of proteinmove-
able atoms: the native crystallized ligand pose is correctly found as the global energy minimum in the search
space with 157 dimensions using 4700 CPU ∗ h at the Lomonosov supercomputer.

© 2017 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and Structural
Biotechnology. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

The initial stage of new drug development is a search of the mole-
cules which are inhibitors of a given target protein. Inhibitors block
the active site of the protein associated with a disease and the disease
is cured. A quick and effective solution of this problemdecreases consid-
erably material costs and duration of the whole drug development pro-
cess. Nowadays, this problem can be addressed effectively with the help
of computer simulations [1,2]. Reliable predictions of the target protein
inhibition by a lowmolecular weight ligand are defined by the accuracy
of the docking programs. Docking programs carry out positioning of the
ligand in the active site of the protein and calculate the protein-ligand
binding free energy. The accuracies of positioning and the binding
energy calculation are closely linked: faulty positioning cannot result
in the high accuracy of the binding energy calculation based on the
found ligand poses. The positioning accuracy of many existing docking
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programs is satisfactory and unpredictable positioning failures take
place rather rarely. However, the accuracy of binding energy calcula-
tions for a randomly selected target protein is too bad: for the effective
development of new inhibitors this accuracy should be better than
1 kcal/mol [3]. High accuracy of the protein-ligand binding energy
calculations with docking programs is the key problem that should
be solved in order to increase considerably effectiveness of the use of
molecular modeling for the new inhibitors' development. This accuracy
depends onmany factors: the force field choice for modeling intra- and
inter-molecular interactions, the solvent model, target protein and
ligand models, the docking algorithm, the free energy calculation
method, respective approximations and computer resources required
for docking of one ligand.

In the frame of the docking procedure the protein-ligand binding
energy ΔGbind should be calculated as the difference between the free
energy of the protein-ligand complex GPL and the sum of free energies
of the unbound protein GP and the unbound ligand GL:

ΔGbind ¼ GPL−GP−GL:
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Free energies of the protein, the ligand and their complex are
described by respective energy landscapes and they can be calculated
through the configuration integrals over the respective phase space. In
the thermodynamic equilibrium the molecular system occupies its
low energy minima. The configuration integral will come to the sum
of configuration integrals over the separate low energy minima if
these minima are separated by sufficiently high energy barriers [4,5].
Thus, the docking accuracy is defined by the completeness of finding
the lowenergyminima and by the accuracy of the configuration integral
calculation in each of these minima.

The target protein model defines complexity and the volume of
calculations and in many docking programs the rigid protein approxi-
mation is adopted. Moreover, in some docking programs, e.g. AutoDock
[6,7], ICM [8], DOCK [9], SOL [10], the grid of preliminary calculated
potentials of the ligand probe atoms Coulomb and van derWaals inter-
actions with the target protein is used in the main docking procedure.
This results in the increase of computing speed but at the expense of
restrictions on the docking performance and of worsening of the
accuracy of binding energy calculations. The protein model with the
preliminary calculated grid of potentials has a number of limitations.
Firstly, this approach obviously cannot take into account mobility of
the protein atoms. Secondly, such approach makes impossible carrying
out the local optimization of the protein-ligand energy with the varia-
tion of coordinates of ligand and protein atoms. Thirdly, the local
potentials in the grid nodes cannot represent the non-locality of the
interaction of solute atom charges with polarized charges induced on
the solvent excluded surface in implicit solvent models; as a result the
interaction of the protein and the ligand with water cannot be treated
accurately. Finally, the ligand poses found in this docking approach do
not correspond to any energy minima because the local optimization
of the energy is not performed.

Some time agowe decided to reject the docking procedurewith pre-
liminary calculated energy grid in the attempt to increase the accuracy
of the protein-ligand binding energy calculations. Docking without the
preliminary calculated energy grid requires much more computational
resources even for vacuum calculations since one has to find low energy
minima on the complicated multi-dimensional energy surface comput-
ing the energy in the frame of the whole given force field for each
system conformation appearing in the minima search algorithm. Such
docking programs, FLM [5] and SOL-T [11], have been developed for
the rigid target protein and theflexible ligand. The parallel FLMprogram
can perform the comprehensive minima search either in vacuum or
with the rigorous implicit solventmodel [12,13]. However FLM requires
too large supercomputer resources and it can be usedmainly for finding
low energy reference minima of protein-ligand complexes for the
validation of docking algorithms [11] and force fields [5,14]. The parallel
SOL-T programemploys the novel tensor train global optimization algo-
rithm and it requiresmuch less supercomputer resources than FLM. The
docking positioning accuracy of FLM and SOL-T in vacuum for the rigid
protein is comparablewith one another at least for some test complexes
[11]. The TT-docking algorithm was compared [15] with the genetic
algorithm realized in the SOL program [10] with one and the same
energy function on the preliminary calculated energy grid for rigid
proteins and flexible ligands. In this case the ability to find the global
energy minimum and the native (crystallized) position is close but the
TT-docking algorithms perform about 10 times faster [15]. Further, it
is demonstrated [5] that the ligand positioning accuracy is much better
when the force field is usedwith a continuum solventmodel. The ligand
positioning accuracy is much better when the recent quantum chemical
semiempirical methods, PM7 [14] and PM6 [16], are used instead of
classical force fields.

However, proteins are flexible and dynamic molecular systems. A
noticeable difference between protein's unbound (apo) and bound
(holo) structures is sometimes observed. Ligand binding may cause a
small side-chain rearrangement or individual atom's motions as well
as significant conformational changes connected with domain motions.
Thus, the protein flexibility can have a major impact on the molecular
modeling results. It is reasonable to assume that the protein flexibility
can significantly improve the docking positioning accuracy as well as
the accuracy of the protein-ligand binding energy calculation on the
base of docking results.

There are several methods to take protein flexibility into account
[17–20].

Soft docking [21] is the simplest method of protein flexibility
accounting. It simulates the mobility of protein atoms by reducing
the steric components of the scoring function (“softening” of van der
Waals potentials). However, this approach can increase the number of
false positives [22].

The ensemble docking approach is the docking into the ensemble
of receptor conformations instead of docking into a single one. This
method is popular because there is no need to change the existing
docking algorithms in order to take protein flexibility into consider-
ation. Multiple conformations are generated before docking and can
be obtained from X-ray crystallography, of NMR spectroscopy or
can be produced by molecular modeling, e.g. molecular dynamics.
Moreover, ensemble docking can be carried out sequentially into each
protein structure (“multiple-run” docking) [18,23] or into one averaged
structure [24] or into the dynamic pharmacophore model [25] (“single-
run” docking). The composite structure also can be created on the basis
of the ensemble of conformations and it consists of different parts of the
original ensemble. Such composite structures are generated directly
during the docking process [26,27].

