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Abstract

Background: The ultimate goal of synthetic biology is the conception and construction of genetic circuits that are
reliable with respect to their designed function (e.g. oscillators, switches). This task remains still to be attained due to
the inherent synergy of the biological building blocks and to an insufficient feedback between experiments and
mathematical models. Nevertheless, the progress in these directions has been substantial.

Results: It has been emphasized in the literature that the architecture of a genetic oscillator must include positive
(activating) and negative (inhibiting) genetic interactions in order to yield robust oscillations. Our results point out that
the oscillatory capacity is not only affected by the interaction polarity but by how it is implemented at promoter level.
For a chosen oscillator architecture, we show by means of numerical simulations that the existence or lack of
competition between activator and inhibitor at promoter level affects the probability of producing oscillations and also
leaves characteristic fingerprints on the associated period/amplitude features.

Conclusions: In comparison with non-competitive binding at promoters, competition drastically reduces the region of
the parameters space characterized by oscillatory solutions. Moreover, while competition leads to pulse-like
oscillations with long-tail distribution in period and amplitude for various parameters or noisy conditions, the non-
competitive scenario shows a characteristic frequency and confined amplitude values. Our study also situates the
competition mechanism in the context of existing genetic oscillators, with emphasis on the Atkinson oscillator.

Background

In the relatively young field of synthetic biology [1,2],
there is increasing interest in the conception and con-
struction of genetic circuits that are reliable with respect
to their designed function. Having given the first step
with the implementation of biological switches [3], the
next step for synthetic biology was the construction of
biological oscillators. The first successful implementation
[4] constituted the onset of the quest for oscillators of
tunable amplitude and/or period. Oscillators are impor-
tant in biology for many reasons, since they are involved
in the cell cycle, cell motion, embryonic development [5].
In some cases, the genetic machinery associated with the
oscillatory behavior is rather small.
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In the context of genetic designs, two- and three-ele-
ment networks have been shown to be enough for imple-
menting oscillatory behavior either of transient or
sustained type [4,6]. Several theoretical and experimental
implementations of suggested robust tunable oscillators
exist [7,8]. However, predictable robustness of genetic
networks is still a difficult task. The unpredictability of
synthetic designs originates from the more-than-additive
effect of assembling multiple building blocks, and has
raised philosophical conundrums [9]. Intuition alone
cannot grasp the effects of multiple regulatory interac-
tions and thus mathematical models are particularly well
suited for unraveling the implications of the underlying
nonlinear interactions [10-14].

The way towards understanding and reliably predicting
the information encoded by combinations of cis-regula-
tory sites lies in the coupling of such mathematical mod-
els with the experimental synthesis of regulatory
promoter libraries [15-17]. Recent studies address the
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impact of some particular designs on the expected pat-
terns of genetic switches and clocks [18,19]. The authors
of these studies have shown that the interplay between
rate constants and circuit structure leads to nontrivial
outcomes. Moreover, these studies suggest different
views of how to explain the observed behavior. But sev-
eral aspects have not yet been properly addressed, in par-
ticular the importance of the architecture of promoters
and the resulting behavior.

In this paper, we show how the dynamics of a simple
two-component activator-inhibitor oscillator is drasti-
cally affected by the architecture of the promoters and
the nature of binding by the transcription factors. We
show that competitive DNA-binding of several transcrip-
tion factors acting at the level of a promoter leads to a
more fragile oscillator than with non-competitive bind-
ing. The type of binding mechanism and the circuit archi-
tecture together determine the features of the resultant
oscillations. The intention of the present work is to
emphasize the importance of choosing the appropriate
mathematical modeling in ensuring the experimental
achievement of the desired biological function.

We also argue that detailed studies of these DNA-bind-
ing mechanisms could provide new insights into old
experimental and theoretical studies of genetic circuits. A
clear example is the experimental implementation of the
Atkinson oscillator [6] for which several distinct mathe-
matical models (and thus distinct dynamical behaviors)
exist in the literature. Which among these models would
be most suitable with respect to Atkinson's experimental
implementation still remains to be determined, as the
details of the biological binding mechanism are not suffi-
ciently understood.

This paper is organized as follows: Background section
continues with an extended introductory section on tran-
scriptional regulation and genetic circuits that provides
the framework of discussion of the existing models and
experimental implementations. Results and discussion
section details the main results on the competitive and
non-competitive transcriptional binding, especially the
mathematical characteristics of the route towards sus-
tained oscillations. In Conclusions section we emphasize
the implications of the DNA-binding mechanism on the
reliability of the genetic circuit in terms of its desired
function.

Genetic circuits

Genetic circuits involve a certain number of genes that
regulate one another's expression [20]. This regulation is
achieved by means of the RNA or protein they encode for,
that serve as regulators for other genes' expression. As
major regulators, the protein factors influence the rate of
transcription, translation or post-translational modifica-
tion. RNAs, too, can have a variety of regulatory func-
tions (i.e translation inhibition by microRNAs). The
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regulatory mechanisms are still in the process of being
elucidated [21] and have been already addressed in syn-
thetic biology [22,23].

Among the reasons for constructing synthetic biologi-
cal circuits, there is the goal of understanding the funda-
mental building blocks and regulation mechanisms of
biology [24,25], and subsequently manipulating and mon-
itoring biological processes at the DNA level [26,27]. The
majority of the existing works in systems and synthetic
biology have focused on transcriptional regulation, as the
interactions are relatively modular and can be altered at
will. Additional File 1 constitutes an appendix on the
basics of this regulation mechanism and the definition of
the Hill function, which describes transcriptional interac-
tions. Comparatively few studies have focused on other
types of regulation, such as the post-transcriptional regu-
lation employed in Fussenegger's Lab [8,28]. A combina-
tion of transcriptional regulation and post-translational
modification is common in the literature, where the latter
refers to a nonlinear degradation of a transcription factor
[18,29]. In general, this nonlinear degradation involves a
saturated response [30-32], sometimes referred to as
enzymatic control. The term of enzymatic control was
inherited from the first studies on chemical circuits [33-
36] which could be considered as the in silico progenitors
of today's genetic circuits. Moreover, the coupling of
transcriptional regulation with metabolic flux [37] has
opened yet another door to innovation and control of
biological circuits. Even though much work is needed in
terms of reliability and control of any individual oscillator
design, there are already advances towards the next step:
coupling of genetic oscillators [38,39]. This step allows
accessibility to new behaviors that are not possible at the
single-oscillator level, similar to the introduction of spa-
tial features into homogeneous systems [40]. Given all
these distinct mechanisms and types of control, one
should intuitively expect that not only the "sign" of
genetic interaction (positive or negative), but also the
type of interaction (transcriptional, post-transcriptional,
post-translational) will affect the behavior of the circuit.
These dynamic consequences have only begun to be
explored and are far from being clarified.

