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INTRODUCTION 
 

Non-small cell lung (NSCLC) is one of the most 

common malignant tumors in the world, accounting for 

80% of all lung cancers [1, 2]. Early (I-II stage) NSCLC 

has a good prognosis, with a 5-year relative overall 

survival rate of more than 60%, however, only 25% of 

patients with NSCLC are diagnosed at this stage [3]. 

Therefore, it is necessary to urgently determine the 

pathogenesis of early NSCLC and investigate the 

biomarkers and key pathways related to NSCLC for its 

early diagnosis and treatment. 

 

Epidermal growth factor receptor (EGFR), anaplastic 

lymphoma kinase (ALK), ROS1 proto-oncogene 

receptor tyrosine kinase (ROS1), and serine/threonine- 

 

protein kinase B-Raf (BRAF) have proven to be genetic 

causes and effective therapeutic targets for selected 

patients with NSCLC [4–7]. These agents, however, are 

not suitable for a large proportion of those with 

NSCLC, and the associated effects are generally 

incomplete and temporary. Obviously, additional 

similar hub genes are required in this regard. Notably, 

most studies often focus on single pathological type of 

NSCLC as well as single or multiple genes, which may 

reveal a limited aspect of the pathogenesis of NSCLC. 

Furthermore, few reports mention the two most 

common pathological types of NSCLC from a global 

perspective. 

 

Therefore, the present study explores the functional 

modules from differentially expressed gene-related 
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ABSTRACT 
 

This study aimed to investigate the potential pathogenesis of early non-small cell lung cancer (NSCLC), including 
lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC), by constructing a global transcriptional 
regulatory landscape to identify hub genes and key pathways. A total of 1,206 differentially expressed genes 
(DEGs) in early NSCLC were identified compared to normal lung tissue samples in GSE33532 and GSE29013. 
DEGs-related protein-protein interaction networks (PPIs) were constructed based on the STRING database and 
were then modularly analyzed using the ClusterOne tool. The enrichment analysis revealed that multiple 
modules were significantly involved in pathways such as the TNF signaling pathway, PPAR signaling pathway 
and PI3K/AKt signaling pathway. Ten genes were identified as hub genes in the PPIs and also found up-
regulated at protein level. The prognostic value of the hub genes and the ten hub gene set variation score 
varied according to the different pathological types of NSCLC, which suggested the ten hub gene expression 
patterns can reflect the heterogeneity of two types of NSCLC. In conclusion, by carrying out a series of in-depth 
analyses, hub genes and key pathways associated with early NSCLC were identified by a global transcriptional 
regulatory landscape. 
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protein-protein interaction networks (PPIs) in NSCLC 

from a global perspective. The pathways in which 

multiple functional modules are involved may serve as 

potential key pathways for early NSCLC. Potential hub 

genes were identified, and their aberrant expressions 

were validated. Their corresponding prognostic values 

were also explored in an independent data set. 

 

RESULTS 
 

In the present study, the DEGs among the early NSCLC 

tissue samples and normal lung tissue were used to 

construct the PPI networks. The key pathways of the 

early NSCLC samples were identified via modular and 

enrichment analyses, while the TFs that drive NSCLC 

were identified by the hypergeometric test. 

Accordingly, a global regulatory landscape related to 

early NSCLC was constructed. The differential 

expression of the hub genes was validated, and its 

prognostic value was explored in the early LUAD and 

LUSC datasets in TCGA (Figure 1). 

 

Atlas of expression imbalance in early NSCLC 
 

The obtained PCA results demonstrated that the batch 

effect present in the two data sets were well removed 

(Figure 2A, 2B). A total of 1,206 DEGs (Figure 2C) 

were differentially expressed in early NSCLC compared 

to normal lung tissue samples, with 487 being 

significantly upregulated and 719 being significantly 

downregulated. Cluster analysis illustrated that the 

expression patterns of the corresponding DEGs could 

distinguish early NSCLC tissue samples from normal 

lung tissue samples (Figure 2D). 

 

NSCLC is the result of multiple functional modules 

 

Here, 1,206 DEGs were mapped into the STRING 

database in order to construct a PPI network containing 

1,206 nodes and 29,677 interaction pairs. Ten functional 

modules were identified comprised of 803 DEGs 

(Figure 3). Modularization helped to observe the 

complex interactions between these DEGs in regard to 

close protein interaction. To this effect, the occurrence 

of NSCLC was found to be the result of the combined 

action of multiple functional modules. 

