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A B S T R A C T

Background: The aim of this study was to investigate the potential of combined textural feature analysis of
contrast-enhanced MRI (CE-MRI) and static O-(2-[18F]fluoroethyl)-L-tyrosine (FET) PET for the differentiation
between local recurrent brain metastasis and radiation injury since CE-MRI often remains inconclusive.
Methods: Fifty-two patients with new or progressive contrast-enhancing brain lesions on MRI after radiotherapy
(predominantly stereotactic radiosurgery) of brain metastases were additionally investigated using FET PET.
Based on histology (n=19) or clinicoradiological follow-up (n=33), local recurrent brain metastases were
diagnosed in 21 patients (40%) and radiation injury in 31 patients (60%). Forty-two textural features were
calculated on both unfiltered and filtered CE-MRI and summed FET PET images (20–40min p.i.), using the
software LIFEx. After feature selection, logistic regression models using a maximum of five features to avoid
overfitting were calculated for each imaging modality separately and for the combined FET PET/MRI features.
The resulting models were validated using cross-validation. Diagnostic accuracies were calculated for each
imaging modality separately as well as for the combined model.
Results: For the differentiation between radiation injury and recurrence of brain metastasis, textural features
extracted from CE-MRI had a diagnostic accuracy of 81% (sensitivity, 67%; specificity, 90%). FET PET textural
features revealed a slightly higher diagnostic accuracy of 83% (sensitivity, 88%; specificity, 75%). However, the
highest diagnostic accuracy was obtained when combining CE-MRI and FET PET features (accuracy, 89%;
sensitivity, 85%; specificity, 96%).
Conclusions: Our findings suggest that combined FET PET/CE-MRI radiomics using textural feature analysis
offers a great potential to contribute significantly to the management of patients with brain metastases.

1. Introduction

Over recent years, the treatment of brain metastasis using radio-
therapy has evolved substantially. Treatment options include local
postoperative external fractionated radiotherapy, stereotactic radio-
surgery, interstitial brachytherapy, and whole-brain radiotherapy
(Arvold et al., 2016). All these methods, applied solely or in combina-
tion, may lead to local radiation doses that exceed tolerance levels of
normal brain tissue and may accordingly result in a radiation injury.

The frequency of which radiation injury occurs depends on the applied
method of radiotherapy. After stereotactic radiosurgery, radiation in-
juries occur in 5–34% of cases (Kohutek et al., 2015; Brown et al., 2017;
Kocher et al., 2011; Sneed et al., 2015; Schüttrumpf et al., 2014). In
contrast, a radiation injury is uncommon after fractionated (local or
whole-brain) radiotherapy alone (incidence, 0–5%) (Andrews et al.,
2004; Oehlke et al., 2015; Shin et al., 2015; Connolly et al., 2013) and is
also rare after low-dose brachytherapy (Ruge et al., 2011). Typically,
after radiosurgery, radiation injuries develop within a median time
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range of 7–11months (Kohutek et al., 2015; Brown et al., 2017; Kocher
et al., 2011; Sneed et al., 2015; Schüttrumpf et al., 2014). Moreover, in
a subgroup of long-term survivors radiation injuries after stereotactic
radiosurgery have also been reported after> 5 years (median time,
33months) (Fujimoto et al., 2018). Unfortunately, neurological signs
and symptoms caused by both recurrent brain metastasis and radiation
injury are indistinguishable and hence often impose severe clinical
problems during the follow-up (Chao et al., 2013).

Contrast-enhanced MRI (CE-MRI) is routinely used in clinical
practice for the follow-up of patients with previously irradiated brain
metastases. However, recurrent brain metastases cannot easily be dif-
ferentiated from radiation injury using conventional MRI (Stockham
et al., 2012). More recently, the differentiation between radiation in-
jury and recurrence of brain metastasis has been markedly improved by
imaging parameters derived from static and dynamic amino acid PET
scans, suggesting that a diagnostic accuracy in the range between 80
and 90% can be obtained (Ceccon et al., 2017; Cicone et al., 2015;
Galldiks et al., 2012; Kickingereder et al., 2013; Lizarraga et al., 2014;
Terakawa et al., 2008; Tsuyuguchi et al., 2003). However, dynamic FET
PET scans require a more costly and time-consuming acquisition, data
reconstruction and analysis and, thus, are not yet implemented in
clinical routine.