When referring to an interaction network, one consid-
ers two types of interactions or loosely called feedbacks:
positive (protein A promotes the production of protein B)
and negative (A inhibits the production of B). Beyond the
details of the interaction itself, the theory of circuits asso-
ciates an overall sign to the interaction network itself,
with the circuit being positive or negative depending only
on the parity of the number of negative interactions in the
network. A network is positive if it contains either posi-
tive interactions alone, or an even number of negative
ones, while a negative network has an odd number of
negative feedbacks [49,50]. The general theory of circuits
has demonstrated that a positive network is a necessary
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(though not sufficient) condition for multistability (and
thus differentiation), while a negative one, for homeosta-
sis (see Ref. [10] for a review). More precisely, it was
proved [51] that there is a qualitative difference in the
behavior of circuits containing even or odd negative feed-
backs, respectively, with the latter showing the possibility
of sustained oscillations. A negative feedback alone pro-
duces a stable state, unless there exists a sufficiently long
time delay, in which case oscillations are possible. In the
case of a genetic circuit with a positive feedback, sus-
tained oscillations are not possible even with time delay
(not proved though, but reasonably argued [52]).

The situation might be different in non-genetic feed-
back loops, for example enzymatic circuits. This is the
case commented by Smolen et al. [53] regarding the
enzyme phosphofructokinase that shows oscillations in a
non-delay (non-genetic) positive loop with limiting rate-
supply of precursors. As mentioned above, we are mainly
interested in studying the transcriptional interaction,
thus we shall not discuss the known circuits that combine
transcriptional control with enzymatic one [29,30,32,54],
nor shall we comment for the moment on the mRNA-
level (post-transcriptional) regulation circuits [8]. Thus,
the models discussed in the current study employ only
transcriptional regulation. The circuits studied by previ-
ous works are schematically represented in Figure 1 and
discussed in Table 1.

Oscillations from negative feedbacks alone

The simplest genetic circuit capable of producing sus-
tained oscillations is a circuit of one gene with delayed
self-inhibiting regulation (Figure 1A). The theoretical
analysis of such systems has been performed long before
the experimental advances contemplated the measure-
ments and implications of transcriptional and transport
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delays [55]. More recently, stochastic models [41,56] have
added to these deterministic ones, showing that noise
promotes the oscillatory behavior in a delayed negative
circuit. Due to its simplicity, the case of self-inhibitory
feedback with delay has been addressed in synthetic biol-
ogy as well [42]. Beyond synthetic circuits, transcrip-
tional and transport delay are expected to be more
relevant in eukaryotes than in prokaryotes, and thus can
and have been assigned as the causal factor of oscillatory
behavior in only a few specific mammalian genetic net-
works, all composed of short negative feedback loops
[57]. Nevertheless, the relation between delay, protein
half-life and cooperativity required for oscillatory solu-
tions (see page 192 of Ref. [5] for the analytical relation) is
not easily fulfilled under normal conditions, and this is
also the reason for not considering these delays in the
general-purpose modeling of genetic circuits.

As discussed above, a circuit of odd-number negative
feedbacks is equivalent to a positive-and-negative feed-
back circuit, and thus oscillations are theoretically possi-
ble. For example, a three-gene synthetic oscillator based
on (non-explicitly delayed) negative interactions alone
has been already verified experimentally (the "repressila-
tor" [4]; Figure 1H) and its generalization has been stud-
ied theoretically [48]. The clarification of the specific
parameter ranges for which oscillations occur is crucial
for the design of a synthetic circuit, such as the repressila-
tor [4]. However, it is an issue rarely considered. And the
subsequent experimental challenge is to achieve these
parameter ranges in the experimental circuit. For this
purpose, the repressilator implementation required
extreme solutions [47]: very strong promoters, very high
degradation rates of the proteins and multiple binding
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Figure 1 Transcriptional genetic circuits from the literature. Figure illustrating the circuit architectures associated to Table 1. In the graphical rep-
resentation, we have made the distinction between non-competition and competition models by solid and dashed arrowed lines, respectively. In the
notation nj, n,, ... characterizing the interactions in the schematic figures, the comma separates various binding sites and the degree of the multimer
binding to that site. The notation n, + n, is employed only for subfigure (c) - see discussion in the Table 1.
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Table 1: Table associated to Figure 11 representing known genetic oscillators that employ transcriptional regulation alone.

Index Bifurcations analysis Reference of the study and remarks Competition

(A) Hopf bifurcation Analytic: Lewis (2003) [41] citing Glass&Mackey (1988) [5] -
Experimental: Swinburne et al. (2008) [42]

(B) Hopf bifurcation Analytic: Widder et al. (2007) [43]. The minimum Hill exponent to make oscillations possible is -
n=3.

(9] - Experimental: Atkinson et al. (2003) [6]: The notation 2 + 2 refers to the fact that the DNA loops Probable
operate when 2 DNA-bound dimers form a tetramer. It is still not clear if the design functions
with competition or not, and this is the reason for employing the 2 + 2 notation instead of the
arrows.

(D) - Numeric: Scott et al. (2006) [44] on the Atkinson oscillator. No

(E) SNIC bifurcation Numeric: Guantes&Poyatos (2006) [18] associate their Design | to the Atkinson experimental Yes
context. The oscillators they propose due their oscillations to the time-scale difference
between activator and repressor life-time. Otherwise, higher multimers than dimers are
needed.

(F) Hopf bifurcation Numeric: Hasty et al. (2002) [45] No
Experimental: Stricker et a. (2008) [7]

(G) Hopf bifurcation Numeric: Smolen et al. (1998) [46]. The activator needs to be at least a dimer for the existence Yes
of the oscillations.

