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+is study was to explore the diagnostic value of magnetic resonance imaging (MRI) optimized by residual segmentation attention
dual channel network (DRSA-U-Net) in the diagnosis of complications after renal transplantation and to provide a more effective
examination method for clinic. 89 patients with renal transplantation were selected retrospectively, and all underwent MRI. +e
patients were divided into control group (conventional MRI image diagnosis) and observation group (MRI image diagnosis based
on DRSA-U-Net). +e accuracy of MRI images in the two groups was evaluated according to the comprehensive diagnostic
results.+e root mean square error (RMSE) and peak signal-to-noise ratio (PSNR) of DRSA-U-Net on T1WI and T2WI sequences
were better than those of U-Net and dense U-Net (P< 0.05); comprehensive examination showed that 39 patients had obstruction
between ureter and bladder anastomosis, 13 cases had rejection, 10 cases had perirenal hematoma, 5 cases had renal infarction,
and 22 cases had no complications; the diagnostic sensitivity, specificity, accuracy, and consistency of the observation group were
higher than those of the control group (P< 0.05). In the control group, the sensitivity, specificity, and accuracy in the diagnosis of
complications after renal transplantation were 66.5%, 84.1%, and 78.32%, respectively; in the observation group, the sensitivity,
specificity, and accuracy in the diagnosis were 67.8%, 86.7%, and 80.6%, respectively. DRSA-U-Net denoising algorithm can
clearly display the information of MRI images on the kidney, ureter, and surrounding tissues, improve its diagnostic accuracy in
complications after renal transplantation, and has good clinical application value.

1. Introduction

+e development of renal transplantation has gone through
a long process and has now become the first in the field of
peripheral organ transplantation [1]. Transplantation is the
best treatment for end-stage renal failure. However, the
incidence of renal insufficiency after transplantation is still
very high, and the occurrence of complications after
transplantation is the main factor causing the function loss
of transplanted kidney [2]. +e key to improve transplant
survival is early and accurate diagnosis and appropriate
treatment. In recent years, with the development of imaging
techniques, it is very helpful for the early diagnosis of
complications after renal transplantation [3]. Complications
after renal transplantation seriously affect clinical outcomes
and can lead to loss of transplanted organ function and
patient’s death. According to the United States Joint

Network for Organ Sharing, by the end of 2020, the total
number of kidney transplants reached 1.3 million worldwide
and approximately 160,000 in China [4].

At present, the process of renal transplantation has been
standardized, the new triple suppression regimen exerts the
greatest immunosuppressive function with the least drug
toxicity, the first-year survival rates of patients and grafts are
more than 96% and 91%, respectively, and the quality of life
of patients is significantly improved [5]. +e reported in-
cidence of complications in renal transplantation is 3–21%,
and the incidence of vascular complications is 1.8–8.4%. It is
generally believed that complications after renal trans-
plantation can be divided into functional complications and
organic complications. +erefore, surgical complications
should be paid attention [6].

U-Net was proposed by Marticorena Garcia et al. [7] and
named for its left-right symmetry of the network structure
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and resembling the letter “U.” U-Net is mainly composed of
two parts: the contraction path on the left side and the
expansion path on the right side. +e contraction path is
mainly used for feature extraction, the expansion path is
mainly used to decode the feature map, and the upper
sampling is used to improve the resolution of the feature
map. Compared with other networks, Dense-U-Net im-
proves network performance by reducing information loss
from network depth or width and is committed to improve
network performance from the perspective of feature reuse
[7]. Abdominal movement is complex, and MRI is highly
sensitive to movement. +erefore, abdominal MRI is more
complex to perform the image acquisition and processing
than other positions [8]. Like abdominal image-assisted
acquisition technique commonly used, abdominal T1WI
generally includes in-phase T1WI and out-of-phase T1WI.
However, other sites are not so distinguished. Current deep
learning-based transmodal synthesis studies of MRI basi-
cally use brain MRI data, mainly focusing on MRI, CT, and
PET, while there are few transmodal synthesis studies of
MRI-weighted images [9]. In the image evaluation of renal
transplantation, MRI is superior to CT because of its better
soft tissue resolution and no radiation injury. In addition,
MRI contrast agent has no damage to the kidney, and MSCT
and CTA can visually show the situation of renal trans-
plantation. Interlayer registration of multimodal images:
image synthesis usually requires registration among images,
but in the actual MRI scan, due to slice thickness and
scanning environment, the registration requirements are
difficult to meet [10]. Although some deep learning algo-
rithms can achieve cross-channel unregistered synthetic
images, they are mainly large networks such as gallium
nitride, which usually means that a large amount of data is
needed to solve many parameters in the network, which is a
great threat to scarce medical images [11, 12]. Transmodal
image synthesis networks are usually single-channel net-
works synthesized by single-modal images, but some studies
have demonstrated that the effect of multimodal informa-
tion synthesis is much better than that of single-modal image
synthesis [13]. +e improved U-type residual segmentation
attention dual channel network (DRSA-U-Net) strengthens
the ability of the network to extract and fuse the charac-
teristic information of multichannel images by introducing
the separation attention residual module and the com-
pression excitation attention module in U-Net. It effectively
improves the effect of the network to synthesize images.
+erefore, how to make full use of multimodal data infor-
mation and design multichannel networks with good
learning performance according to image characteristics is
also a research topic.