In the case of selective methods a few “critical” atoms or amino
acid residues can move explicitly to explore the protein flexibility.
Certain side chains of the active site are often chosen as the protein's
degrees of freedom. Variation of their positions can be performed
due to rotations around torsional degrees of freedom. Such rotation
can be either continuous [28,29] or discrete when the angles of rota-
tion are determined on the basis of well-known libraries of rotamers
[30,31]. Selective methods also include the approach when only
hydrogen atoms' reorientation is performed to optimize hydrogen
bonds between protein and ligand [32,33]. Some implementations
of selective methods vary the protein conformations after the ligand
optimization in the rigid protein [34]. There is also an approach that
allows optimization of both the ligand and the side chains of protein
simultaneously. However, this can be done only for a strongly re-
stricted number (no more than 22) of protein and ligand degrees of
freedom [35].

Protein flexibility can also be investigated in the context of post-
docking (“induced-fit” methods): first, the ligand position is found
using rigid docking or soft docking, and then the additional optimization
of the protein conformation is performed using a selective approach
[36]. Sometimes this post-optimization can be performed by the
Monte Carlomethod ormolecular dynamics [37,38] to take into account
flexibility of the whole protein. A more refined docking approach
combines multiple local optimizations with the subsequent global
optimization in vicinities of picked out local minima [39]. Initially,
1000 local minima were found with the help of the energy gradient
optimization with variations of coordinates of ligand and protein
atoms (more than 1000 atoms) using randomly selected initial poses
of the ligand in the active site of the target proteins. Then the global
optimization by the Monte Carlo method was performed in the close
vicinity of most perspective local minima [39].

There is also the Monte Carlo docking procedure [40] where ran-
dom target protein side-chain perturbations are followed by the
local energy optimization with variations of coordinates of ligand
and protein atoms and this procedure is repeated iteratively. The
docking method of “molecular relaxations” [41] employs the molecular
dynamics (MD) approach, but this method is supplanted now by more
accurate and more computationally expensive MD methods of the
protein-ligand binding energy calculation, e.g. the free energy perturba-
tion procedure [42].
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Algorithms of most modern docking programs are based on the
docking paradigm [5,11,14]. This paradigm assumes that the ligand
binding pose in the active site of the target protein corresponds to the
global minimum of the protein-ligand energy function or is near it.
Due to this paradigm the docking problem is reduced to the search of
the global minimum on the multi-dimensional protein-ligand energy
surface. The dimensionality of this surface (d) is defined by the number
of protein-ligand system degrees of freedom. Docking of small mole-
cules into the rigid target protein is reliable when the number of ligand
degrees of freedom (translations and rotations as a whole and torsions)
is not more than 20–25 [10]. For larger dimensionality of the search
space, i.e. for larger number of protein-ligand system degrees of free-
dom, commonly used docking algorithms, e.g. the genetic algorithm,
are not able to perform docking successfully. Therefore inclusion of
coordinates of moveable protein atoms into the docking procedure
increases significantly the dimensionality of the globalminimum search
space and the solution of the docking problem requires more effective
global optimization algorithms.

Is it possible to perform the global optimization of the protein-ligand
energy considering the ligand flexibility and the mobility of protein
atoms simultaneously and equally at least for several dozens of protein
moveable atoms? The present study demonstrates that the answer
is positive: yes, it is possible to perform successfully such docking
employing the novel tensor train global optimization algorithm [11].
In this study we describe the main features of this novel algorithm,
the respective program SOL-P for docking flexible ligands into target
proteins with moveable atoms [43] and the results of validation of the
ligand positioning accuracy for a test set of 30 protein-ligand complexes
[11]. However, the protein-ligand binding energy calculation is out of
the scope of this work. It is demonstrated here that even limited mobil-
ity of protein atoms results in considerable improvement of the docking
positioning accuracy. Whilst the present results were obtained for the
MMFF94 force field [44] in vacuum, the performance of SOL-P allows
including in the docking procedure one of either rigorous (PCM or
COSMO)or heuristic (Generalized Born) solventmodels [45]. The ability
to perform docking with the PCM solvent model has been already
demonstrated by the FLMprogramwhichdemandsmore computing re-
sources [5]. Although the SOL-P program does not outperform existing
docking programs either in terms of positioning accuracy or speed
of calculation, it opens the way for the accurate calculation of the
protein-ligand binding free energy by employing the sets of low-
energy minima of the molecular systems (the target protein, the ligand
and their complex)which are carefully found for a given force fieldwith
a continuum solvent model. If low energy minima are found, the whole
configuration integral defining the free energy of the respective molec-
ular system can be accurately calculated as a sum of configuration inte-
grals over these separated minima [4,5]. Such an accurate approach
cannot be handled by commercial, superfast software that runs on
laptops in seconds.

2. Materials and methods

For the realization of the novel docking algorithm we use the
MMFF94 force field [44] in vacuum.While looking for low-energy min-
ima, ligands are considered to be fully flexible and some of protein
atoms are moveable. The force field determines the energy of the
protein-ligand complex for its every conformation. The MMFF94 force
field combines sufficiently good parameterization based on ab initio
quantum-chemical calculations of a broad spectrum of organic mole-
cules and the well-defined procedure of atom typification applicable
to an arbitrary organic compound. This force field is not worse than
many other popular force fields such as: AMBER [46,47], OPLS-AA
[48], CHARMM [49] etc. MMFF94 is implemented in the SOL docking
program [10] used successfully for new inhibitors' development
[50–52]. Moreover, it has been recently shown that the docking para-
digm is true for some protein-ligand complexes, if the energy of the
complex is calculated in the frame of theMMFF94 force field in vacuum
[5]. The docking paradigm is not satisfied for many complexes, if the
energy is calculated with MMFF94 in vacuum [5], but accounting for
solvent in the frame of an implicit solventmodel improves the situation
significantly [5]. However, it is found in [5] and later is supported in the
quasi-docking procedure [14] that the recent quantum-chemical semi-
empirical PM7 method with solvent is much better than MMFF94
with solvent. The same finding is presented independently in [16] com-
paring the PM6-D3H4X semiempirical method with eight different
force fields including AMBER [46,47] and several empirical and
knowledge-based force fields. Unfortunately, these quantum-chemical
methods are much slower than force fields. Keeping all this in mind
we investigate here the influence of protein atoms' mobility in the
docking procedure on the quality of ligand positioning using only the
MMFF94 field in vacuum. The results will be much better, if either
MMFF94 is usedwith the solventmodel or PM7 is usedwith the solvent
model.