(H) - Experimental and numeric: Elowitz&Liebler (2000) [4]: n = 2 from Figure (1) above makes
reference to the value employed by Elowitz&Leibler in their model. See also the discussion in
the Supporting Information from Buchler et al. (2005) [47].

Hopf bifurcation Analytic: Mueller et al. (2006) [48]: a general case. -

sites to increase the nonlinearity of the interactions (that
is, increase the Hill coefficient - see Additional File 1).

Results and Discussion

On two-component genetic oscillators

To achieve the goal of reliable synthetic circuits, several
strategies have been employed by the community. One
strategy is the in silico evolution of biochemical and
genetic networks based on simplified principles of bio-
logical interactions and where the fitness function
rewards circuits characterized by the function required to
be implemented [58,59]. Another strategy is to bring
together experimental data and modeling framework in
search of designs that are tunable and robust to fluctua-
tions [16,60,61]. Yet another strategy of a more systems-
biology flavor points towards understanding the dynam-
ics of minimal fundamental modules [18,32,43], and the
current work belongs to this approach.

Sufficient conditions for the occurrence of sustained
oscillations are still an open issue in nonlinear dynamics
theory, and naturally they are continuing to be delineated
in feedback-based gene networks [10]. It is clear though
that the combination of both negative and positive feed-

back is a necessary (but not sufficient) condition in order
to obtain oscillations for (non-explicitly delayed) two-
gene circuits [43]. Analytically, the simplest genetic oscil-
lator of two genes needs two feedbacks: a positive and a
negative one (see Figure 1B). However, this might not be
the easiest system from the experimental point of view,
due to the high value of cooperativity (Hill exponent # =
3) required for sustained oscillations (i.e. non-damped).
For a multimer binding to a single binding site, the Hill
coefficient coincides with the multimer's degree (i.e.n =2
if the TF is a dimer; n = 4, if it is a tetramer). From the
experimental point of view, one hopes to obtain a high
Hill exponent by introducing several binding sites for the
transcription factor (TF). In this way and depending on
the binding affinities of the TF, binding cooperativity may
occur, leading to a higher exponent than the one corre-
sponding to the degree of the multimer employed. For
example, a Hill coefficient of n = 3 as in the example
above may be obtained with dimers binding to two sites if
some degree of cooperativity exists [62,63].

Figure 1C, D, E refer to a genetic relaxation-based
oscillator containing three interactions: two positive and
one negative. When the expression of a TF, say protein A,
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is controlled by two TFs, say A and R, through a positive
and a negative feedback, respectively, one can imagine
several transcriptional scenarios. In Figure 2 we illustrate
several implementations compatible with the schematic
representation of the circuit shown in (A). For the compe-
tition case shown in (B), the activator A (circle) and the
repressor R (square) compete for the binding on the pro-
moter in the activator's module. In this case, the tran-
scription of the activator occurs from two possible states
of the activator promoter: occupied with A or occupied
with R. For the design in (C), the inhibition occurs
through post-translational control: the degradation of the
activator is catalyzed by the repressor. These two designs
have been studied by Guantes&Poyatos (2006) [18] and
we follow here their terminology: Design I and Design II,
respectively.

We introduce in Figure 2D Design III which confers to
both TFs their binding sites. This implies that the tran-
scription of A results from several combinations of the A
promoter: AX, XB, AB, with X implying free site. Com-
pared to Design I, the mathematical form of Design III is
closer to the model associated to the Atkinson oscillator
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introduced by Scott et al. [44]. Guantes&Poyatos [18]
claim that Design I corresponds to Atkinson model. And
indeed Atkinson et al. [6] envision that, even though the
experimental implementation is similar to Design III
from Figure 2, the resultant activation DNA loop and the
repression DNA loop would be mutually exclusive [64].
This exclusion might thus imply a competition process,
leaning towards effective similarity to Design I. From the
experimental perspective, the data has revealed damped
oscillations rather than the sustained ones expected from
the model [6]. There is still no clear identification of the
cause of damped oscillations, and no definite study on the
extent of the exclusion between the two DNA loops.
Below we shall assess the implications of binding com-
petition by comparing Design I with Design III. Before
detailing these results, we wish to establish a framework
for their comparison in the light of two existing works:
Guantes&Poyatos [18] and Conrad et al. [19].
Guantes&Poyatos [18] argue that there is a fundamental
difference, in terms of dynamic behavior, between Design
I and Design II. The number of steady states in the two
designs and their stability properties completely deter-
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Figure 2 Distinguishing competition versus non-competition of transcription factors at promoter level in a chosen circuit architecture.
Three different implementations compatible with the scheme in (A): Design | - inhibition through competition at the activator promoter (B), Design
Il -inhibition through active degradation of the activator by the repressor (C), and Design Ill - specific inhibition (d). The cases (B) and (C) are discussed
in [18], while there is controversy whether the Atkinson oscillator [6] is based on case (B) [18] or (D) [44].
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mine the onset of sustained oscillations. The way these
equilibria lose their stability, that is the underlying bifur-
cation type, determines the type of oscillators. More pre-
cisely, when a parameter of the system is varied, a
bifurcation is said to occur at a certain parameter value
(bifurcation point) for which a qualitative change in the
behavior of the system appears, such as the birth of sus-
tained oscillations [65,66].

We suggest that circuit architecture AND DNA-bind-
ing processes determine the type of bifurcations leading
to oscillatory solutions, types that confer specific features
to the oscillations. Previous results show that Design I
induces oscillations with large activator amplitudes and
arbitrarily small frequencies, and acts as an "integrator” of
external stimuli, while Design II shows emergence of
oscillations with finite, and less variable, frequencies and
smaller amplitudes, and detects better frequency-
encoded signals ("resonator"). This classification origi-
nates from neuronal oscillations where the type of neu-
ron (type I or type II) determines entrainment properties,
phase response curves and robustness to noise [67]. In a
nutshell, Guantes&Poyatos [18] suggest that the underly-
ing biochemical mechanism of repression may determine
whether the genetic circuit behaves as a resonator or as
an integrator. This statement is essentially correct, as the
mathematical difference between the two models makes
the dynamical behavior possible. On the other hand,
Conrad et al. [19] argue that the rate constants rather
than the biochemical mechanism have the capacity to
determine which type of behavior is observed. They show
that for a certain parameter interval, Design II passes ini-
tially through an integrator-originating bifurcation and
subsequently (higher parameter values) through a reso-
nator-type bifurcation. Even though the parameters are
responsible for the occurrence of these bifurcations, it is
nevertheless the underlying mechanism (how the archi-
tecture is biologically implemented) that makes them
possible. In our comparative study, we show that indeed
by changing different parameters, we allow different
types of oscillations-originating routes, but we also show
that the biological regulation mechanisms make them
possible.