Textural feature analysis of inconclusive lesions on PET (Lohmann
et al., 2017) and MR images (Larroza et al., 2015; Nardone et al., 2016;
Pallavi et al., 2014; Tiwari et al., 2016) is another promising approach.
It is based on the assumption that the microstructure of a process de-
pends on the underlying pathology and is reflected in subtle differences
in the radiological image that cannot be detected by means of human
perception but can be made accessible by high-dimensional quantita-
tive image analysis often referred to as “radiomics”. It seems likely that
such an approach could be improved by combining PET and MR image
analysis, which may derive special features based upon complementary
tissue properties.

Here, we report for the first time the usefulness of combined PET/
MRI radiomics analysis using CE-MRI and FET PET scans in patients
with brain metastases. Following simple normalization, reslicing, and
resampling procedures of already obtained neuroimages, we demon-
strate that freely available radiomics image analysis tools can be used to
differentiate brain metastasis recurrence from radiation injury with a
high accuracy, particularly when the information from both CE-MRI
and FET PET is combined.

2. Patients and methods

2.1. Patients

We previously evaluated in 62 patients after radiotherapy the di-
agnostic accuracy of dynamic FET PET for the differentiation of brain
metastasis recurrence from radiation injury (Ceccon et al., 2017). In
order to perform a PET/MRI textural feature analysis, FET PET data and
CE-MRI of these patients were re-evaluated. Of these patients, 52 pa-
tients (mean age, 55 ± 10 years (y); range 17–75 y; 39 women and 13
men) were eligible for data evaluation. Ten patients had to be excluded
because they were investigated on a different PET scanner.

In brief, these patients with brain metastasis, each having at least
one newly diagnosed or progressive contrast-enhancing lesion on cer-
ebral MRI, were referred to our center for the differentiation between
brain metastasis recurrence and radiation injury. The median time in-
terval between MRI and PET acquisition was 15 days. Prior to the
suspicious CE-MRI, brain metastases had been treated with radio-
therapy, i.e., stereotactic radiosurgery, whole-brain radiotherapy, in-
terstitial brachytherapy, external fractionated radiotherapy, or combi-
nations thereof. In detail, forty-five patients (87%) received stereotactic
radiosurgery, five patients (10%) had fractionated (local or whole-
brain) radiotherapy alone, and two patients (4%) were treated with
low-dose brachytherapy. The median time between radiotherapy and

suspicious MRI was 15months (mo; range, 3–64 mo). All patients gave
written informed consent before each FET PET investigation. Patients
were retrospectively identified and had been seen from 2006 to 2014.
The local ethics committee approved the evaluation of retrospectively
collected patient data. Patient characteristics are summarized in
Table 1.

The definite diagnosis (brain metastasis recurrence or radiation in-
jury) was based upon histopathology in 19 patients (37%) or follow-up
including the clinical course and serial MR imaging in 33 patients
(63%). Recurrent disease was anticipated if a new contrast-enhancing
lesion appeared at exactly the same site as the previously treated me-
tastasis after initial complete response or if the treated metastasis
showed progression in size during follow-up according to Response
Assessment in Neuro-Oncology (RANO) criteria for brain metastasis
(Lin et al., 2015) (increase of> 20% of the pre-treated volume on CE-
MRI) and new neurological deficits or the exacerbation of existing
neurological symptoms, prompting a change in treatment.

Radiation injuries in the tissue were assumed if (i) the lesions
showed spontaneous shrinkage, remained stable in size, or showed a
temporally increase of size followed by a spontaneous shrinkage to or
below the initial size on CE-MRI during follow-up (median follow-up,
15 mo; range, 3–63 mo); (ii) neurological deficits remained unchanged;
(iii) and no new neurological symptoms occurred. In four cases rated as
radiation injury, the follow-up time was shorter than 6months so that
stable disease cannot be completely ruled out. In these cases, the clas-
sification as radiation injury was additionally based on a negative FET
PET scan.