2.1. TT-docking

The novel docking algorithm (TT-docking) utilizes the TT global
optimization method. It is based on the novel methods of tensor analy-
sis. The detailed description of this algorithm is presented elsewhere
[11,15] and here we describe only its main features.

The Tensor Train decomposition for d-dimensional tensors was
introduced to numerical analysis in 2009 [53] as ameans to fight against
the so-called curse of dimensionality, given by the fact that the number
of entries of a d-dimensional tensor grows exponentially in d and can
easily exceed the number of atoms in the universe even for a kind of
“small sizes”, i.e. for d = 300 and 2 points at each dimension. Conse-
quently, the list of entries cannot be used for practical computations.
The Tensor Train (TT) is a decomposition in which the number of the
tensor representation parameters grows in d just linearly.Moreover, de-
spite some other classical decompositions (such as CPD— the Canonical
Polyadic Decomposition [54]), the TT algorithms reduce all computa-
tions to structured low-rank matrices associated with the given tensor.
In our optimization procedure this structure is used to navigate in
the space for where to search for better minima. This procedure is
essentially based on the TT Cross algorithm [55] that constructs a TT
decomposition using only a small portion of the entries of the given
tensor. Eventually the number of those entries used during the optimi-
zation depends on d just polynomially, and the curse of dimensionality
mentioned above is no longer an obstacle.

The continuous protein-ligand energy function is transformed into
the multi-dimensional array (tensor) and the novel tensor analysis
methods are applied for the search of the tensor element with themax-
imal absolute value: obviously, the docking problem is the global mini-
mization problem but it can be easily transformed to an equivalent
problem of the magnitude maximization. If d is the number of degrees
of freedom of the protein-ligand complex, then we can introduce
the grid in the configuration space with ni nodes in each direction
i=1,2…d. If the grid is fine enough, then the solutions of continuous
and discrete problems are expected to be close.

The basis of this consideration is the Tensor Train (TT) decomposi-
tion [53,56] of a tensor A∈Rn1�…�nd in the form:

A i1;…; idð Þ ¼ ∑
r1 ;…;rd

α1¼1;…;αd−1¼1
G1 i1;α1ð ÞG2 α1; i2;α2ð Þ…Gd−1 αd−2; id−1;αd−1ð ÞGd αd−1; idð Þ

The numbers r1,… ,rd−1 are called TT-ranks of the tensor; for conve-
nience, dummy ranks r0≡rd≡1 are also introduced. The 3-dimensional
tensors Gi∈Rri−1�ni�ri are called cores or carriages of the tensor train.
If TT-ranks are reasonably small, then the TT decomposition possesses
several very useful properties [53,56]. However, we cannot afford com-
puting or storing all the elements for large tensors. Therefore, it
becomes crucial to have for tensors a fast approximation method
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utilizing only a small number of their elements. Such a method was
proposed and called the TT-Cross method [55]. It heavily exploits the
matrix cross interpolation [57–61] algorithm applied cleverly, although
heuristically, to selected submatrices in the unfolding matrices of the

given tensor. ThematrixAk∈Rnk�nd−k
, Ak(i1… ik, ik+1… id)=A(i1, i2,… , id)

is called the k-th unfolding matrix of the tensor A. Such matrices are
highly connected with TT-decomposition, TT-rank rk is just the rank of
the matrix Ak.

The TT-Cross method iteratively improves the sets of interpolation
points searching for submatrices of larger volume (determinant in
modulus) and consequently the elements of larger magnitude. This
property allows one to take it as a base for the global optimization
method [11].

The TT-docking iteratively performs the following steps:

1. Generation of submatrices of unfolding matrices using sets of tensor
elements.

2. Interpolation of submatrices using TT-Crossmethodwith rank ≤rmax.
3. A set of interpolation points for each submatrix contains elements

with large values in modulus.
4. Rough local optimization of interpolation points (protein-ligand

poses) by the simplex method, addition of optimized point projec-
tions to the tensor and to the interpolation point sets.

5. Updating of each set of interpolation points of the unfolding matrix
bymerging the interpolation points of the previous unfoldingmatrix
and ones of the subsequent unfolding matrix.

6. Addition of the best points (ligand poses) to the interpolation point
set of the unfoldingmatrix, and transition to step 1 using the obtain-
ed point set as the tensor elements.

The complexity of the TT global optimization method is O(dnrmax
2 )

functional evaluations, O(drmax) local optimizations and O(dnrmax
3 )

arithmetic operations, where rmax is the maximal rank of the Tensor
Train decomposition, n is the initial grid size along one dimension and
d is the number of dimensions. It is easy to see that operations for differ-
ent unfoldingmatrices could be performed independently, andwe need
synchronization only when constructing the new points at the end
of each iteration. Moreover, a parallel implementation of the matrix
cross method is also available [62]. In the result, we have a parallel
version of the TT global optimization algorithmwith parallel complexity
O(rmax) functional evaluations,O(1) local optimizations andO(d+rmax

2 )
arithmetic operations.