 

Key pathways for early NSCLC 

 

The conducted enrichment analyses (GO and KEGG) 

suggest that these functional modules were significantly 

enriched in 4,467 biological processes (BPs), 317 

cellular components (CCs), 685 molecular functions 

(MFs), and 120 KEGG pathways. The 20 biological 

processes (BP) containing over three functional 

modules involved inflammatory responses and immune 

functions (Figure 4A), which may serve as potential key 

BPs in early NSCLC. More than two functional 

modules were involved in 19 pathways, such as the 

cytokine-cytokine receptor interaction signaling

 

 
 

Figure 1. Flow chart of this study. TCGA, The Cancer Genome Atlas; NSCLC, non-small cell lung cancer. 
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pathway, IL-17 signaling pathway, TNF signaling 

pathway, PPAR signaling pathway and PI3K/AKt 

signaling pathway (Figure 4B), which may constitute 

potential key pathways of early NSCLC. 

 

Global regulation landscape of early NSCLC 

 

Ninety-seven TFs that regulated the 10 functional 

modules were identified via hypergeometric test. Here, 

6 TFs were found to be significantly dysregulated, and 

their target genes were significantly involved in the key 

pathways of early NSCLC. Subsequently, a TF-module-

pathway network (Figure 5) was built to construct a 

novel globally-controlled landscape map of NSCLC. 

Hub gene is a potential biomarker for early NSCLC 

prognosis 

 

The 10 hub genes were observed to be UBE2T, PBK, 

MELK, TNNC1, CCNB1, RRM2, CDK1, TOP2A, 

TPPX2 and UBE2C, which had top W values (Table 

1). The differential expression of these 10 hub genes 

(Figure 6A) was verified in the LUAD (Figure 6B) and 

LUSC (Figure 6C) data sets from TCGA. A high 

expression of CCNB1, MELK, RRM2, CDK1, 

TOP2A, TPX2, and UBE2C in LUAD patients was 

found to be associated with a poor prognosis (Figure 

6D), while a high expression of CCNB1, MELK, 

RRM2, CDK1, TOP2A, and PBK genes was observed 

 

 
 

Figure 2. Expression disorders of early NSCLC. (A) PCA analysis before batch effect removal. (B) PCA analysis following batch effect 
removal. (C) Differentially expressed gene (DEG) volcano map. Red nodes represent upregulated genes, blue nodes represent downregulated 
genes, and gray nodes represent no differentially expressed genes. (D) Hierarchical clustering dendrograms of the expression patterns of 
differently expressed genes that distinguish between NSCLC and normal lung tissue. 
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to be associated with a good prognosis in LUSC 

patients (Figure 6E). The prognostic value of the hub 

genes differed according to the various pathological 

types of NSCLC. Moreover, the high hub GSVA index 

was associated with a better prognosis in LUSC, which 

contrasted with that of LUAD. This indicates that 

significant heterogeneity in LUAD and LUSC is 

present. In addition, some hub genes were also observed 

to be highly expressed in LUAD and LUSC compared 

to normal lung tissue at the protein level (Figure 7). The 

genes UBE2T, TNNC1, and TPPX2 were not available 

in The Human Protein Atlas. 

DISCUSSION 
 

Detecting early NSCLC is critical due to its greater 

chance for survival [8]. Therefore, this study attempted 

to determine the hub genes and key pathways of early 

NSCLC from a global perspective in regard to its 

pathogenesis. In this regard, PPI networks and a 

modular analysis based on DEGs in early NSCLC 

samples were conducted. Each module may represent 

the potential pathogenesis of NSCLC, and NSCLC was 

determined to be the result of the combined action of 

multiple functional modules. These functional modules 

 

 

 

Figure 3. Module network showing the modules and their gene members with color mapping logFC of their differential 
expressions. 
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are significantly involved in the inflammatory response 

as well as biological immune functions, suggesting that 

the development of early NSCLS is closely related to 

the immune system, while immune evasion is a 

mechanism of tumorigenesis [9]. Multiple functional 

modules were involved in the cytokine-cytokine 

receptor interaction signaling pathway, IL-17 signaling 

pathway, TNF signaling pathway, PPAR signaling 

 

 
 

Figure 4. GO function and KEGG pathway of the functional module. (A) Biological processes having more than 3 functional modules 
are significantly enriched. (B) KEGG pathways having more than 2 functional modules were significantly involved. 

 

 
 

Figure 5. TF-module-pathway comprehensive regulated network landscape of early NSCLC. The network center is the 
transcription factor, while the color map of the gene node is logFC, and the color of the gene node side represents different modules. 
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Table 1. Hub genes. 