+is study was aimed to explore the diagnostic value of
optimized MRI based on DRSA-U-Net in the diagnosis of
complications after renal transplantation and to provide a
more effective examination method for clinic.

2. Materials and Methods

2.1. Subjects. In this study, 89 patients who underwent renal
transplantation in hospital from March 2020 to March 2021

were included and examined by MRI. +e patients received
MRI at 2 weeks after operation. +e patients were randomly
divided into the control group (conventional MRI image
diagnosis) and the observation group (MRI image diagnosis
based on DRSA-U-Net). +ere were 59 males and 30 fe-
males, aged 27–46 years, with the mean age of 42 years. 76
transplanted kidneys were located in the right iliac fossa and
13 transplanted kidneys in the left iliac fossa; 45 developed
tenderness 30 days after surgery; 37 had anuria 9 days after
surgery; and 7 had postoperative fever and abdominal pain.
+is study approved by the ethics committee of the hospital,
and the patients’ families signed the consent form.

Inclusion criteria: all patients received renal transplan-
tation; those who follow doctor’s advice and actively co-
operate with the treatment.

Exclusion criteria: history of contrast medium allergy;
those who are allergic to the drugs used; patients with other
types of serious diseases; heart, liver, spleen, and other
important organ dysfunction.

2.2.MRI Scan. 1.6Tsuperconducting MRI scanner was used,
gradient was 32mT/m, switching rate was 132 Tm−1 s−1, and
flexible phased array circular polarization coil was used.
Examination order and parameters: referring to the clinical
symptoms of patients, laboratory tests, and ultrasound re-
sults, with different sequences, all patients underwent
routine renal MRI and magnetic resonance urography
(MRU) examination. Sequence and main parameters: axial,
spin echo (SE) sequence T1WI, TR/TE was 112∼124ms/
4.85ms; fast spin echo (FSE) sequence fat suppression
T2WI, TR/TE was 2,121∼ 2,406ms/132ms; coronal TRUFI
sequence, TR/TE was 5.1ms/2.56ms; layer thickness was
7mm; spacing was 2.1mm; average signal number was 2–4;
and acquisition matrix was 258× 258. T1WI without fat
suppression and T2WI underwent fat suppression and
nonfat suppression scanning 3 times, and field of vision
(FOV) was 34 cm× 38 cm.

Renal MRU examination: single-shot fast spin-echo
sequence (SSFSE), thick T2WI, TR/TE was infinite, layer
thickness was 82mm, interval was 0, FOV was
4,002mm× 402mm, and acquisition matrix was 314× 258;
thin T2WI, TR/TE was 1,123ms/567ms, flip angle was 152,
layer thickness was 5mm, interval was 0, FOV was
352mm× 352mm, and acquisition matrix was 258×158.