To compete or not to compete?

In terms of equations, the systems describing the imple-
mentations from Figure 2, following the notations from
Guantes&Poyatos [18], are:

Design I Design II Design III
2 2 2
x=A [3712(“ - | ¥=4 ﬂilﬂlxz —x-oxy | x=A ﬁil;ax Fo X
1+x“+oy 1+x 1+x7)(1+oy“)
2 2 2
. 1+ax . 1+ax . 1+ax
y=Ay——-~y yEAY -y y=Aay——>~

1+x 1+x
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With x = dx/dr, and the rest of the variables and
parameters being defined in Table 2. As the details on
how Design I and II were obtained and the parameters'
definition are extensively presented in the Supplementary
File of [18], we have chosen to include in the Additional
File 1 only the necessary details for recovering the equa-
tions associated to Design III. Nevertheless, we comment
briefly on the meaning of the parameters. All parameters
are non-dimensional and defined identically in all three
models, allowing a direct (and correct) comparison
between the results. The factor a gives a measure of how
much stronger the transcription from the activator-
bound promoter is, compared to the basal transcription
from the free one. The parameters S and y contain the
total non-dimensional strength of the transcription and
translation for the activator and repressor, respectively.
The o parameter contains the DNA-binding properties of
the repressor multimer scaled to the activator's. For
Design II, the parameter ¢’ differs in expression from that
of ¢ in the other models, justifying the different notation
(see [18]). For the current study and in order to restrict to
fewer parameters, we shall consider o = 1, as [18]. A
parameter that plays a crucial role in the existence of
oscillations in the models defined above is the quotient of
degradation rates A = §, /8z, with §4, the activator's deg-
radation rate. By scaling the time to the repressor's degra-
dation rate, &g, the period of the oscillations resulting
from these models is expressed here in units of g, a detail
that needs to be remembered when comparing the result-

ing periods of the different designs.

In addition to the above discussion of the parameters
and their meaning, let us comment briefly on the similar-
ities and differences on the equations describing the three
designs. All designs share the same rate law for the
repressor, while the definitory features concern the rate
law for the activator. All rate-law terms have a form of the
type: production term minus degradation term. Even
from the equations, one can notice that Design II is dif-
ferent from the other two by its particular degradation
term, the post-transcriptional regulation. On the other
hand, the production terms for Designs I and III differ in
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Table 2: The list of symbols employed in the ordinary differential equations associated to the designs from Figure 2.

Symbol Definition & Comments
A concentration of the activator (nM)
concentration of the repressor (nM)
t model time (hours)
DNA-binding constant of the activator A
Kp
DNA-binding constant of the repressor R
Ky
dimerization constant of the activator Ato A,
Ka
dimerization constant of the repressor Rto R,
Kq
multimerization constant of the activator Ato A,
Ky
dimerization constant of the repressor Rto R,,,
K
64 degradation rate of the activator A
O degradation rate of the repressor R
A 6,/6, non-dimensional parameter of the model
X
A KfK[? A , the nondimensional variable associated to the activator, when the activator is
adimer
y
A/ KfK? A , the nondimensional variable associated to the repressor, when the repressor is a dimer
T tSg, the nondimensional time variable of the model
a the transcriptional synergy conferred by the activator bound to DNA
gﬁg‘;\\ PII Wi K;‘K,’:\ , the nondimensional parameter of the transcriptional response from the activator promoter, with y,, the
translation rate of the activator A; B, the transcription rate of the mRNA of the activator; a,, activator mRNA degradation; PII , total
activator promoter number. The root order n denotes the multimerization degree of the TF binding to DNA (i.e. n= 2, dimer; n =4,
tetramer). The subscript from K,‘? , the equilibrium constant for multimer formation, also denotes its dependence on the
multimerization of the binding factor.
Y
(};ﬁgﬁ PRT 1 K?Kﬁ‘ , the nondimensional parameter of the transcriptional response from the repressor promoter, similar to 3.
See also [18]. Notice also the multimerization degree appears here as m with similar consequences as for the 8 parameter.
o

R R
Ky K

ApA
Kj' K

, the binding ratio of the repressor compared to the activator.
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a subtle manner: while the transcription factors appear
summed in the denominator of Design I, they appear
multiplied for Design III. The ad hoc general rule cited in
the literature for the case of more proteins affecting a
gene is that the functions appear multiplied [59]. By our
reasoning, the multiplication is appropriate only in cases
of non-competitive transcriptional regulation. Even
though cases of explicit competitive regulation are men-
tioned in the literature [10], the current study is the first
to inquire on the differences in the dynamical behavior
between the two scenarios.

We developed numerical algorithms to simulate the
equations characterizing Design I and Design III from
Figure 2 and these codes are included in Additional File 2.
From the resultant time series, we determined the oscilla-
tion period (if any) and represented it in Figure 3. The fig-
ures plot the value of the period for different values of
(abscissa) and y (ordinate), where the period value is rep-
resented by a color from the color code in the right-hand-
side of the figure. The dark-blue color is associated to
cases lacking sustained oscillations.

We have chosen fixed values for A, a and o, and varied 8
and y, in order to compare to existing results [18]. By this
study, it results that Design III is characterized by a more
extended oscillatory region in the parameter space than
Design 1. Moreover, for Design III, the oscillatory region
continues beyond the parameter limits from Figure 3B
(see Additional File 3). For completion, we illustrate in
Additional File 4 the change in the position of the oscilla-
tory region when A (the quotient of degradation rates) is
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increased. For the same purpose, Additional File 5 con-
tains the oscillatory region for Design II from [18],
directly comparable with Figure 3.

