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A B S T R A C T   

Background: At present, the diagnosis of post-traumatic stress disorder（PTSD） mainly relies on 
clinical symptoms and psychological scales, and finding objective indicators that are helpful for 
diagnosis has always been a challenge in clinical practice and academic research. Neuroimaging is 
a useful and powerful tool for discovering the biomarkers of PTSD,especially functional MRI 
(fMRI), structural MRI (sMRI) and Diffusion Weighted Imaging（DTI）are the most commonly 
used technologies, which can provide multiple perspectives on brain function, structure and its 
connectivity. Machine learning (ML) is an emerging and potentially powerful method, which has 
aroused people’s interest because it is used together with neuroimaging data to define brain 
structural and functional abnormalities related to diseases, and identify phenotypes, such as 
helping physicians make early diagnosis. 
Objectives: According to the Preferred Reporting Items for Systematic reviews and Meta-Analyses 
(PRISMA) declaration, a systematic review was conducted to assess its accuracy in distinguishing 
between PTSD patients, TEHC(Trauma-Exposed Healthy Controls), and HC(healthy controls). 
Methods: We searched PubMed, Embase, and Web of Science using common words for ML 
methods and PTSD until June 2023, with no language or time limits. This review includes 13 
studies, with sensitivity, specificity, and accuracy taken from each publication or acquired 
directly from the authors. 
Results: All ML techniques have an diagnostic accuracy rate above 70%，and support vector 
machine（SVM） are the most commonly used techniques. This series of studies has revealed 
significant neurobiological differences in key brain regions among individuals with PTSD, TEHC, 
and HC. The connectivity patterns of regions such as the Insula and Amygdala hold particular 
significance in distinguishing these groups. TEHC exhibits more normal connectivity patterns 
compared to PTSD, providing valuable insights for the application of machine learning in PTSD 
diagnosis. 
Conclusion: In contrast to any currently available assessment and clinical diagnosis, ML techniques 
can be used as an effective and non-invasive support for early identification and detection of 
patients as well as for early screening of high-risk populations.  
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1. Introduction 

PTSD is a condition that occurs after exposure to very stressful experiences [1]. The primary causes of this condition include abuse, 
sexual assaults, disasters, domestic, community, or school violence, medical trauma, and terrorist attacks [2].The symptoms of PTSD 
include intrusive thoughts, hyperarousal, flashbacks, nightmares, sleep disruptions, abnormalities in memory and attention, and 
startle reactions [3]. The Diagnostic and Statistical Manual of Mental Disorders is the current gold standard for PTSD diagnosis 
(updated version: fifth edition, or DSM-V). These procedures, like the DSM-IV used for the individuals in the current investigation, 
mainly rely on the subjective reports of patients. Considering the stigma associated with the diagnosis of specific groups or the dif-
ficulty of patients to express their symptoms, accurate diagnosis may be challenging. Therefore, a platform for objective diagnosis is 
widely desired [4]. 