More details about the patient cohort and the clinical follow-up are
provided in Supplementary Table 1.

2.2. MR Imaging

Standard MR imaging procedures comprised T1-weighted contrast-
enhanced axial series, T2-weighted, and fluid attenuated inversion re-
covery (FLAIR) sequences. As described previously, only the axial T1-
weighted contrast-enhanced sequences were used for data evaluation
(Pallavi et al., 2014).

2.3. FET PET Imaging

The amino acid FET was produced via nucleophilic 18F-fluorination

Table 1
Patient and treatment characteristics.

Characteristic Median Range n patients

Sex Woman 39
Men 13
Total 52

Age (years) at time of PET
imaging

56 17–75

Primary tumor Lung (52%) 27
Breast (29%) 15
Kidney (6%) 3
Melanoma (4%) 2
CUP (2%) 1
Othera (8%) 4

Type of radiotherapy
received before PET

SRS (48%) 27
SRS and WBRT
(37%)

18

Ext. fract. RT (10%) 4
Brachytherapy (4%) 2
WBRT (2%) 1

CUP= cancer of unknown primary; Ext. fract. RT= external fractionated
radiotherapy; SRS= stereotactic radiosurgery; WBRT=whole-brain radio-
therapy.

a Colorectal carcinoma (n=1); Endometrial carcinoma (n=1); Ewing sar-
coma (n=1); Ovarian cancer (n= 1).
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with a radiochemical purity> 98%, a specific
radioactivity> 200 GBq/μmol, and a radiochemical yield of about
60%, as previously described (Hamacher and Coenen, 2002). All pa-
tients fasted for at least 4 h before the PET measurement according to
the German guidelines for brain tumor imaging using labelled amino
acid analogues (Langen et al., 2011). All patients underwent a dynamic
PET scan from 0 to 50min post injection (p.i.) of 3MBq of FET per kg of
body weight on a stand-alone standard PET scanner (ECAT EXACT HR
+, Siemens Medical Systems, Inc.) in 3D mode (32 rings, axial field of
view, 15.5 cm). The reconstructed dynamic dataset consisted of 16 time
frames (5× 1min; 5× 3min; 6×5min). Attenuation correction was
based on a 10min transmission scan measured with three rotating line
sources (68Ge/68Ga). Data were corrected for random and scattered
coincidences, and dead time prior to iterative reconstruction using the
OSEM algorithm (16 subsets, 6 iterations).

2.4. Image pre-processing and VOI definition

Using the software PMOD (version 3.505, PMOD Technologies Ltd.,
Zurich, Switzerland), the CE-MR images were resliced to a resolution of
1× 1×1mm. A B0-field correction was not applied. In patients with
multiple lesions, only the lesion with the largest volume was used for
textural feature analysis, because this method provides reliable results
by selecting regions that contain a sufficient number of voxels (> 100
voxels) (Orlhac et al., 2017a). The Volume-of-Interest (VOI) was de-
fined by the maximal extension of the enhancing region on the T1-
weighted contrast-enhanced axial images and was manually contoured
in all subsequent slices by an experienced radiation oncologist (M.K.)
blinded to the etiology of the lesion (i.e., radiation injury or recurrent
metastasis). For further analysis, the CE-MR images were used (i)
without additional post-processing, or (ii) after application of a high-
pass filter using the Laplacian-of-Gaussian 2-dimensional image filter
(LoG) with a sigma of 0.5 mm and a matrix size of 5×5 pixels im-
plemented in MATLAB (version R2016b, The MathWorks Inc., Natick,
MA, USA), or iii) after application of a high-pass filter using a discrete,
first-level 3-dimensional wavelet transformation with the ‘coifl’ wavelet
and reconstruction of the higher spatial frequency content in all di-
rections (DWT3). These additional filters enhance the edges of images
and are commonly used in textural feature analysis as they make the
feature extraction process more sensitive to small-scale changes of
tissue properties (Fig. 1) (Kickingereder et al., 2016a; Kickingereder
et al., 2016b; Yasaka et al., 2017).