Symbol Module Degree Log 2 fold change Adjust P value Weight Rank 

UBE2T m1 140 2.612245066 3.28E-28 10917.23979 1 

PBK m1 227 2.753660067 1.17E-16 10912.44999 2 

PBK m10 227 2.753660067 1.17E-16 10912.44999 2 

PBK m2 227 2.753660067 1.17E-16 10912.44999 2 

MELK m10 225 2.618661314 5.17E-15 9233.525148 3 

MELK m1 225 2.618661314 5.17E-15 9233.525148 3 

MELK m2 225 2.618661314 5.17E-15 9233.525148 3 

TNNC1 m2 65 -3.056720526 2.03E-38 8143.511081 4 

CCNB1 m1 156 2.517999686 4.14E-19 7904.540951 5 

RRM2 m1 140 2.802407994 1.08E-16 6865.254987 6 

TPX2 m1 129 2.644431171 8.34E-19 6749.700127 7 

UBE2C m1 130 2.589317511 3.24E-18 6445.158204 8 

CDK1 m1 210 1.653412806 1.89E-17 6362.173919 9 

CDK1 m2 210 1.653412806 1.89E-17 6362.173919 9 

TOP2A m1 157 2.193051181 1.42E-17 6355.448547 10 

 

 
 

Figure 6. Hub gene and its prognostic value. (A) Expression of hub genes in GSE33532 and GSE29013. (B) Expression of hub genes in the 
early LUAD data set from TCGA. (C) Expression of hub genes in the early LUSC data set from TCGA. (D) Hub Genes and the hub GSVA index 
associated with prognosis in the early LUAD data set from TCGA. (E) Hub Genes and the hub GSVA index associated with prognosis in the 
early LUSC data set from TCGA. LUAD, lung adenocarcinoma; LUSC, Lung squamous cell carcinoma; GSVA, gene set variation analysis; TCGA, 
The Cancer Genome Atlas. 
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pathway and PI3K/AKt signaling pathway, which may 

serve as potential pathways in the promotion of early 

NSCLC. The IL-7 signaling pathway promotes the 

pathogenesis of NSCLC [10], and activation of the TNF 

signaling pathway via inflammatory response may 

result in a poor prognosis of NSCLC [11]. It has also 

been verified that the PI3K/AKt signaling pathways are 

involved in the regulation of apoptosis in NSCLC cells, 

suggesting that the PI3K/AKt signaling pathway is 

associated with NSCLC [12]. In addition, this study’s 

proposed TF-module-pathway network may provide a 

reference for the additional research pertaining to the 

pathogenesis of NSCLC. 

 

This study identified 10 hub genes: UBE2T, PBK, 

MELK, TNNC1, CCNB1, RRM2, CDK1, TOP2A, 

TPPX2, and UBE2C. Unsurprisingly, previous studies 

have found that some of these genes were associated 

with NSCLCs. The ubiquitin-binding enzyme E2C 

(UBE2C) gene is amplified in approximately 7% of 

NSCLC patients, suggesting its role in the patho-

physiology of NSCL [13]. The CDK1 and MELK 

proliferation-related genes may serve as biomarkers of 

NSCLC immune checkpoint inhibitor therapy [14]. A 

high expression of RRM2 is a poor prognostic factor for 

LUAD and is a biomarker for the LUAD potential 

prediction of metastasis and prognosis [15], though it 

may be favorable for LUSC, according to the 

corresponding obtained results. A similar phenomenon 

was evident in CDK1, MELK, and UBE2C, which was 

unreported, suggesting that LUAD and LUSC have 

significant heterogeneity and different potential 

therapeutic targets. The prognostic value of the hub 

genes varied according to the different pathological 

types of NSCLC. In conjunction with previous studies, 

the 10 hub genes obtained in this study may help to 

elucidate the molecular mechanism of NSCLC. 

 

Although the present study proposed potential hub genes 

and key pathways for early NSCLC, it has several 

limitations. First, the gene modules were mined based on 

the PPI networks from the STRING database, where some 

proteins were based on prediction rather than molecular 

experimentation. Thus, the molecular mechanism of these 

key pathways and hub genes require further molecular 

investigation. Second, less annotated pathways may be

 

 
 

Figure 7. High expression of hub genes in immunohistochemistry. Normal Lung tissue samples are on the left, lung adenocarcinoma 
(LUAD) samples are in the middle, and lung squamous cell carcinoma (LUSC) samples are on the right.  
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lost when filtering modules using the PPI network. 

Weighted correlation network analysis (WGCNA) [16] is 

an alternative module mining method, which is mainly 

based on the correlation of genes.  

 

CONCLUSION 
 

In conclusion, this study identified potential hub genes 

and related pathways of early NSCLC from a global 

perspective in order to provide a reference for the study 

of the pathogenesis of early NSCLC. 