2.2. SOL-P docking program

The parallel SOL-P docking program is constructed on the base of the
TT-docking algorithm (see above). The SOL-P program is developed for
finding the low energy local minima spectrum of protein-ligand com-
plexes, proteins or ligands including the respective global energy mini-
mum. The energy of each molecule conformation is calculated directly
in the frame of theMMFF94 force field [44] in vacuumwithout any sim-
plification or fitting parameters. The conformation space of the system
coordinates is formed by translations and rotations of the ligand as a
whole, by the ligand torsions and also by Cartesian coordinates of the
selected target protein atoms. The description of the ligand flexibility
with torsions is used as a basic approach in many docking programs
(AutoDock [6,7], ICM [8], DOCK [9], SOL [10] andGOLD [63]) to decrease
the dimensionality of the search space. Certainly, in this approach some
features of the ligand flexibility, e.g. the macrocyclic system flexibility,
are not taken into account. The flexibility of the target protein is
described here by the variations of Cartesian coordinates of the protein
atoms located near the ligand atoms for certain ligand poses. This is the
first step to the approach of the protein flexibility and it is chosen here
only for the uniformity of consideration of different proteins and ligands
and to keep restricted the change of the initial protein configuration
taken from Protein Data Bank (PDB) [64]. While solving a particular
docking problem for a given target protein it is better to choose move-
able protein atoms more cleverly, by sampling configurations of whole
groups of the covalently bound protein atoms, such as side chains
or loops, selected on the base of a priori knowledge. But such detailed
investigation is out of the scope of the present work. The parallel MPI
(message passing interface) based SOL-P program is written on C++
with usage of BLAS and LAPACK libraries. Main SOL-P parameters are:
the maximal rank rmax of the TT-Cross approximation method, the
power m of the discretization degree of the search space (the initial
grid size is equal to n=2m along one dimension) and the number of
iterations of the TT global optimization algorithm. The initial grid is
introduced in the d-dimensional search space to transform the continu-
ous global optimization problem to the discrete one: finding the maxi-
mal in magnitude element of the d-dimensional tensor. Each point in
the search space corresponds to a certain pose of the ligand in a certain
configuration of the active site of the target protein and each element
of the d-dimensional tensor corresponds to the MMFF94 energy of the
protein-ligand complex in a given node of the grid. The total number
of nodes in the grid (2md) is made large enough (see Section 2.6) to
keep smoothness of the continuous MMFF94 energy function in the
discrete problem: energy values in neighboring nodes are close to one
another. Moreover, it is convenient to apply the TT magnitude maximi-
zation to the functional f(x, E⁎)= exp{100arccot[E(x)− E⁎]}, where E(x)
is the dimensionlessMMFF94 energy for the given configuration x of the
protein-ligand complex, E⁎ is the currently found global minimum. This
function transforms the minimization problem to the maximization
one. This function also zeroes large positive MMFF94 energy values
arising due to the van der Waals repulsion of closely located atoms
and it better separates low energy minima. As it is mentioned in the
previous section there is a rough local energy optimization in the TT-
docking algorithm by the Nelder-Mead simplex method [65] within
the Subplex algorithm [66] implemented as Sbplx program in NLOpt
library [67].

2.3. Moveable atoms

The ligand is considered as flexible with variations of its torsions,
and also some protein atoms aremoveable. In the present consideration
a protein atom is moveable when it is close to at least one of reference
ligand poses. The protein atom is close to a ligand pose when the dis-
tance between this protein atom and at least one ligand atom is less
than a given threshold. In one extreme case, only the nonoptimized
native (crystallized) ligand pose can be included into the set of refer-
ence ligand poses. In another extreme case, the reference poses of the
ligand can be taken from the set of ligand poses corresponding to low-
energy minima of the protein-ligand system which were found by
SOL-P for the flexible ligand and the rigid protein. In this case the max-
imal number of protein atomswill bemoveable. In the presentworkwe
took three ligand poses as reference ones: the ligand pose correspond-
ing to the global protein-ligand energy minimum found by the FLM
program [11] for the rigid protein, the locally optimized native ligand
pose and the nonoptimized native ligand pose. None of movements
of whole side chains is considered in this study. Such choice of the
reference ligand poses is taken here only for the uniformity of the
consideration of all different proteins and ligands of the test set. Deter-
mination of moveable protein atoms is carried out by our original
specially written program Mark-PMA (Mark Protein Moveable Atoms)
with the MLT (Moveable Layer Thickness) parameter defining the
threshold distance. The MLT parameter is taken up to 3 Å in the present
investigation.

2.4. Docking procedure

The molecular data of the ligand and the protein with the marked
moveable atoms are the input of the SOL-P program (shown in I stage
in Fig. 1). The SOL-P program uses a cube centered in the geometrical



Fig. 1. Flowgraph of the program complex for low energy local minima search with flexible ligand and moveable target protein atoms. Stage I: the data preparation and TT global energy
minima search with the SOL-P program. Stage II: the analysis of binary data with the “non-optimized minima” obtained from the SOL-P program and preparation of the table with the
results and the final minima set.
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center of the native ligand position in the crystallized protein-ligand
complex as the spatial region for the low-energy minima search: all
found ligand positions have their geometrical centers inside this cube
(the docking cube). The cube is aligned along the Cartesian axes of the
protein-ligand system. Each of the moveable protein atoms can move
inside its own small cube centered in the initial atom position taken
from the crystallized protein-ligand complex. Geometrical characteris-
tics of the big docking cube and small cubes of moveable protein
atoms are specified in the parameter file of the SOL-P program. In this
work we set the docking cube edge equal to 10 Å and the small cube
edge equal to 1 Å. We restrict motions of the moveable protein atoms
in such a way that their Cartesian coordinates can change in the range
of ±0.5 Å from their positions in the crystallized structure because
even small changes can make big differences in the protein-ligand
energetics [3]. The position and the size of the docking cube in the active
site of the target protein are usually defined by binding sites which can
be interesting from a pharmacological point of view. For the positioning
accuracy validation in this study we choose the center of the docking
cube in the geometrical center of the native (crystallized) ligand posi-
tion of the respective complex. Such choice of the docking cube implies
that all low energy minima, which were found in the docking proce-
dure, correspond to a single locus of the ligand binding. The SOL-P
program performs MPI-parallelized search for the low-energy minima
of protein-ligand complexes by the TT-docking algorithm containing
the rough local optimization by the simplex method. The ligand has
six rotational-translational degrees of freedom as a whole rigid body
plus torsional degrees of freedom for each single non-cyclic bond;
each of the protein moveable atoms has three degrees of freedom —
its Cartesian coordinates. The optimized target function is the protein-
ligand complex total energy calculated by the MMFF94 force field in
vacuum without any simplification or fitting parameters. Data about
all found low-energy minima including protein-ligand configurations
are too large to be saved in themolecular data format. These configura-
tions are saved as the binary data (shown in Fig. 1 as “Binary data of all
non-optimized minima”).

2.5. Analysis of local minima

At stage II in Fig. 1 the post-processing of low energy configurations
stored in the binarydata is performedwith the Sorter program. The Sorter
program sorts the “nonoptimized minima” by their MMFF94 energies
in vacuum and excludes minima with similar ligand positions — only
oneminimumwith the lowest energy is being kept. Two ligand positions
are considered similar if RMSD between them is less than a given
threshold (0.1 Å), where RMSD is calculated atom-to-atom without
chemical symmetry accounting. Thus, all the remaining low-energy
configurations (“unique non-optimized minima” in Fig. 1) have differ-
ent ligand positions. Then, the Unpacker program performs exporting
all unique low-energy configurations from the binary file to the file
with molecular format MOL2. The post-processing of low energy
protein-ligand configurations consists of the performance of two
programs: OptmX and Unique (Fig. 1). The OptmX program locally



Table 1
Complexes for testing parameters of the TT-docking algorithm. PDB ID is the ID of the
respective protein-ligand complex taken from Protein Data Bank [64].