2.3. Image Segmentation by Artificial Intelligence Algorithm.
In the separation attention residual module, the convolution
kernel is first separated into several branches for individual
learning. +en, the features learned from different branch
channels are compressed and fused through the global
pooling layer. Finally, the r-Softmax of attention mechanism
is used to extract features, and the extracted features and the
output of each branch are multiplied and added to obtain the
feature layer with the same dimension as the input. In the
parallel space channel compression and excitation module,
DRSA-U-Net adds Scse module after each jump connection
in U-Net to compress and excite the MRI images of T1WI
and T2 downsampling weighted image. It can extract the
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effective information in each channel and space and enhance
the learning efficiency of the network. +e biggest feature of
these algorithms is that the learning rate remains un-
changed. Parameter update can only be achieved by gra-
dient, and in equation (1), U represents the learning rate.

μ � μ − u · ∇μJ. (1)

Because of the slow calculation of this algorithm, another
algorithm is proposed. +e calculation speed vector of this
algorithm introduces w as themomentum, which reflects the
direction and speed of the parameters in the parameter
space. w value is equal to the average negative gradient
exponential decay, including b hyperparameters. +e value
range is [0, 1). +e parameters are expressed in equation (3).

w � b · w − u · ∇μJ, (2)

μ � μ + v. (3)

Parameter is modified in real time, and its scaling Δμ
equivalently achieves adaptive learning rate. +e global
learning rate is denoted as Ψ. +e algorithm is defined by
equations (4) to (6). +e implementation of the algorithm
can be divided into three steps: first, the second-order
momentum p was calculated; then, the parameter variation
value Δμ is calculated; finally, parameter μ is updated. +e
scaling part Δμ of each parameter is inversely proportional
to the sum square root ��

p
√ of the square value of the his-

torical gradient. +erefore, the parameters with large partial
derivatives correspond to larger learning rate, and the pa-
rameters with small partial derivatives correspond to smaller
parameters. During the training process, the learning rate is
adjusted according to the parameters. +e exponential decay
rate factor of first-order momentum and second-order
momentum is in the range of [0, 1). +e algorithm takes into
account the first-order and second-order derivatives and
also completes the adaptive adjustment of learning rate in
network training. It has high robustness to the selection of
hyperparameters and is the most widely used optimized
deep learning algorithm.

p � p + ∇μJ 
2
, (4)

Δμ � −Ψ
1

��
p

√
+ δ
∇μJ, (5)

μ � μ + Δμ. (6)

DRSA-U-Net is based on the traditional U-Net struc-
ture. +e left side is composed of three encoders. +ere is a
65× 4× 4 convolution layer before the first encoder, which
extracts the input of two channels into 65 channels. +e first
encoder is composed of three independent note residual
modules and average titer sampling. +e second encoder is
composed of four independent residual modules and av-
erage sampling, and its output is 65 channels. +en, the
output image is sampled. +e third encoder is composed of
five independent note residual modules and average sam-
pling, and there are 256 output channels. +e encoder is

composed of three decoders. Each decoder is composed of
an interpolation module.+e decoder corresponding to each
encoder jumps to connect with a convolution layer. +e
compression module is also added to the clock excitation
attention of the second and third decoding units. +e in-
terpolation module samples the image through the nearest
neighbor of interpolation and extracts the compression
excitation attention module of channel and spatial infor-
mation. +e convolution layer fuses the feature channel. +e
output channels behind each decoder are 129, 65, and 17. At
the end of the network, the output of the network is merged
into a channel through the convolution layer. Figure 1 shows
the analysis model of DRSA-U-Net network data.

2.4. Image Analysis and Observation Indicators. +e exam-
ination results of all patients were analyzed by two inde-
pendent reviewers, and a consensus was reached on the
controversial results after discussion. Observation: whether
there was abnormal signal in the transplanted kidney,
whether the boundary of renal corticomedullary was clear,
whether the ureter was unobstructed, whether there was
abnormal signal around the kidney, whether the trans-
planted renal vessels were unobstructed, and whether the
cortical enhancement density was uniform.

2.5. Statistical Analysis. Statistics was completed using
SPSS16 software. Measurement data were expressed by
(x ± s), and enumeration data were expressed by frequency
or percentage (%). Kappa was used to analyze the correlation
between data. P< 0.05 was considered statistically
significant.