The FET PET VOIs were determined by a 3D auto-contouring pro-
cess using a TBR of 1.6 or more. This threshold is based on a biopsy-
controlled study in which this value separated best between vital tumor
and healthy brain parenchyma in FET PET (Pauleit et al., 2005). In
cases of non-enhancing PET lesions (n=7), the MR VOIs were regis-
tered to the PET images and used for further analysis. No additional
filtering was applied for the PET images.

2.5. Radiomic feature extraction

Textural feature analysis was performed using the freely available
software LIFEx (Version 3.3, lifexsoft.org) (Nioche et al., 2017). Forty-
two features were calculated for each VOI including five statistical in-
dices (minimum, mean, maximum, standard deviation of grey levels
from the histogram, and VOI volume), 4 first-order histogram features,
31 second-order features from the grey level co-occurrence matrix
(GLCM), neighborhood grey-level different matrix (NGLDM), grey-level
run length matrix (GLRLM), and grey-level zone length matrix
(GLZLM), and two shape indices (sphericity and compacity). A detailed
description of each textural parameter is available in the technical
appendix of the LIFEx software (Orlhac et al., 2017a). For the second-
order features in MRI and FET PET, intensity resampling was performed
using the mean and three standard deviations of the grey levels in the
VOI as lower and upper limits and rescaling to 64 bins. In 6 cases

(Patient number 28, 30, 35, 38, 48, 49), the PET VOIs contained<100
voxels and were therefore excluded from the analysis (Supplementary
Table 1) (Orlhac et al., 2017a).

2.6. Radiomic feature selection

Calculating large numbers of features on a limited number of pa-
tients potentially includes substantial redundancy and might lead to
overfitting and misclassification in modelling. Therefore, feature se-
lection for identification of a useful, restricted subset of features for
classification of radiation injury from recurrent brain metastasis was
performed. First, the Mann-Whitney-U test was used to identify features
from MRI and FET PET separately as well as from the combination of
both modalities that encode statistically significant (p < .05) inter-
group differences. Second, the maximum number of features allowed in
each single modality model and the combined FET PET/MRI model was
restricted to five features according to published recommendations
(Harrell Jr. et al., 1996; Vittinghoff and McCulloch, 2007).

2.7. Model generation

The best performing generalized linear model (logistic regression)
was generated using the ‘bestglm’ R-package (Version 3.4.1, R Studio,
Inc., Boston, MA, USA) by applying the Akaike Information Criterion
(Akaike, 1974). The algorithm was parameterized to select the best
model that contained a maximum of five variables according to feature
selection. Model generation was applied to the features from the two
imaging modalities separately as well as to the combined feature set.

2.8. Model validation

The validity of the models for differentiation of recurrent metastasis
from radiation injury was assessed using cross-validation (MATLAB,
R2017b. Mathworks, Inc., MA, USA). Three commonly used cross-va-
lidation methods (leave-one-out, 5-fold, and 10-fold cross-validation)
were applied to the models based on the two imaging modalities and
the combined model. Additionally, sensitivity, specificity, accuracy,
and receiver operating characteristic curves (ROC) were calculated for
each modality and the combined feature sets.

3. Results

Recurrent metastatic tumor was found in 21 (40%) and radiation
injury in 31 (60%) of 52 patients.

Of the 42 analyzed MRI features, 22 features were significantly
more frequent in patients with brain metastasis recurrence than in
patients with radiation injury (p < .05; 13 features from the unfiltered
images, 4 features from the LOG filtered and 5 features from the wa-
velet filtered images) (Fig. 2, Supplementary Tables 2 and 3). The best
logistic regression five-variable model yielded a sensitivity of 67%, a
specificity of 90%, and an accuracy of 81% (Table 2). The overall ac-
curacy of the model validation was 71% for leave-one-out cross-vali-
dation (LOOCV), 77% for 5-fold cross-validation (CV) and 74% for 10-
fold cross-validation. Further details on the model performance and the
validation are provided in Table 2.