By fixing A and allowing S and y to vary, we may relate

to the experimental context. More precisely, the binding

constants K {;\ and K 5 could in principle be experimen-
tally-tunable as in the implementation of the oscillator
from Stricker et al. (2008) [7], allowing 5 and y to take dif-
ferent values within a certain interval. These parameters

could also be varied by varying the total promoter con-

centration, P, and Pp and in the expression of 5 and y,
respectively (Table 2). The degradation rates of the pro-
teins could also be varied to a certain measure, and thus A

parameter could be used as control parameter too.

In addition to the existence of the sustained oscilla-
tions, we also identified the bifurcation types that allowed
this behavior. We illustrate in Figure 4 how the sustained
oscillations originate when crossing the parameters space
in Figures 3A and 3B from left to right (from lower to
higher p) for two fixed values of y: y = 0:01 (panels A and
C) and y = 0:05 (panels B and D). As already identified by
the studies mentioned above, two main bifurcation types
are observed: the Hopf bifurcation and the saddle-node
on an invariant cycle, or SNIC, bifurcation [65]. Below,
we shall comment on the defining features of these two

1073 1072 107! 10° 10’ 102

B

107 1072 107! 10° 10° 102

B

Figure 3 Oscillatory features of the competition and non-competition designs associated to the studied circuit architecture. The parameter
space (B, y) and the values of the oscillation period for (A) Design | and (B) Design lIl. The color code represents the period of oscillations depending
on the (B, y) pair, with a= 50, A = 10, 0 = 1. Dark blue implies no sustained oscillations. As defined in the main text, the period in the color bar is ex-

pressed in units of &, the degradation rate of the repressor.
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Figure 4 The bifurcation diagram with 8 as control parameter.
The bifurcation diagram obtained by varying 8, witha=50and A =10,
(A) and (C) y=0.01 and (B) and (D) y = 0.05. It corresponds to the cross-
ing of Figures 3A and 3B at constant y. In black, we plot the stable (sol-
id) and unstable (dashed) fixed points, x,, and in red and blue, the
maximum and minimum, respectively, of the stable limit cycle. Notice
the change in the way oscillations are triggered depending on the
fixed parameters. Here Hopf(b) and Hopf(p) indicate subcritical and su-
percritical bifurcation, respectively. Gray areas represent damped oscil-

lations.

distinct types of bifurcations, without entering in exces-
sive technical details.

As with many other bifurcation types, the Hopf bifurca-
tion comes in two flavors: the supercritical (or soft) and
the subcritical (or hard) (defined below). In both cases,
the real part of the complex eigenvalues becomes posi-
tive, and the unique stable state of the system loses stabil-
ity. For the supercritical type (referred to as Hopf(p) in
the figures), the oscillations begin with low amplitude
near the bifurcation, which increases with the change in
the parameter. It is the case of Figure 4B. Even though it
has the same eigenvalue behavior, the subcritical case
(referred to as Hopf(b) in the figures) is more dramatic:
the sustained oscillations start or end with high ampli-
tude at the bifurcation point. It is a consequence of two
limit cycles, a stable and an unstable one, colliding at the
bifurcation point, leaving an unstable fixed point sur-
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rounded by a stable limit cycle (Figure 4C; Additional File
6).

We wish to especially stress the fact that systems
undergoing Hopf bifurcations, both subcritical and
supercritical, always exhibit damped oscillations prior to
the bifurcation point (where sustained oscillations begin),
whereas systems near saddle-node bifurcations do not
(page 13. of Ref. [67]). One would observe the following:
at a value of the control parameter that leads to negative
real eigenvalues, the system stabilizes to a fixed value,
without any oscillations; by changing the control parame-
ter until the eigenvalues become complex but still with
negative real part, the system would still stabilize to a
fixed value, but through damped oscillatory trajectories;
finally, a bifurcation is said to occur when, by further
changing the control parameter, the system does not sta-
bilize to a fixed value, but continues to oscillate indefi-
nitely, and thus a new qualitative behavior appears.
Additional File 7 illustrates an example of how sustained
oscillations exist for a certain value of the control param-
eter A after the Hopf bifurcation (A = 4.5), and how these
are preceded (that is, for values of the control parameter
prior to the birth of the stable periodic orbit, A = 4.3) by
damped oscillations.

In Figure 4, the gray areas denote ranges of  for which
damped oscillations exist. In these ranges, the eigenval-
ues are complex, but with negative real part. The exis-
tence of an imaginary part of the eigenvalues leads to the
oscillatory behavior, but due to the real part being nega-
tive, these oscillations are damped.

For example, damped oscillations exist for  >5,=0.225
in Figure 4C, with a higher damping rate the farther away
from the bifurcation point.

In the SNIC bifurcation, a single real eigenvalue
changes sign; geometrically, a stable node and a saddle
point meet, annihilate each other, and leave in their wake
a limit cycle. When crossing a SNIC bifurcation, the
oscillations start with very long period, and tend to stabi-
lize to a constant value as the parameter is changed fur-
ther (see also [18]). This behavior is contrasted by the
Hopf bifurcation for which the oscillations have always a
characteristic period. With these comments in mind, the
types of bifurcations can be easily identified in Figure 3
through the color code. For Design III, the frontier
around S = 0.1 is characterized by a SNIC bifurcation as 5
is increased, as the region shows long periods (Figure
4C). Crossing the oscillatory region for higher y, the
period appears to be constant, as both entering and leav-
ing the oscillatory band occur through Hopf bifurcations
(Figure 4D). On the other hand, for Design I, the exit
from the oscillatory band occurs always through a SNIC
bifurcation.