3. Results

3.1. Evaluation of MRI Image Segmentation Effect Based on
Artificial Intelligence Segmentation Algorithm. +e image
quantification indexes of synthetic T2WI under different
inputs of U-Net, Dense-U-Net, and DRSA-U-Net networks
were displayed. +e data were the mean value± standard
deviation of the synthetic images of all layers in the test set.
When 1/4 downsampling T2WI was added to synthesize
T2WI after input, the mean peak signal-to-noise ratio
(PSNR) of DRSA-U-Net synthesized T2WI was enhanced by
about 0.5 dB and 0.9 dB, respectively, compared with U-Net
and Dense-U-Net, and the mean root mean square error
(RMSE) was reduced by about 0.03 and 0.02, compared with
U-Net andDense-U-Net; when 1/8 downsampling T2WIwas
added to synthesize T2WI after input, the PSNR of DRSA-U-
Net synthesized T2WI was enhanced by about 1.6 dB and
1.9 dB, compared with U-Net and Dense-U-Net, and the
RMSE index was the same as Dense-U-Net, reduced by about
0.02 and 0.02, compared with U-Net; therefore, no matter
how much downsampling rate T2WI was added to the input,
the fidelity of T2WI synthesized by DRSA-U-Net was good.

+e proposed DRSA-U-Net network, T2WI synthesized
in the task of multimodality MRI image synthesis of ab-
dominal T2WI, the objective image index, the visual effect of
the synthesized image, or the network performance was
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better than the classical medical image synthesis networks
U-Net and Dense-U-Net.+e RMSE and PSNR of DRSA-U-
Net on T1WI and T2WI were better than those of U-Net and
Dense-U-Net (P< 0.05) (Figures 2 and 3).

+e T2WI synthesized by U-Net, Dense-U-Net, and
DRSA-U-Net networks under different input methods
was compared. +e PSNR and RMSE were calculated by
the current image and the real T2WI (blue box). +e
PSNR and RMSE of the T2WI synthesized by DRSA-U-
Net were the best. In terms of visual effect, the T2WI
synthesized by U-Net and Dense-U-Net, DRSA-U-Net
network was very similar to the real T2WI, but the degree
of ambiguity was different. In order to observe the details,
the selected part of the composite image (blue box) was
amplified, and the difference in detail and texture of the
composite image was found. +e T2WI synthesized by
DRSA-U-Net network was closer to the real image, and
the ambiguity was the smallest. Figure 4 shows the results
of T2WI synthesis when the three networks at 1/4
downsampling T2WI.

3.2. Imaging Examination. +e results of comprehensive
examination of 89 patients were as follows: 39 cases of
hydronephrosis of the transplanted kidney, hydronephrosis
of the renal pelvis of the transplanted kidney, ureteral
dilatation, and obstruction at the bladder; 13 cases of
blurred corticomedullary demarcation of the transplanted
kidney, slightly increased signal intensity of the trans-
planted kidney parenchyma on T2WI, significantly in-
creased fat suppression signal on the T2 sequence, blurred
renal corticomedullary structure, and abdominal effusion,
which were diagnosed as rejection; 10 cases of perirenal
hematoma formation, hematoma formation around the
transplanted kidney, ureteral compression, and hydro-
nephrosis; 5 cases of vascular occlusion of the transplanted
kidney, vascular occlusion, and local renal infarction 2 days
after the operation. +ere were no complications in 22
patients (Figure 5).

3.3. Sensitivity, Specificity, and Accuracy Comparison. +e
sensitivity, specificity, and accuracy of conventional MRI
images (control group) in the diagnosis of complications
after renal transplantation were 66.5%, 84.1%, and 78.32%,
respectively. +e sensitivity, specificity, and accuracy of MRI
images based on DRSA-U-Net (observation group) were
67.8%, 86.7%, and 80.6%, respectively (Figure 6).