Protein name PDB
ID

Number of ligand
atoms including
hydrogen ones

Number
of ligand
torsions

Urokinase 1C5Y 20 2
1F5L 24 6
1VJA 61 17
1VJ9 74 19

CHK1 (checkpoint kinase 1) 4FTA 35 6
Thrombin 1TOM 64 10
ERK2 (extracellular
signal-regulated kinase 2)

4FV6 57 12
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optimizes all of the “unique non-optimized minima”. For these
purposes, the OptmX program uses the L-BFGS algorithm [68,69]
applied to the local optimization of the MMFF94 energy function in
vacuum with variations of Cartesian coordinates of all ligand atoms
and moveable protein atoms. Optimization of different minima is
MPI-parallelized. After this optimization, the “all optimized minima”
(Fig. 1) set is obtained. However, many of these minima may become
similar again. Therefore, we need to re-exclude similar minima. The
Unique program excludes similar minima from the “all optimized
minima” set as follows. Among several close configurations only the
minimum with the lowest energy is being kept as it is made in the
binary data file post-processing by the Sorter program. However, in
contrast to the Sorter program the protein moveable atoms are also
taken into account in RMSD calculation, and the RMSD is calculated
with chemical symmetry analysis.

Analysis of the local minima remaining after post-processing is car-
ried out by the RMSD-PP programwhich calculates RMSD (with respect
to all ligand atoms) between the ligand pose in a certain energy mini-
mum of the protein-ligand complex and the ligand pose in the energy
minimum corresponding to the native ligand position obtained after
the local optimization from its configuration in the crystallized complex.
The RMSD here is calculated taking into account the approximate
chemical symmetry analysis as follows. A special attribute (so called
“chemical digest”; in the present implementation it is the 32-bit integer
number) is assigned to each atom, depending only on theMMFF94 type
of this atom and the MMFF94 types of the adjacent atoms bound with
this atom by chemical bonds, as follows. The selected atoms, including
the analyzed atom, are ordered to a sequence, where atom “A” precedes
atom “B” if “A” is closer to the analyzed atom (i.e. number of separating
bonds from the analyzed atom is less for “A”) or, in case of equally
distanced “A” and “B”, if “A” has a lower MMFF94-type (an integer
from 1 to 99). Then, this sequence of MMFF94-types is processed by a
hash function; in the present implementation, we used the CRC32
(32-bit Cyclic Redundancy Check) algorithm [70]. The obtained hash
function value is the “chemical digest”. The neighbors are analyzed by
the breadth-first search [71] until the given depth (we set this parame-
ter equal to 13) will be reached. So, chemically symmetric atoms have
the same “chemical digest”. Unfortunately, not every one-to-one atom
mapping, keeping the “chemical digest” invariant, can preserve the
whole chemical structure. Nevertheless, the “chemical digest” heuristic
can filter off many of the wrong atom-to-atom mapping during the
RMSD calculation. After the “chemical digest” calculation, all atoms
with the same “chemical digest” are grouped. Within the group, all
possible squared distances are calculated, where the first atom position
belongs to the first configuration and the second atom position belongs
to the second configuration. Then, the atom-to-atom assignment is
searched by the Hungarian method [72]. So, the calculated RMSD
doesn't exceed (and in many cases equal to) the lowest possible
RMSD with keeping the chemical structure atom-to-atom mapping.
This RMSD with approximate chemical symmetry accounting is a good
metric to estimate the geometrical difference between two configura-
tions of a protein-ligand complex; it can correctly discard geometrical
pseudo-differences such as phenyl residue flip, comparing to the native
atom-to-atom RMSD calculation.

As a result the RMSD-PP program creates in its output (Fig. 1) the
resulting table containing: the minimum index, the minimum energy,
RMSD from the optimized native configuration and the distance from
the ligand geometric center in the given minimum to the ligand geo-
metric center in the optimized native configuration. The energyminima
are sorted by their energy in the ascending order; that is, every mini-
mumgets its own index equal to its number in this sorted list ofminima.
The lowest energy minimum has the index equal to 1.

Someminima from the list might be close in space to the optimized
native ligand position. We designate the index of the minimum having
RMSD from the optimized native ligand position less than 2 Å as “Index
of the minimum Near Optimized Native” or “INON.” If there are several
suchminimawhich are close to the optimized native ligand position,we
will choose the minimum with the lowest energy (with the lowest
index) as “INON”. When INON = 1 the docking paradigm is satisfied:
the global minimum of the protein-ligand energy is near the native
configuration. If there are no minima with the ligand pose near the
optimized native configuration among all minima found by the SOL-P
program, we use notation INON= inf.

It is useful to enhance the requirement on the minimum situated
near the optimized native ligand position including the restriction on
its energy and to introduce another index (EN) as the energy index of
the minimum being near the optimized native ligand in space (RMSD
b2 Å as it is used in the definition of INON) and in energy (in the energy
interval± 1 kcal/mol from the energy of the optimized native ligand). If
there are several such minima, we will choose the minimum with the
lowest energy (with the lowest index) as EN. Index EN demonstrates
how far from the global minimum is the energy of the minimum
found near the optimized native ligand pose. If EN is equal to a small
positive integer, it means that the docking program finds a minimum
near the optimized native ligand position and its energy is one of the
lowest among the whole found minima spectrum. Index EN is useful
when the energy of the optimized native ligand pose differs strongly
from the energy of the global minimum.

In the present consideration we compare the energy minima found
by the SOL-P program with ones obtained by the FLM program [11]
with the same target function — energy in the frame of the MMFF94
force field in vacuum. FLM performs exhaustive search of low energy
localminima of protein-ligand complexes in the rigid protein andflexible
ligand approximation performingmassive parallel energyminima search
and employing large computing resources (about 20,000 CPU ∗ h per
one complex) available at supercomputer Lomonosov of Moscow State
University [73].

2.6. Optimal SOL-P parameters

To choose optimal parameters of the SOL-P programwe execute two
sets of test calculations. First, calculations for the selection of the optimal
parameters of the TT global optimization method (TT-docking) are
performed. Second, calculations for selection of the optimal number of
the moveable protein atoms are carried out. The first set of test calcula-
tions are carried out for 7 different protein-ligand complexes with rigid
proteins (they are shown in Table 1). TT-docking performance is inves-
tigated with different values of two parameters: the maximal rank
rmax = {4, 8, 16} and the initial grid size n = {28, 216}.