Neuroimaging is a potent and effective technology for researching discriminating biomarkers in individuals with mental illnesses 
[5]. The most frequent diagnostic techniques used now are fMRI，sMRI and DTI which can be used to identify brain structures and 
functions with specific changes in patients, and to discover neurobiological markers with diagnostic and predictive value [6]. In a 
meta-analysis of functional and structural brain abnormalities in PTSD, In terms of facilitating the diagnosis, alterations in function did 
not appear to be specific, but structural aspects of the amygdala were of interest, and some regions, including the striatum, insula, 
primary visual, ACC/mPFC, auditory, and sensorimotor cortex showed structural abnormalities are more significant in PTSD [7]. 
Dissociative symptoms may be related with abnormalities in the transfrontal and parietal cortices, limbic system, and brainstem, 
according to functional and structural MRI studies of PTSD patients with dissociative symptoms [8]. According to these studies, the 
fMRI and sMRI are two techniques that commonly utilized to offer a variety of perspectives on brain function and structure. However, 
the majority of studies only provide methodological recommendations for further study, without providing practical and clinical 
valuable advice on how to identify and accurately. It is necessary to evaluate massive volumes of imaging data from MRI using 
automated techniques that can process data and determine the possibility of disorders with absolute accuracy [9]. ML，a field that 
focuses on the learning component of artificial intelligence（AI） by creating algorithms that best represent a collection of data, ML 
employs subsets of data to produce algorithms that may use innovative or different combinations of features and weights than can be 
deduced from first principles, in contrast to classical programming, where an algorithm may be explicitly implemented using known 
features. The four often employed learning techniques in ML, supervised, unsupervised, semi-supervised, and reinforcement learning, 
are each effective for tackling certain problems [10]. ML approaches also applied to neuroimaging data to discover features for 
translation into clinical practice for early diagnosis have received increased attentions [11]. The use of ML in neuroimaging to improve 
visual identification and achieve lower mistake rates than humans has also been a major driver of the rise of ML in medical imaging 
[12]. The idea behind ML is that by identifying patterns in data, computers may learn to carry out particular tasks without having to be 
trained to do so from specific input. Iterative learning algorithms are used in ML. To provide one example, it enables computers to 
locate information even when it is unknown without being specifically instructed to do so. The most common ML algorithms at the 
moment are support vector machines, linear regression, logistic regression, decision trees, and random forests [10]. 

ML approaches may be used to enhance the categorization of illnesses, predict risk factors and treatment results, and optimize the 
selection of treatments that are customized to each individual [13]. The discovery of a reasonably precise biological marker through 
machine learning may better enable understanding of the disease because PTSD is a condition with clinical and biological hetero-
geneity, which may be a barrier to understanding pathogenic mechanisms and developing ideal treatment and diagnostic tools. This 
study seeks to assess the data about the role of ML approaches in PTSD diagnosis discrimination. 

According to PRISMA standards [14], the objective of this review was to evaluate the present state of the evidence on the use of ML 
approaches in diagnostic discrimination in PTSD patients ， TEHCand HC utilizing neuroimaging data from fMRI and sMRI as input. 
Our ultimate aim is to succinctly summarize the existing applications of machine learning combined with neuroimaging in predicting 
and diagnosing PTSD. We strive to identify current research gaps and limitations, shedding light on challenges and areas for 
improvement in the current body of literature. Furthermore, we endeavor to propose potential directions for future research in this 
domain. 

2. Materials and methods 

2.1. Search strategy 

Articles published 30 years before June 2023 in PubMed，Embase and Web of science，without time limits, were searched by 
using the following keywords: (Deep Learning OR DL OR Big data OR Artificial Intelligence OR Machine Learning OR ML OR Gaussian 
process OR Regularized logistic OR LDA OR Linear discriminant analysis OR Random forest OR Least Absolute selection shrinkage 
operator OR elastic net OR LASSO OR RVM OR relevance vector machine OR pattern recognition OR Computational Intelligence OR 
Machine Intelligence OR support vector OR SVM OR Pattern classification OR Deep learning) AND (PTSD OR Post-Traumatic Stress 
Disorder) AND (fMRI OR magnetic resonance imaging OR MRI OR functional MRI OR functional-MRI OR functional magnetic reso-
nance imaging). Two researchers independently examined each of the studies that were picked. 

2.2. Assessment of study quality 

To assess the methodological quality of papers in this systematic review, the Jadad ranking system [15] was used. Jadad’s 
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technique allows for the qualification of a research based on the clarity with which the randomization, double-blinding procedure, and 
withdrawal and dropout data are described. The scale runs from 0 to 5. The inclusion criteria for this systematic review were a Jadad 
score of at least 3. 

2.3. Selection criteria 

We selected studies applying ML techniques with patients diagnosed with PTSD according to the DSM-IV, DSM-V criteria. Studies 
without a control group and trials involving patients with general medical conditions, neurological or psychiatric comorbidity, sub-
stance abuse or alcoholism, traumatic brain injuries resulting in loss of consciousness, and unclear or unreliable psychiatric diagnoses 
in accordance with the DSM criteria were excluded. 