As discussed by Conrad et al. [19], the parameters
determine the type of bifurcations the system experi-
ences, and we illustrate this remark by varying parame-
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ters other than S and y. In Figure 5 we show the types of
bifurcations occurring when A is varied for fixed 3, y .
This analysis directly compares with the previous studies
[18,19]. As commented above, the spiking-like oscilla-
tions are a consequence of SNIC bifurcation, while Hopf
one produces more sinusoidal oscillations. An example of
these two types of oscillations is illustrated in Figure 6.
Returning to Figure 4, notice also how the behavior of
Design III from panel C matches the behavior of Design II
from [19](their Fig. 3b): depending on the parameter to
be varied, a design can present both types of bifurcations.
Guantes&Poyatos [18] stated that Design I acts as a signal
integrator (due to SNIC bifurcation) while Design II reso-
nates with specific frequencies of the stimulus as a reso-
nator (due to the Hopf bifurcation). Conrad et al. [19], on
the other hand, highlight the fact that Design II can suffer
both types of bifurcations depending on the parameters.
This is the reason for using two distinct sets of parame-
ters in Figure 4 and Figure 5, emphasizing their state-
ment. According to Figure 4C, Design III behaves very
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Figure 5 The bifurcation diagram with A as control parameter.
Similar to Figure 4, but having A as control parameter. The fixed
parameters are a=50,and 3=1.58,y=0.079 for (A) and (C), and a= 50,
and 8=0.2,y=0.04 for (B) and (D).
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Design 1

Design 111

Figure 6 An example of time series for the two studied designs.
Time series for Design | and Design Ill for the case a=50,A=11, 3=
1.58,y=0.079. Notice the pulse-like oscillation of Design | compared to
amore sinusoidal one for Design Ill, as a consequence of the type of bi-
furcation they originated from (Figure 5A and 5Q).

similarly to Design II (see study of Design II in Ref. [18])
in spite of very different underlying biochemical mecha-
nisms that produce the negative feedback. Thus we would
suggest an intermediate position that states that indeed
the parameters determine the type of bifurcations that
occur, but only when the biochemical mechanism (or the
resulting mathematical formulation) allows these bifurca-
tions to occur at all. For example, Design I cannot pass
from an integrator to a resonator by changing one param-
eter as happens for Design II and Design III.

As a final remark and returning to the discussion on the
Atkinson oscillator, it is interesting to notice that the
experimental implementation showed damped oscilla-
tions. We have mentioned that damped oscillations occur
prior to a Hopf bifurcation, and not to SNIC bifurcation.
Judging from the discussion of the two designs (Figure 4),
it is reasonable to infer that the experimental implemen-
tation from [6] might be closer to Design III than to
Design I. In other words, the activation and repression
DNA loops might not be completely exclusive, as Atkin-
son et al. claim. This would be in accordance to the model
studied by [44]. Nevertheless, the clarification of this
issue needs further experimental studies.

Dynamical considerations

Apart from the computation of the parameters leading to
oscillations, let us now present a dynamical perspective
on the differences between Design I and III. For a better
understanding of the oscillatory features of the systems,
we have studied in more detail the stability properties of
the fixed points associated to the three designs. More
specifically, we have calculated the eigenvalues for the
fixed points associated to the three designs for various
parameters spaces. The Additional File 8 includes the
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results of this study of which we mention here only the
main conclusions. We present the stability properties of
the fixed point of the system for the parameters space (y/
B, o) for fixed A (Figure S8.1), (y/pB, A) for fixed o (Figure
$8.2) and also, for comparison with Figure 3, the space (y,
B) for fixed A and o (Figure S8.4). A first conclusion is
that Design III shows oscillations, both damped and sus-
tained, for a larger fraction of the parameter space (Figure
S8.1 and S8.2), further reinforcing Figure 3. From this
perspective, one could say that Design III is substantially
more robust than Design I to changes in the parameters'
values. Secondly, while Design III appears to be an oscil-
lator of a specific frequency for a wide parameters range
(Figure S8.5), Design I presents a wide distribution of
possible oscillation periods depending on the parameters'
values, due to the SNIC bifurcation. In this aspect, Design
II comes as an intermediate step between the other two
designs.

It is interesting to mention that, while the repressor's
amplitude for the three models is similar, the distribution
of activator's amplitude is specific for each design. It
ranges from the queue of high amplitudes for the spiky
oscillations of Design I, to an almost uniform and narrow
distribution for Design III (Figure S8.5). The difference in
this aspect between Design I and III is somehow
expected, as the amplitude of the latter is further
restrained by the term ox2y? at the denominator. Both
Design II and III show an interesting cut-off in activator's
amplitude limiting it at low values. From these features
can be seen that the biochemical mechanism leaves a
characteristic fingerprint on the nature of the resultant
oscillations. Having observed these features in amplitude
and period, we have inquired on the dynamical causes
responsible for these limitations. As already illustrated by
[18] in their comparison between Design I and II, the
answer to this question could be found by studying the
nullclines associated to the systems. The nullclines
denoted as y, and y, represent the function y(x) obtained
from the conditions x = 0 and y = 0, respectively. The
fixed points - stable or unstable - of the system are found
at the intersection of y, and y,, and the form of these
functions also gives clues on the general dynamics of the

system beyond the steady states. The definition of the
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nullclines and the extended results of this analysis are
included in Additional File 9. In spite of very different y
function for the three systems, it is surprising to find that
y, for Design II and III are tightly related, with the first
being the square of the other. This "similarity” however
does not imply necessarily a similarity in dynamic behav-
ior. The analysis of the nullclines as detailed in Additional
File 9 shows that a change in 5 does not imply a change in
the shape of the nullclines, as the shape is mainly con-
trolled by a. For this reason, these two designs present a
characteristic frequency and a limitation in x amplitude.
Moreover, from the equations can be seen that, starting
from an oscillation-producing parameter case, an
increase in 5 implies upwards displacement of y, and an
increase in A or y implies upwards displacement of y,. For
this reason, by increasing both S and y simultaneously,
their crossing is maintained and thus the oscillations too.
This does not occur for Design I for which a change in
implies not only a displacement, but a change in shape,
leading to a three-crossing case: no oscillations. Besides
explaining the loss of oscillation capability for this design
beyond a certain threshold value in f3, the shape of the
nullclines, as discussed in the additional file, is responsi-
ble for the high amplitudes in both x and y, as can be see

in Figure S8.5.