Results of this testing demonstrate that for the higher initial grid size
even the lowest tested maximal rank rmax=4 is enough to find the
optimum reliably and precisely. However, the increase of the initial
grid size leads to slower convergence of the method and the iteration
number must be larger (for n = 216 from 10 to 15 iterations need to
be performed). The high grid size for ranks 8 and 16 makes computa-
tions significantly slower, thus the initial grid size of 212 is used for
such ranks. For such initial grid size the computation time is reduced

pdb:1C5Y
pdb:1SQO
pdb:1F5L
pdb:1O3P
pdb:1VJA
pdb:1VJ9
pdb:4FSW


Table 2
Values of INON index (Index of the minimum Near Optimized Native) for three protein-
ligand complexes with different numbers of protein moveable atoms. PDB ID is the ID of
the respective protein-ligand complex taken from Protein Data Bank [64].

PDB ID
(number of ligand torsions)

Number of protein
moveable atoms

INON

rmax = 4
n = 216

rmax = 8
n = 212

rmax = 16
n = 212

1SQO (3) 0, 6, 15, 27, 35 1 1 1
3CEN (7) 0, 6 inf inf inf

13 1 inf 17
26 1 1 2
48 2 2 1

4FT9 (5) 0 16 24 29
6 17 21 21
13 17 18 19
25 15 15 15
42 inf inf inf
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by 1.5 times and the number of iteration decreases. Finally, three sets of
optimal parameters are chosen: the first set with rmax = 4 and n=216,
the second set with rmax = 8 and n=212, and the third set with rmax =
16 and n=212. For all sets the same number of iterations equal to 15 is
used.

Second testing calculations are carried out for 3 different complexes
(Table 2) with different numbers of moveable protein atoms. The
MARK-PMA program defines different numbers of moveable protein
atoms for these complexes. Numbers of moveable protein atoms for
respective complexes and the calculated values of INON index are
presented in Table 2.

It can be seen that INON = 1 for all sets of protein moveable atoms
for 1SQO complex. It means that the ligand pose corresponding to the
global energyminimum is situated near the optimized native configura-
tion and the docking paradigm is satisfied for the case of the rigid
protein as well as for all selected cases of moveable protein atoms. For
the 3CEN complex SOL-P does not find the energy minimum near
the optimized native configuration for the rigid protein as well as for
6 proteinmoveable atoms.However, for 13, 26 and 48proteinmoveable
atoms INON is equal to 1 or 2 corresponding to cases when SOL-P finds
the minimum near the optimized native configuration and its energy is
lowest (its index is 1or 2) among energies of all other minima found by
SOL-P. For 4FT9 complex SOL-P finds the minimum close to the native
Fig. 2. Dependence of computing resources on the number of protein moveable atoms for the n
Integer n is the initial grid size.
configuration (INON ≠ inf) but there are many minima with energies
lower than energy of this close to the native configuration minimum.
This means that the target energy function defined by the MMFF94
force field in vacuum is not adequate for this complex. Moreover,
for 42 protein moveable atoms SOL-P cannot find the minimum close
to the native configuration (INON = inf). Probably, in this case the
TT-docking algorithm cannot find respective minima due to the
high number of degrees of freedom for the given system: 137 = 126
(protein) + 11 (ligand). Strictly speaking the docking paradigm is not
satisfied for the 4FT9 complex. So, we see that for some complexes
(e.g. 1SQO) the docking paradigm is satisfied for the rigid protein as
well as for the protein up to 35 moveable atoms. For some complexes
(e.g. 3CEN) the docking paradigm is satisfied only for a sufficiently
large number (13, 26, 48) of protein moveable atoms and SOL-P is
able to find the global energy minimum in the search configuration
space of 157 = 144 (protein) + 13 (ligand) degrees of freedom. For
other complexes (e.g. 4FT9) the MMFF94 force field energy in vacuum
is not adequate and the energy surface is so complicated that for the
too large number of protein moveable atoms (42) SOL-P is not able
to find minima near the native configuration. Computing resources
needed for the native ligand docking using the SOL-P program with
different TT-docking parameters and different numbers of protein
moveable atoms are presented in Fig. 2.

Comparing computing resources in Fig. 2 and results of INON calcu-
lations in Table 2 two cases of optimal numbers of protein moveable
atoms are chosen (13–18 and 25–35 atoms depending on the complex)
in the present study for more broad validation.
2.7. Validation set of protein-ligand complexes

For low-energy local minima search we use 30 protein-ligand com-
plexes with experimentally known 3D structures [11] (see Table 3). All
protein-ligand complexes are chosen with good resolution from PDB
[64]. The ligand variety covers awide range from small and rigid ligands
(e.g. the ligand of the 1C5Y complex) to big and flexible ones (e.g. the
ligand of the 1VJ9 complex). For all these complexes the locally
optimized ligandnative positionhas RMSD from theoriginal (crystallized)
native pose less than 1.5 Å. Thus the locally optimized ligand native
position still can represent the native ligand pose.
ative ligand docking by the SOL-P program with different sets of TT-docking parameters.

pdb:1SQO
pdb:1SQO
pdb:3CEN
pdb:3CEN
pdb:4FT9
pdb:4FT9


Table 3
Validation set of protein-ligand complexes. Numbers of atoms includes hydrogen ones.
NP is the total number of the protein moveable atoms. NH is the number of the protein
moveable hydrogen atoms.

Protein name PDB
ID

Num.
of ligand
torsions

Numbers
of ligand
atoms

Numbers
of moveable
protein atoms
13–18
NP/NH

Numbers
of moveable
protein atoms
25–35
NP/NH

Urokinase 1C5Y 2 20 14/8 26/17
1SQO 4 34 15/8 27/17
1F5L 6 24 16/8 27/14
1O3P 6 46 17/11 28/20
1VJA 17 61 16/8 28/15
1VJ9 19 74 16/9 30/18

CHK1 (checkpoint
kinase 1)

4FSW 0 26 15/11 29/22
4FT0 3 42 15/11 26/20
4FT9 5 32 13/10 25/20
4FTA 6 35 15/11 31/22

Factor Xa 1MQ6 7 54 14/10 30/18
2P94 7 60 13/10 29/21
3CEN 7 50 13/9 26/17
1LQD 8 61 17/10 31/22

Poly(ADP-ribose)
polymerase

2PAX 1 24 14/7 20/10
1EFY 3 33 14/12 27/18
3PAX 3 20 14/9 25/15

ERK2 (extracellular
signal-regulated
kinase 2)

4FV5 8 52 16/13 33/25
4FV6 12 57 18/11 26/19

Thrombin 1TOM 10 64 14/6 25/15
1DWC 12 71 16/12 26/19

Trypsin 1PPC 6 69 15/8 25/16
1K1J 10 68 13/8 27/19

GNC92H2 antibody 1I7Z 5 44 17/16 29/26
Apolipoprotein 3KIV 6 22 13/5 30/10
Beta-1,4-xylanase 1J01 6 35 15/8 29/18
Ricin 1BR5 7 29 15/9 27/18
Neuraminidase 1B9V 10 50 16/12 33/23
Hen egg-white
lysozyme

1LZG 11 56 15/10 26/19

HIV-1 protease 1HPV 14 70 14/9 31/21
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Protein structures are prepared as follows. All the records corre-
sponding to atoms, ions and molecules which are not a part of the
protein structure are eliminated from the PDB files of the complexes.
Hydrogen atoms are added to this structure by the APLITE program
[10]. The APLITE program adds hydrogen atoms according to the
standard amino acid protonation states at pH = 7 and performs the
protein energy optimizationwith variations of positions of all hydro-
gen atoms in the frame of the MMFF94 force field keeping fixed all
protein heavy atoms. Ligands are also taken from PDB files. Hydrogen
atoms are added to ligands by the Avogadro program [74].