2.4. Data collection and extraction 

Two authors（Jia and Yang） independently reviewed all of the article titles and abstracts that were gathered, as well as the 
complete texts of any publications that fit the requirements. When there was a dispute, a third researcher oversaw（Chen） and made 
the ultimate decision. Data from the article included the year it was published, the ML model and algorithm (e.g., SVM, MGPC), the 
sample size, the diagnoses the study evaluated, and statistical data (e.g., accuracy, sensitivity, and specificity). 

3. Results 

Initially, 1599 items were discovered, with 1124 articles being eliminated due to failure to meet inclusion requirements. The 
remaining 475 papers’ abstracts were examined. Among of them, 408 papers were removed because they were editorials, letters to the 
editor, reviews, meta-analyses, case reports, or other interventions. Then, 54 of the 67 articles’ manuscripts were eliminated since they 
did not meet the inclusion requirements. Finally, 13 studies were included in our study（Fig. 1）. Among these 13 studies, 8 articles 
used SVM, 1 article used random vector machine （RVM）, 3 articles used Multiclass Gaussian process classification（MGPC）, and 1 
article used multi-kernel learning（MKL）to study PTSD（Table 1） 

Fig. 1. PRISMA flowchart of included studies.  
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Table 1 
Summary of included studies classifying PTSD using ML.  

First author Data 
preprocessing 
methods 

Number of subjects ML model Most contributing brain regions Best 
Accuracy 

Other meatures Commentary 

Liu rs-fMRI PTSD：20 
HC：20 Total：40 

SVM the limbic structure and pre-frontal cortex 92.5% Sensitivity：90%, 
Specificity：95% 

First time that PTSD patients have been identified at the 
individual level using resting-state fMRI data. 

Zhang rs-fMRI、sMRI PTSD：17 TEC：20 
HC：20 Total：57 

SVM bilateral middle occipital gyrus, right inferior 
parietal lobule, left superior frontal gyrus et. 

90.0% Sensitivity：76.47%, 
Specificity：100% 

Multimodal MRI approach improves the ability to classify 
PTSD 

Zilcha-Mano rs-fMRI PTSD:51 PTSD +
MDD:52 TEHCs:76 
Total:179 

SVM executive control network, prefrontal 
network, salience network and basal ganglia 
network 

76.7% N.A. The findings show that they are clinically useful in estimating 
symptomatology levels and treatment effectiveness. 

Zhu,Z rs-fMRI PTSD:91 TEHCs:126 
Total:217 

SVM +
deep 
learning 

default mode, central executive, and salience 
networks 

80.0% sensitivity: 80.9%, 
specificity: 79.2% 

These results show that DL based on graphical features is a 
potential technique to help with the diagnosis of PTSD. 

Yang. rs-fMRI PTSD:33 HC:53 
Total：86 

SVM +
deep 
learning 

Frontoparietal areas, cingulate cortex, and 
amygdala 

71.2% sensitivity: 59.7%, 
specificity: 82.7% 

Based on fMRI data, graphic topological metrics might add to 
imaging models of clinical usefulness in separating pediatric 
PTSD from HC. 

Saba T rs-fMRI PTSD:14 HC：14 
Total：28 

SVM 
KNN 
LR 

L-precuneus, R-precuneus, L-mPFC, and R- 
mPFC， amygdala, hippocampus, and 
thalamus 

99.2% sensitivity: 96.6%, 
specificity:96.0% 

The outcomes of the study might serve as a guideline for 
observing the in PTSD, and discriminating PTSD subjects 
using the recommended algorithms. 

Q Gong. sMRI PTSD：50 
TEHCs：50 HC：40, 
Total：140 

SVM volume of GM and WM 91.0% sensitivity: 97.0%, 
specificity:85.0% 

Classification of PTST in SVM using structural and functional 
neuroimaging data is an integrated technique that has been 
effectively used to the study of mild cognitive impairment. 