Similarly, 23 FET PET textural feature values were significantly
more frequent in patients with brain metastasis recurrence than in
patients with radiation injury (p < .05 for 23 features, p < .01 for 19
features, p < .005 for 8 features; Fig. 2 and Supplementary Table 4).
The best logistic regression model including 5 variables yielded a sen-
sitivity to detect a recurrence of 88%, a specificity of 75%, and a di-
agnostic accuracy of 83% (Table 2). The overall accuracy of the model
validation was 72% for leave-one-out cross-validation (LOOCV), 74%
for 5-fold cross-validation (CV) and 76% for 10-fold cross-validation.
Further details on the model performance and the validation are pro-
vided in Table 2. Representative MRI and FET PET images are shown in
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Fig. 1.
For the combined analysis of MRI and FET PET, 22 MRI features and

the 8 most significant FET PET features were used for a logistic re-
gression using the best generalized linear model algorithm. The best
performing five-variable model included three features from conven-
tional MR images, one feature from the wavelet-transformed MR images
and one FET PET feature and resulted in a sensitivity of 85%, a speci-
ficity of 96%, and an accuracy of 89% (Fig. 2 and Table 2). The overall
accuracy of the model validation was 83% for leave-one-out cross-va-
lidation (LOOCV), 80% for 5-fold cross-validation (CV) and 83% for 10-
fold cross-validation. Further details on the model performance and the
validation are provided in Table 2.

4. Discussion

In the present study, we evaluated the ability of both MRI and FET
PET radiomic features for the differentiation between brain metastasis
recurrence and radiation injury in previously irradiated brain metas-
tases of patients who presented with inconclusive MRI findings. The
main finding of our study is that textural features derived from CE-MRI
and static FET PET increase the diagnostic accuracy for the correct
differentiation of radiation injury from brain metastasis recurrence to

almost 90%, compared to each modality alone (82% for CE-MRI, and
83% for FET PET) without the need for a more costly and time-con-
suming dynamic FET PET acquisition, which is necessary for the eva-
luation of kinetic PET parameters. Importantly, our analysis was based
on standard CE-MRI and static FET PET images that had already been
acquired during the routine follow-up of the patients. Thus, no addi-
tional measurements or image acquisitions beyond clinical routine were
necessary, which speaks for the clinical feasibility of this approach.
Although no independent validation cohort was available, the model
was validated using cross-validation with different numbers of sub-
samples, which is a common procedure for model validation with a
limited number of samples. Here, the combined model proved valid in
the cross-validation yielding high diagnostic accuracies above 80%.

Over the past years, several studies have demonstrated that amino
acid PET alone is a potent imaging method for the identification of
treatment-related changes such as pseudoprogression (Galldiks et al.,
2015; Kebir et al., 2016a; Kebir et al., 2016b; Galldiks, 2017) or ra-
diation injury (Ceccon et al., 2017; Galldiks et al., 2012; Lohmann
et al., 2017) in patients with glioma and brain metastasis. For the dif-
ferentiation of radiation injury from brain metastasis recurrence, the
diagnostic accuracy of static (i.e., tumor/brain ratios) and dynamic FET
PET parameters (i.e., time-to-peak values and the slope of time-activity

Fig. 1. FET PET images, unfiltered and filtered T1-weighted contrast-enhanced (CE) MR images using discrete 3-dimensional wavelet transformation (DWT3) and
Laplacian-of-Gaussian (LoG) filtering in a patient (patient #8) with a histologically confirmed recurrent breast cancer metastasis after whole-brain radiotherapy and
radiosurgery (upper panel). The lower panel shows a patient (patient #41) who underwent radiosurgery of a brain metastasis originating from a cancer of unknown
primary and developed a radiation injury after 21months of follow-up.