As can be seen from Table 3 the largest part of all protein moveable
atoms are hydrogen ones almost for all test complexes. Movements
of hydrogen atoms during the docking process can be favorable for the
hydrogen bond formation. However, we do not consider that properties
of the MMFF94 force field [44] enable SOL-P to reproduce hydrogen
bonds with high precision and there is no sense to analyze their forma-
tion in the present study.

3. Results

The total number of low energy minima found by the SOL-P pro-
gram,Ntot, for each complex varies considerably for different complexes
depending on the complexity of the protein-ligand energy surface. This
number can be as small as Ntot=25 for the rigid protein of the 1C5Y
complex and it can be as large as Ntot=7149 for 1VJ9 with 30 protein
moveable atoms. The Ntot number expands with the increase of the
number of protein moveable atoms for any tested complex when the
dimensionality of minima search space increases, e.g. for the 1I7Z
complex Ntot=362 for the rigid protein and Ntot=1437 for 29 move-
able protein atoms. Values ofNtot found by SOL-P and FLM are compara-
ble for many complexes.

Computing resources for all 30 test protein-ligand complexes are
5–120, 110–1300 and 600–3200 CPU ∗ h for the rigid proteins, for the
cases of 13–18 and 25–35 protein moveable atoms, respectively. So,
docking with 13–18 protein moveable atoms needs dozens of times
more computing resources as compared with the rigid protein case
and docking with 25–35 protein moveable atoms needs several
times more resources as against docking with 13–18 protein move-
able atoms.

A priori there is one special local energy minimum in the protein-
ligand energy minima spectrum for any energy function calculated
in the frame of any force field either in vacuum or in solvent. It is
the minimum obtained by the local optimization of the protein-
ligand energy beginning from the ligand pose in the crystallized
protein-ligand complex. The ligand pose in this local minimum we
call optimized native ligand pose. The local energy optimization is
performed with variations of either only ligand atoms or ligand and
moveable protein atoms. Due to the docking paradigm this local
minimum must be in the low energy part of the whole energy mini-
ma spectrum and the docking program must find it. The ability to
find this energy minimum is one of indicators of the high quality of
the low energy minima search algorithm: finding this minimum is
the necessary condition of the thoroughness of the docking program
performance. The SOL-P program finds such minimum for 10, 14 and
13 complexes (out of 30 complexes) for docking into the rigid pro-
tein, into the protein with 13–18 moveable atoms and 25–35 move-
able atoms, respectively. We see that moveable protein atoms
improve the ability of the SOL-P program to find the optimized na-
tive ligand pose. However, this feature of the SOL-P program is
worse than one of the FLM programs which finds the optimized na-
tive ligand pose for 17 complexes of the same test set performing
the exhaustive low energy minima search [11]. For 7 complexes
(1C5Y, 1I7Z, 1O3P, 2PAX, 3PAX, 4FSW and 4FT0) both SOL-P for
rigid proteins and for proteins with moveable atoms and FLM (for
rigid proteins) find the optimized native ligand minimum. For 3
complexes (4FTA, 1SQO and 1EFY) SOL-P can find and FLM cannot
find the optimized native ligandminimum. For 10 complexes neither
SOL-P (with and without protein moveable atoms) nor FLM (for the
rigid proteins) can find the optimized native ligand minimum. This
result shows that the low energy minima search by either SOL-P or
FLM docking programs is not perfect for some complexes. These fail-
ures could be partly due to the non-adequate target energy function:
search algorithms look for low energy minima and can miss the op-
timized native ligand pose if its energy is too high.

The validation shows that SOL-P finds either the global minimum or
one of low energy minima corresponding to the ligand pose being near
the optimized native ligand pose for the rigid protein and/or for the
protein with moveable atoms for more than two thirds of the whole
test set of protein-ligand complexes (for 22 out 30) (see Table 4): for
these 22 complexes INON= 1 or INON ≤ 25 and the docking paradigm
is fulfilled for them in the frame of the MMFF94 force field in vacuum.
The test complexes are collected in groups in respect with values
of their INON index in Fig. 3. This assertion is true also for FLM
performance for the rigid proteins practically for the same complexes
(see Table 4).

Taking into account protein atoms' mobility is crucial for 4 com-
plexes (1J01, 1K1J, 1MQ6 and 3CEN) out of 30. SOL-P does not find
any minima near the optimized native ligand pose for docking into
the rigid protein (INON = inf). However, when mobility of protein
atoms is taken into account, the docking procedure finds near the
optimized native ligand pose either the global minimum (INON = 1)
or one of the lowest energy minima (INON ≤ 25). Moreover, SOL-P
with 25–35 proteinmoveable atoms always finds energyminima corre-
sponding to the ligand pose near the optimized native ligand pose.
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Table 4
Indexes EN and INON for the SOL-P program with different numbers of protein moveable
atoms (0, 13–18 and 25–35) and for the FLM program with rigid proteins.