 

MATERIALS AND METHODS 
 

Data collection and processing 
 

In the present study, two NSCLC gene expression profile 

datasets were downloaded from the Gene Expression 

Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/) 

database, GSE33532 and GSE29013. The data set of 

GSE33532 includes 80 early NSCLC tissue samples (40 

adenocarcinomas, 16 squamous cell carcinomas, and 24 

NSCLCs of mixed type) and 20 normal lung tissue 

samples. The GSE29013 data set contains a total of 55 

NSCLC samples including 38 early stage NSCLC 

samples (22 adenocarcinomas and 16 squamous cell 

carcinomas) and 17 advanced (III-IV stage) NSCLC 

samples. Both data sets were based on the GPL570 

platform. The justRMA method in the affy package [17] 

was applied to normalize the raw data of the two data sets, 

and the sva package [18] removed the batch effect on the 

normalized data. After removing 17 advanced NSCLC 

samples, 118 NSCLC tissue samples and 20 normal lung 

tissue samples were utilized in the study. If one gene 

corresponded to multiple probes, the average expression 

value of these probes was considered to be the expression 

value of the gene. Principal component analysis (PCA) 

was also used to evaluate removing batch effects. 

 

Differentially expressed gene (DEG) analysis and 

bidirectional hierarchical clustering 
 

The DEGs between early NSCLC and normal lung 

tissues were analyzed by the limma package [19] in R. 

Genes with |logFC| > 1 and P value adjusted by false 

discovery rate (FDR) < 0.05 were considered to be 

significant. Hierarchical clustering was performed using 

20 of the most upregulated DEGs as well as 20 of the 

most downregulated DEGs using the pheatmap package 

(https://CRAN.R-project.org/package=pheatmap) in R. 
 

Construction of protein-protein interaction (PPI) 

networks and modular analysis 
 

According to the STRING database (https://string-

db.org/, [20]), PPI networks were constructed related to 

the DEGs. Network visualization was performed by 

Cytoscape [21] and the modules were analyzed 

(Minimum=30) by the ClusterONE plugin [22]. The 

DEGs-related PPI networks were organized into 

different functional modules. 

 

Enrichment analysis 
 

The ClusterProfiler package in R was used [23] to perform 

Gene Ontology (GO) and Kyoto Encyclopedia of Genes 

and Genomes (KEGG) enrichment analysis for the 

functional modules. P adjusted by false discovery rate 

(FDR) < 0.05 was considered to be statistically significant. 

 

Module-related transcription factor (TF) 

 

Based on the interaction of human TF and its target genes 

in the TRRUST v2 database (http://www. grnpedia. 

org/trrust/) [24], hypergeometric testing was applied to 

predict the TFs of potential regulatory functional modules. 

The hypergeometric test was performed using the igraph 

package (https://igraph. org/r/) in R. A P value of < 0.05 

was considered to be statistically significant. As a result, a 

TF-module-pathway network was built. 

 

Differential expression validation, gene set variation 

analysis (GSVA) and survival analysis of hub gene set 
 

After removing nodes not present in any of the modules 

within the PPI networks, the degree of each node was 

calculated, where the weight of a gene was W = -log10 (P 

value) x degree x |logFC|. The 10 genes with the top W 

values were considered to be hub genes. The early LUAD 

and LUSC data sets in The Cancer Genome Atlas (TCGA, 

https://www.cancer.gov/) were used to validate the 

differential expression of the hub genes, and the limma 

package's voom function was used to normalize the RNA-

seq data for these two data sets. Additionally, the hub 

GSVA index was calculated for each sample using the 

GSVA package in R [25]. To explore the prognostic value 

of the expression of these 10 hub genes as well as the hub 

GSVA index in early NSCLC, the median was selected as 

the cutoff to divide early NSCLCs into high expression/ 

index group and low expression/index group in TCGA 

data. The Kaplan-Meier survival curves of the two groups 

were compared using the Log-rank method, and a P value 

< 0.05 was considered to be statistically significant. 

 

Validation of the differential expression of hub genes 

at the protein level 
 

The Human Protein Atlas (https://v15.proteinatlas.org/) 

[26] provides information on the tissue and cell 

distribution of all 24,000 human proteins, which was 

used to validate the differential expression of hub genes 

at the protein level in the present study.  

https://www.ncbi.nlm.nih.gov/geo/
https://cran.r-project.org/package=pheatmap
https://string-db.org/
https://string-db.org/
https://igraph.org/r/
https://www.cancer.gov/
https://v15.proteinatlas.org/
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