Fig. 2. Heat map for textural features with a significant different distribution (two-sided Mann-Whitney-U‐test) in patients with recurrent metastasis (Met) compared
to those with radiation injury (RI). DWT3: Discrete 3-dimensional wavelet transformation; GLCM: Grey-level co-occurrence matrix; GLNUr: Grey-level non-uni-
formity for run; GLNUz: Grey-level non-uniformity for zone; GLRLM: Grey-level run-length matrix; GLZLM: Grey-level zone-length matrix; LoG: Laplacian-of-
Gaussian filter; LRE: Long-run emphasis; LRHGE: Long-run high grey-level emphasis; LZE: Long-zone emphasis; LZHGE: Long-zone high grey-level emphasis;
NGLDM: Neighborhood grey-level different matrix; RLNU: Run length non-uniformity; RP: Run percentage; SRE: Short-run emphasis; SRHGE: Short-run high grey-
level emphasis; SZE: Short-zone emphasis; ZLNU: Zone length non-uniformity; ZP: Zone percentage.
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curves) has been evaluated in a pilot study by Galldiks et al. (2012). By
combining these PET parameters, diagnostic accuracy in the range of
80–90% was obtained. Subsequently, these results have been confirmed
by Ceccon et al. in a larger group of patients (Ceccon et al., 2017).
Recently, Romagna and colleagues reported a similar diagnostic accu-
racy (Romagna et al., 2016). However, in all these studies, dynamic FET
PET parameters that require a time-consuming (i.e., 40–50min acqui-
sition time) and hence more expensive PET acquisition, were evaluated.
To facilitate data acquisition and analysis, Lohmann and colleagues
combined for the first-time textural features derived from static FET
PET for the discrimination of radiation injury from recurrent brain
metastasis and achieved a diagnostic accuracy of 85% without the ac-
quisition of dynamic FET PET scans (Lohmann et al., 2017).

Although amino acid PET and advanced MRI such as perfusion-
weighted imaging or chemical exchange saturation transfer are in-
creasingly gaining attention in Neuro-Oncology (Langen et al., 2017; da
Silva et al., 2018), to date conventional MRI is the method of choice in
brain tumor diagnostics. Several studies have investigated the potential
of conventional MRI for differentiation of radiation injury from brain
metastasis recurrence. Using conventional MR imaging, Dequesada
et al. (2008) defined a quotient calculated from the solid tumor size in
T2-weighted MR images relative to the total extension of contrast en-
hancement that discriminated patients with recurrent brain metastasis
after radiosurgery with high specificity (100%) but low sensitivity
(15%). Another approach was used by Kano et al. (2010) who found
that a diffuse lesion margin on T2-weighted images compared to a well-
delineated margin of contrast enhancement on T1-weighted images
(“T1/T2-mismatch”) was significantly associated with a higher rate of
radiation injury after radiosurgery (sensitivity, 83%; specificity, 91%).
However, these approaches were only qualitative, potentially resulting
in a high interobserver variability.

Recently, more advanced MRI-based approaches using quantitative
image analysis and machine learning methods have been applied for the
differentiation of radiation injury from recurrent brain metastasis.
Larozza et al. used a support vector machine classification and

extracted 7 predictive features based upon texture analysis resulting in
a sensitivity of 83% and a specificity of 82% to detect recurrent me-
tastasis following radiosurgery (Larroza et al., 2015). In another study
comprising 25 patients with brain metastasis, when using the five best
features Tiwari et al. observed a detection accuracy of 91% in the
training set, resulting, however, in a diagnostic accuracy of only 50% in
the validation set (Tiwari et al., 2016). A more recent study from Zhang
and colleagues used a predictive model after radiosurgery based on MRI
features resulting in a diagnostic accuracy of 73% (Zhang et al., 2018).

To the best of our knowledge, this is the first study that combines
MR and FET PET radiomics. As CE-MRI and FET PET decode different
(patho-)physiological mechanisms that complement each other and
may be accessible through textural feature analysis, a combined, mul-
timodal predictor has the potential to outperform single modality
models. This assumption is clearly supported by our findings where the
combination of both modalities yielded the highest diagnostic perfor-
mance compared to the single modality models.