4. Discussion

Rejection of the transplanted kidney is a series of cellular and
fluid immune reactions of the recipient kidney to graft
antigens and can occur in 91% of patients [14]. With the
continuous improvement of hardware and software, MRI
can provide more information on the kidney, blood vessels,
ureter, and perirenal structure after renal transplantation
[15]. On T1WI, the skin and medulla of the normal kidney
are clearly demarcated. +e disappearance of this mani-
festation is common in rejection or acute tubular necrosis
(ATN). However, a clear boundary between the skin and
medulla does not preclude rejection [16]. In 57 MRI ex-
aminations in 33 patients, it was found that 12 patients with
normal renal function had well-defined renal cortico-
medullary borders and renal vessels entering the paren-
chyma after transplantation, reaching the cortex in 39%;
while in 22 patients with acute or chronic rejection, the
normal corticomedullary borders showed a demarcation
rate of only 8.2%. +e visualization rate of renal paren-
chymal vessels was 33%, and the visualization rate of
reaching the cortex was only 8.7%. In the experiment, 13
patients showed blurred borders of the renal cortex and
medulla on T1WI and increased renal signal intensity on
T2WI and coronal TRUFI sequences, suggesting increased
water content in the renal parenchyma, consistent with
rejection. Obstruction and brain water are common rejec-
tion [17]. Uremic patients with long-term dialysis have poor
physical and vascular conditions, and in the case of high-
dose immunosuppressive agents, there are many compli-
cations after renal transplantation. If not treated properly, it
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Figure 1: Analysis model of DRSA-U-Net network data.
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can cause graft loss and endanger the patient’s life. Although
significant progress has been made in the timely detection
and diagnosis of renal transplantation complications, pa-
tients still face serious posttransplantation complications,
and postoperative medical and surgical complications are
still important factors of morbidity and mortality [18].
Baumgartner et al. explored 56 MRI examinations of 32
patients. It was found that 11 patients with normal renal

function after transplantation had clear renal cortex and
medulla boundaries, and the renal blood vessels entered the
parenchyma and reached the cortex in 38% of the cases. For
21 patients with acute or chronic rejection, the display rate of
normal cortex and medulla boundaries was only 8%, the
display rate of blood vessels in the renal parenchyma was
32%, and the renal blood vessels entered the parenchyma
and reached the cortex in 8% of the cases [19]. +is is related

U-Net UNET Dense-UNET DRSA-UNET

Figure 4: T2WI synthesized by three networks at 1/4 downsampling T2WI.+e blue box indicates the PSNR and RMSE calculated from the
current image and the real T2WI.
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Figure 2: Comparison of RMSE and PSNR of different networks in T1WI. (a) Synthesis of T1WI RMSE. (b) Synthesis of T1WI PSNR.
∗Compared with U-Net, P< 0.05.
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∗Compared with U-Net (P< 0.05).
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to the experimental results. Due to timely diagnosis and
surgical treatment, 39 cases of hydronephrosis and dilatation
were treated.

+ere are few reports of vascular occlusion and regional
renal infarction in the transplanted kidney. In the experi-
ment, 5 patients were diagnosed with vascular occlusion and
regional renal infarction by MSCTA after renal transplan-
tation, which was confirmed by surgery.

Perirenal bleeding after renal transplantation to form a
periureteral hematoma and compression of the ureter to
form hydronephrosis is a rare complication that requires
definitive diagnosis and urgent surgical treatment [20, 21].
+e vascular empty signal of MRI can rule out venous
thrombosis and provide a strong basis for the development
of a safe surgical plan [22]. Based on the U-Net network, a
separation attention residual module and a compression
excitation attention module were introduced to improve the
feature mining ability of multichannel information [23, 24].
+e proposed DRSA-U-Net network-based abdominal

multimodal image synthesis algorithm can obtain synthetic
images very close to the real images in terms of visual effects
and image accuracy. +e use of synthetic images instead of
real images can reduce the scanning time of abdominal MRI
images and reduce the difficulty of abdominal MRI image
acquisition, providing a new path for obtaining low-cost and
rapid multimodality abdominal MRI images in a short time
[25].

5. Conclusion

In conclusion, the DRSA-U-Net denoising algorithm can
clearly show the information of MRI images on the kidney,
ureter, and surrounding tissues and improve the diagnostic
accuracy of complications after renal transplantation, which
has a good clinical application value. However, there is a
small sample size, and clinical trials should be conducted in
multicenter hospitals with large sample size, rather than in a
single area or small area. For the application of spatial
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information of three-dimensional data, new multimodality
images with strict interlayer registration can be acquired to
further verify the relationship between multilayer input and
interlayer registration. Network performance needs to be
validated and optimized on multiple different data sets to
improve the generalization capability of the network.

Data Availability

+e data used to support the findings of this study are
available from the corresponding author upon request.
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