Influence of internal noise

There has been increasing acknowledgment of the fact
that internal noise at cellular level - low number of mole-
cules [68-70] - can in principle change qualitatively the
behavior of the system with respect to the one predicted
from noise-free (deterministic) modeling: noise-induced
stabilization [71], noise-induced oscillations [29]. More-
over, there is clear evidence that the transcription and
translation level are indeed noise-prone processes [72].
For these reasons, we consider that the influence of inter-
nal noise in the three systems studied here constitutes a
work on its own. Nevertheless, we have chosen to men-
tion here how noise affects the behavior of the three
oscillators close to the bifurcation regime. It is observed
that, for values of the parameters leading to stable states
in the deterministic cases close to the bifurcation, the
noise induces oscillations in all three designs, but with
different characteristics (Additional File 10). While
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Design I and II show period distribution typical for noise-
induced oscillations - long tail distribution of periods-,
Design III still maintains its characteristic period. These
results as well as the deterministic ones from Figure S8.5
(amplitude distribution) show that while Design I has
high amplitudes, it is unreliable at period-level (long tail
when noise exists), Design III has low amplitude, but it is
reliable in terms of period constancy. We remind the
reader that Design III is characterized also by a large frac-
tion of parameters space leading to oscillations. All these
reasons considered, Design III appears as a more reliable
oscillator.

Other two-component oscillators

Once more, we wish to emphasize an important ingredi-
ent that makes oscillations possible in the above models:
the time scale difference between the degradation rates of
the two TFs given by A (the quotient of degradation
rates). We have seen that for all these models, no oscilla-
tions are possible unless a substantial difference between
the two degradation rates exists (A > 1). The requirement
thus says that §, >&,. As commented also by Atkinson et
al. [6], strategies for generating oscillations include
increasing d, and/or decreasing d,. However, decreasing
dris not a good strategy as we have seen that the resulting
oscillation period depends on J;. The shorter &, the lon-
ger the period. For example, a value of §; = 0.02 /11 typical
value of §,, = 1 &' would result in a good A for the occur-
rence of oscillations, but in a period of about 100 hours
for Design III. Such a long period, much longer than the
cell-cycle period, could be altered by the intrinsic cellular
division period. On the other hand, Elowitz&Leibler [4]
follow the strategy of increasing d, that is synthetically
design proteins that have a short life time (of the order of
minutes). This strategy appears to be widespread nowa-
days.

Another strategy to facilitate oscillatory conditions is a
more pronounced nonlinearity of the regulatory func-
tion, that is consider a Hill function of higher exponent.
The mathematical model for Design III considered dim-
ers as active TFs and one binding site for each feedback.
For example, let us assume the general case for Design III.
By the term general we refer to a non-competitive design
similar to Design III, but having several bindings sites for
activators and repressors. In this case thus, an approxi-
mate model would employ the general form of Hill func-
tion:

1+ax™

x=Alg——— 2
(1+x™")(1+oy™)

x (1)
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1 n
+ax —y (2)

n

y =4y
1+x

However, keep in mind that the parameters S and y
depend on the degree of multimerization of the TFs. If n
# 2 and m = 2, the parameters  and y differ in expression
from those employed in the previous section, and thus a
direct comparison with the previous results is difficult.
Nevertheless, the interesting remark to make here is that
oscillations are possible even for A = 1 (no difference in
degradation rates) when n = 3, as seen in Figure 7. The
figures illustrate the general behavior of the model to
changes in the multimerization degree of the repressor. It
is apparent from these figures that #, the nonlinearity of
the positive feedback, is responsible for the existence of
the oscillations, while m relates to the extension of the
parameter space leading to these oscillations: the higher
the m (degree of repressor's multimerization), the wider
the oscillatory region.

Again concerning the nonlinearity of the feedback, let
us return to the experimental implementation of the
Atkinson oscillator. The experimental design [6] appears
in Figure 8 (and also schematically in Figure 1C), includ-
ing two binding sites for each TF. The full-competition
scenario occurs under the hypothesis that when both
sites of the activator (or of the repressor) are occupied by
the respective dimers, a DNA loop is formed, blocking
the formation of the repressor's loop (or of the activator's
loop, respectively). The mathematical model describing
this scenario would be based on Design I but character-
izedbyn=m=4:

4
i=A ﬂ%_x 3)
1+x “+oy
4
1+
y=A4y ax4 -y (4)
1+x

and where A, § and y have the same expression as in
Design I and thus are directly comparable. Notice in Fig-
ure 9 the reduced sustained-oscillations region for the
model in egs. (3-4) compared to Figure 3A. It is interest-
ing that, in this case, the increase in the nonlinearity of

the feedbacks leads to a decrease of the oscillatory region.

The model from eqs. (1-2) is a simplified version of the
Atkinson model as described by Scott et al. [44]. There,
the model included the approximation of the Hill func-
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Figure 7 Oscillatory features of the simplified Atkinson model.
The behavior of the simplified model of the Atkinson oscillator from
eqgs. (1-2) fora=50,A=1,n=3and (A)m=1,B)m=2and (C) m=3.

Figure 8 The scheme of the experimental design from [6].

tions as above, but considered explicitly the dynamics of
the messenger RNAs, resulting in a system of 4 variables
instead of 2 variables as employed here. The approxima-
tion that allowed us to consider only the protein vari-
ables, as in the above equations, is based on the fact that
translation is much faster than transcription, and thus as
soon as the mRNA is formed, one can consider that the
subsequent protein is formed too. It is a drastic approxi-
mation and it has already been proved to have relevant
consequences: explicitly modeling the mRNAs yields a
better fit to the experimental data than the simplified
model [7]. Nevertheless, the simplified model is a more
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Figure 9 Oscillatory features of the Atkinson model. The numerical
simulations for the corresponding modelin egs. (3-4) and Figure 8 with
A=10and a=50. When compared to Figure 3A, it is visible that the
oscillatory region is significantly reduced.
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tractable tool for studying the general characteristics of
the system.