As depicted in Fig. 2, many of the textural features that dis-
criminated best between radiation injury and brain metastasis recur-
rence were found on both MR (unfiltered and filtered) and FET PET
images. This is an interesting observation because the underlying me-
chanisms that determine signal intensities are thought to differ sub-
stantially. While the contrast enhancement on MRI represents disrup-
tion of the blood-brain barrier (BBB), the increased FET uptake depicted
by PET is caused by an overexpression of large neutral amino acid
transporters (LAT) leading to an increased accumulation of FET in brain
tumors which is not influenced by the BBB permeability (Stegmayr
et al., 2017a; Stegmayr et al., 2017b). The observation that the same
textural parameters in MRI and FET PET have the highest dis-
criminatory power suggest that patterns of altered amino acid transport
and BBB disruption in recurrent metastasis and radionecrosis are al-
tered in the same direction and that there is a fundamental relationship
between the physiologically completely different parameters.

Many approaches predominantly in the field of MRI radiomics often
use specialized self-developed software that is poorly validated and
limits the applicability and accessibility for other groups. Furthermore,
high-performance computers are frequently needed for the analysis. In
contrast, the software used in the present study is well validated, freely
available, and the analysis can be easily performed within a few min-
utes using routinely acquired multimodal images on a standard com-
puter. In summary, the analysis employed here is readily applicable,
easy to implement, and cost-effective.

With regard to the implementation of radiomics into clinical rou-
tine, our results warrant further investigation. This should also include
a better understanding of the link of specific radiomic features with the
underlying pathophysiology, given that it is difficult to translate di-
rectly a mathematical description of a radiomic or textural feature into
a visual impression or physiological meaning (Orlhac et al., 2017b). In
our analysis, patients with brain metastasis recurrence showed a more
heterogeneous contrast-enhancement and FET uptake (Fig. 1). Ad-
ditionally, the shape of the recurrent metastases in both MRI and PET
was less spherical compared to radiation injuries (Fig. 1). In the cal-
culated models, particularly features reflecting non-uniformity were
dominant and hence achieved higher values in patients with brain
metastasis recurrence. Accordingly, findings in recurrent brain metas-
tasis seem to be more heterogeneous than in radiation injuries
(Chowdhury et al., 2014; Murrell et al., 2015).

5. Conclusions

In conclusion, our results suggest that combined FET PET and MRI
radiomics as assessed by textural feature analysis encode more in-
formation than either modality alone and is useful for the differentia-
tion between radiation injury and brain metastasis recurrence. Our
results warrant both replication and further investigation into the pa-
thophysiology underlying radiomic features.

Table 2
Summary of best multivariate models and results from model validation.

FET PET CE-MRI Combined

Included features PET_Volume T1_stdValue T1_LZE
PET_GLNUr T1_Volume T1_GLNUz
PET_RLNU T1_Compacity T1_ZLNU
PET_LZHGE T1_RLNU T1_DWT3_GLNUz
PET_GLNUz T1_LoG_ZLNU PET_SRE

Accuracy 83% 81% 89%
Sensitivity 88% 67% 85%
Specificity 75% 90% 96%
AUC 0.91 0.85 0.96
Model validation
LOOCV Accuracy 72% 71% 83%

Sensitivity 77% 81% 85%
Specificity 65% 57% 80%
AUC 0.75 0.74 0.86

5-fold CV Accuracy 74% 77% 80%
Sensitivity 81% 84% 85%
Specificity 65% 67% 75%
AUC 0.76 0.75 0.85

10-fold CV Accuracy 76% 74% 83%
Sensitivity 85% 81% 81%
Specificity 65% 62% 85%
AUC 0.79 0.77 0.84

AUC: Area under the receiver-operating characteristics curve; CI: Confidence
interval; CV: Cross-validation; DWT3: Discrete 3-dimensional wavelet trans-
formation; GLNUr: Grey-level non-uniformity for run; GLNUz: Grey-level non-
uniformity for zone; LoG: Laplacian-of-Gaussian filter; LOOCV: Leave-one-out
cross-validation; LZE: Long-zone emphasis; LZHGE: Long-zone high grey-level
emphasis; RLNU: Run length non-uniformity; ZLNU: Zone length non-uni-
formity.
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