Complex id EN/INON,
SOL-P 0

EN/INON, SOL-P
13–18

EN/INON, SOL-P
25–35

EN/INON,
FLM

1B9V inf/344 513/353 inf/333 inf/inf
1BR5 144/45 241/23 inf/29 inf/309
1C5Y 1/1 1/1 1/1 1/1
1DWC inf/20 inf/289 inf/98 inf/377
1EFY 72/46 38/20 40/16 158/81
1F5L 1/1 2/1 2/1 1/1
1HPV inf/1 6/1 2/1 98/1
1I7Z 1/1 1/1 1/1 1/1
1J01 inf/inf 1/1 1/1 1/1
1K1J inf/inf inf/inf inf/19 1/4
1LQD inf/5 1/1 1/1 1/1
1LZG inf/inf inf/1270 inf/771 inf/inf
1MQ6 inf/inf 2/2 inf/3 7/4
1O3P 13/11 13/2 2/1 16/14
1PPC inf/inf inf/26 inf/51 1/1
1SQO 1/1 1/1 1/1 1/1
1TOM inf/181 inf/465 inf/570 inf/inf
1VJ9 inf/26 inf/29 inf/23 48/1
1VJA inf/50 inf/inf inf/127 41/4
2P94 inf/2 inf/2 27/2 36/2
2PAX 1/1 1/1 1/1 1/1
3CEN inf/inf inf/1 inf/1 94/1
3KIV 9/1 5/1 4/1 12/1
3PAX 2/1 2/1 2/1 2/1
4FSW 6/5 6/5 6/5 8/7
4FT0 21/20 20/15 15/9 32/30
4FT9 inf/23 35/21 40/22 46/29
4FTA 176/176 370/370 415/415 inf/inf
4FV5 inf/231 87/87 122/84 189/122
4FV6 inf/337 inf/213 inf/325 inf/inf
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On the other hand, for rigid proteins SOL-P and FLM cannot find such
minima (INON = inf) for 6 and 5 complexes, respectively. It is worth
to note that SOL-P is able to find the minimum near the optimized
native ligand pose for all 5 complexes where FLM is not able to do this.
Fig. 3. Numbers of complexes with different values of INON index. PMA indicates the range of p
RMSD from the optimized native ligand position less than 2 Å; if there are several such minim
The FLM program (performing the exhaustive minima search) finds
the global energy minimum near the optimized native ligand pose
(INON = 1) for 13 complexes: 1C5Y, 1F5L, 1HPV, 1I7Z, 1J01, 1LQD,
1PPC, 1SQO, 1VJ9, 2PAX, 3CEN, 3KIV and 3PAX. The SOL-P program
(with andwithout proteinmoveable atoms)finds also the global energy
minimum near the optimized native ligand pose (INON= 1) for almost
all these complexes except only two complexes: 1VJ9 and 1PPC.

Further, SOL-P finds not more than 10 minima near the optimized
native ligand pose for most of the test complexes and only for few
complexes the number of such minima is 11–36. Moreover, some of
such minima are global energy minima (INON = 1) and their energies
are close to the energies of respective optimized native ligand minima
(EN = 1) for 5 or 6 complexes depending on mobility of protein
atoms, e.g. for complexes 1C5Y, 1I7Z, 1J01, 1LQD, 1SQO and 2PAX with
moveable protein atoms (see Table 4). There are 8 such minima found
by the FLM program.

Therefore, we can say that in tote the SOL-P program (with and
without protein moveable atoms) works not worse than the FLM
program and much faster than the latter.

Our observation that neither SOL-P nor FLM can find any minimum
near the optimized native ligand pose for 11 complexes (out of 30) is
connected with inadequacy of the energy target function calculated in
the frame of the MMFF94 force field in vacuum. It has been previously
demonstrated [5] that protein-ligand energy calculation in the frame
of theMMFF94 force field in solvent (with an implicit model) improves
dockingperformance of the FLMprogram for the rigid proteins andwith
such target energy function SOL-P should also work better.

4. Conclusions

The validation results of the novel supercomputer SOL-P docking
program are presented. This program performs docking of a flexible
ligand into the protein with moveable atoms on the base of the search
of the low-energy minima spectrum of a protein-ligand complex. Pro-
tein and ligand atoms' mobility is taken into account simultaneously
and equally in the docking procedure. During this search the energy of
rotein moveable atoms for the SOL-P program. INON is the index of the minimum having
a, the minimumwith the lowest energy (with the lowest index) should be taken.
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each configuration of the protein-ligand complex is computed directly
with the MMFF94 force field without simplifications and any fitting
parameters. The grid of precalculated energy potentials of probe ligand
atoms in the field of target protein atoms is not used. For the docking
positioning validation energies of low-energy minima and their spatial
locations corresponding to the ligand poses are carefully analyzed.
Low-energyminima spectra of 30 protein-ligand complexes are investi-
gated in the frame of the MMFF94 force field in vacuum.

It is shown that the program is able to perform docking of a flex-
ible ligand into the active site of the target protein taking mobility of
assigned protein atoms into account: up to 157 degrees of freedom in
the conformation space using about 9 h at 512 core of the Lomonosov
supercomputer [73]. As far as we know this is the first time when
the docking program is able to perform successfully the global ener-
gyminimum search in the conformational space with such a large di-
mensionality. This result is achieved due to the usage of the novel
docking algorithms (TT-docking) which are based on the so-called Ten-
sor Train decomposition of multi-dimensional arrays (tensors) and the
TT global optimizationmethod [11,15]. TT-docking does not suffer from
the curse of dimensionality. In principle the SOL-P program has no
restrictions (except the availability of supercomputer resources) to
perform docking with a larger number of moveable protein atoms
including side-chain mobility and/or docking the very flexible ligands
such as oligopeptides.

It is found that docking performance of the SOL-P program is compa-
rable with one of the FLM program, which executes the exhaustive en-
ergy minima search for rigid target proteins due to employment of
much larger computing resources. It is demonstrated that in some
cases docking results are being improved even when small movements
of protein atoms are taken into account in the docking procedure.

It is demonstrated that the docking paradigm is fulfilled for the
target energy function calculated in the frame of the MMFF94 force
field in vacuum for a flexible ligand and for target proteins with 25–35
moveable atoms for two thirds of the whole test set of protein-ligand
complexes. Taking into account an implicit solventmodel in the calcula-
tion of the energy of the protein-ligand complexes should improve the
positioning performance of the SOL-P docking program as it is observed
for the FLM program [5].

The SOL-P docking program can be used for finding spectra of
low-energy minima of the protein, the ligand and their complex in
the frame of a given force field, and these spectra can be used for
the binding free energy calculation through the configuration inte-
grals over separated minima of the respective systems. This ap-
proach should improve accuracy of the protein-ligand binding
energy calculations and it is similar to the “mining minima” method
[4]. However our approach differs from the “mining minima” meth-
od mainly by more uniform and exhaustive low-energy local minima
search instead of the exploration of the configuration space along a
combination of low-frequency modes as it is made by the “mining
minima” method [4].

The present investigations became possible due to the computing
resources of M.V. Lomonosov Moscow State University supercomputer
Lomonosov [73].

Abbreviations

TT tensor train
PDB protein data bank
NMR nuclear magnetic resonance

MMFF94 Merck molecular force field
MPI message passing interface
BLAS basic linear algebra subprograms
LAPACK linear algebra package
RMSD root-mean-square deviation
INON index of the minimum near the optimized native ligand

position
EN index of the minimum being near the optimized native li-
gand in space and in energy
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