Still in two-gene systems, another strategy to facilitate
oscillations is introducing another positive feedback for
Design I, more precisely an autocatalysis on the repressor.
This eliminates the necessity of large A, while maintain-
ing dimers and one binding site. Of course, this leads to
another architecture than the one shown in Figure 2A.
This architecture is contemplated by [46] (see Table 1 and
Figure 1G):

2
i=A|l B % x (5)
1+x“+oy
2
. 1+ax
y=A4y 5 2 14 (6)
1+x“+oy

Notice in Figure 10 how the oscillatory region consider-
ably changes in this architecture. The parameters are
directly comparable with the Designs I, II and III. Let us
notice that the activator must be a multimer (at least a
dimer) for the occurrence of oscillations, but also a signif-
icant value of A is also needed, as A = 1 is not sufficient
for oscillations to occur. As already discussed for the
Atkinson model above, the degree of multimerization of
the repressor is not as critical as that of the activator. Also
Smolen et al. [46] introduce the above architecture con-
sidering the repressor as monomer, and emphasizing the
necessity of a dimer activator for the oscillations to occur.

10" 10 10 102 10®  10*  10°

B

Figure 10 Oscillatory features of the circuit introduced by Smo-
len et al. [46]. The behavior of the oscillator from egs. (5-6) introduced
in [46] with a= 50, A =4, 0= 1. The scale differs from that of Figures 3
and 7, but nevertheless notice the difference in the location and exten-
sion of the oscillatory region when compared to these figures.
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Once again, the nonlinearity of the transcriptional
response is the driving factor in the instability required
for the oscillations.

Conclusions

In the present work, we have analyzed two DNA-binding
mechanisms in composed promoter sites and how they
affect the existence of oscillations in genetic circuits.
There is general consensus that both positive and nega-
tive genetic interactions are needed to obtain a robust
oscillator [73]. Given a number of such interactions, there
exist several mathematical and experimental proposals
for oscillators. Even though there is sufficient proof that
two positive interactions and a negative one would pro-
duce a genetic oscillator, there are various biochemical
mechanisms compatible with such an architecture (Fig-
ure 2). The differences between these mechanisms and
their consequences at the level of robustness and reliabil-
ity of the resultant oscillator are a new direction of study
[18,47].

From our results, we have emphasized the fact that,
when these interactions, either positive or negative, are
accomplished through transcriptional regulation, the
interactions between various binding sites on the pro-
moter need to be taken into consideration. We showed
the non-competition scenario to present robustness to
parameter changes defined by the existence of oscillatory
solutions for a much wider parameters range than for the
competition one. Moreover, the two scenarios imply dif-
ferent routes toward the occurrence of oscillations, that is
different bifurcation types. While the competition model
is mainly associated to the SNIC bifurcation, the non-
competition one relies more on the Hopf bifurcation.
While the former bifurcation type leads to more spiking-
like oscillations, the latter shows more sinusoidal ones. In
addition, a characteristic of the Hopf bifurcation is that
sustained oscillations are preceded by damping oscilla-
tions. This may prove to be an important feature to con-
sider when interpreting experimental data. Many other
interesting properties arise as a consequence of the type
of the oscillation-generating bifurcation, an issue that has
been extensively analyzed in previous works [18,19,67]
and thus has not been discussed here. However, consis-
tent with previous works, we found that which parameter
is changed - and in which range it is changed - deter-
mines the bifurcations that occur. Nevertheless, not only
the parameters are responsible for the resultant dynamics
of the system, as argued by Conrad et al. [19], but most
important of all, it is the underlying logic of the biochem-
ical mechanism that makes the dynamics possible at all.
In addition, we conclude from our results that also very
different designs (or biochemical mechanisms) can pro-
duce very similar behaviors. The non-competition sce-
nario analyzed here produces an overall dynamic
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behavior similar to the post-transcriptional control sce-
nario described by Guantes&Poyatos [18].

The Atkinson oscillator introduced and experimentally
implemented by [6] has been modeled both through
competition [18] and non-competition models [44]. As
the experimental implementation failed to provide sus-
tained oscillations, it is interesting to assess the implica-
tions of the two scenarios explored in the current study in
the context of this experimental implementation. The
goal of the current study was to pinpoint the conse-
quences of the biochemical mechanisms and the mathe-
matical approximations taken into consideration when
constructing the associated theoretical model, and thus
not to present a detailed study of the already-imple-
mented experimental design [6]. Nevertheless, we con-
sider that our work sheds new light on the behavior of
this genetic oscillator.

Here we have used simplified models of genetic cir-
cuits. In this simplification, the modeling of genetic cir-
cuits includes only the temporal evolution of the protein
concentration [45,74]. This allows a straight-forward
mathematical analysis of the system and its properties.
Moreover, we have chosen here to employ the simplified
approach as our goal was not a characterization of a spe-
cific experimental design, but to emphasize the impor-
tance of taking into consideration the underlying
biochemical mechanisms and the promoter architecture
at the moment of constructing a mathematical model of a
genetic circuit. In summary, to have the largest chances of
obtaining oscillations, synthetic biologists should build
circuits of the form of Design III, avoiding competition
between activator and repressor. Additionally, faster deg-
radation rates for activators than repressors are preferred
(or adding an autocatalysis for the repressor). Finally,
achieving non-linear transcription responses (multimeric
factors, at least dimers, and/or multiple binding sites)
also favor oscillatory behaviour. Models that are more
robust to parameter changes should be easier to con-
struct experimentally. We therefore hope that this work
will help bring closer the theoretical and experimental
communities in the fields of systems and synthetic biol-

ogy.

Methods

For the numerical simulations, we developed C++ codes
employing routines from the free-software GNU Scien-
tific Library (Additional File 2). In addition, the bifurca-
tion diagrams employ results obtained with the use of the
AUTO software within XPPAUT program.
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Additional material

Additional file 1 Transcriptional regulation and model description. A
PDF file containing a brief introduction to transcriptional regulation and the
terminology employed in the main text. The details necessary for obtaining
the equations employed in this study are also included here.

Additional file 2 The C++ codes developed for the numerical simula-
tions, as well as the instructions of their use.

Additional file 3 Oscillatory region for an extended parameter space
for Design Ill.

Additional file 4 Comparison between Design | and Design lll for A =
20.

Additional file 5 The behavior of Design Il from Guantes&Poyatos[18].
Additional file 6 Example of a subcritical Hopf bifurcation.

Additional file 7 The trajectory behavior prior to a Hopf and to a SNIC
bifurcation.

Additional file 8 Robustness to parameter changes.

Additional file 9 Dynamical differences between the designs: discus-
sion of the nullclines.

Additional file 10 The influence of internal noise.
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