Suo sMRI PTSD:77 TEHCs：76 
Total：153 

SVM left uncinate fasciculus， right anterior 
thalamic radiation 

73.8% Sensitivity：59.5%, 
Specificity：88.2% 

WM changes based on a tract-profile measurement method 
might be a biomarker for PTSD. 

Harricharan rs-fMRI PTSD：84 PTSD +
DS：49 HC：51 
Total：184 

MGPC Insula， frontal lobe 80.4% N.A. machine learning algorithms can differentiate between PTSD 
and its dissociative variants using resting state connection 
patterns in the insula,. 

Nicholson 
（2018） 

rs-fMRI PTSD:81 PTSD +
SD:49 HC:51 Total： 
181 

MGPC emotion regulation regions, amygdala,globus 
pallidus, and motor/somatosensory regions. 

91.63% N.A. For the first time Using machine learning to differentiate 
between PTSD and its dissociative subtypes 

Nicholson 
（2020） 

rs-fMRI PTSD:81 PTSD +
SD:49 HC:56 Total： 
186 

MGPC Default mode network, Central executive 
network, Salience network 

80.0% N.A. Changes in the intrinsic connection network may explain the 
distinct psychopathology and symptom presentation of PTSD 
subtypes. 

Nicholson 
（2022） 

rs-fMRI PTSD:14 HC：15 
Total：29 

MKL dmPFC, postcentral gyrus, amygdala/ 
hippocampus, cingulate cortex, and temporal 
pole/middle and superior temporal gyri 

80.0% N.A. Findings show that EEG-NFB targeting brain networks 
associated with the PCC leads in acute reductions in 
symptoms over time. 

Zhu,H rs-fMRI PTSD:57 TEHCs:59 
Total：116 

RVM default mode network (DMN), visual network 
(VIS), somatomotor network, limbic network, 
and dorsal attention network (DAN) 

89.2% Sensitivity：86.5%, 
Specificity：92.0% 

Large-scale brain network-based rs-fMRI can both assist in 
clinical diagnosis and shed light on the underlying brain 
network processes of PTSD caused by natural disasters.  
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3.1. Studies of classification methods using SVM 

Two article employed a fusion of results from multiple data processing techniques to analyze data from resting-state fMRI and then 
combine the extracted features. 

Liu et al. [16] proposed an innovative categorization framework for identifying PTSD patients and healthy controls, integrating 
features from amplitude of low frequency fluctuations (ALFF) and dynamic functional connectivity. The classification accuracy 
reached an impressive 92.5%, with a primary focus on limbic structures and the prefrontal cortex.In a study by Zhang et al. [17], a 
multimodal approach combining resting-state functional MRI (rs-fMRI) and structural MRI (sMRI) was employed. Features such as 
gray matter volume (GMV), ALFF, and regional homogeneity (ReHo) were fused using a multi-kernel combination approach. The 
accuracies for PTSD vs. HC, trauma-exposed healthy controls (TEHC) vs. HC, and PTSD vs. TEHC were reported as 89.19%, 90.00%, 
and 67.57%, respectively. The authors concluded that the multimodal feature combination technique, especially using multi-kernel 
support vector machines, outperformed single-feature approaches in classification performance. Zilcha-Mano et al. [18] utilized a 
within-network functional connectivity approach and achieved 70.6% accuracy in distinguishing individuals with PTSD from TEHCs. 
Additionally, they achieved 76.7% accuracy in distinguishing individuals with PTSD alone from those with PTSD comorbid with major 
depressive disorder (PTSD + MDD). Noteworthy regions contributing to classification accuracy included the executive control 
network, prefrontal network, and salience network. 

Two studies by Zhu, Z et al. [19]and Yang et al. [20], combined deep learning and classical support vector machine (SVM) 
techniques. They employed graphic topological measures based on fMRI data to classify PTSD in adults vs. HC and PTSD in children vs. 
TEHC, achieving accuracies of 80% and 71.2%, respectively. The authors proposed a two-stage prediction pipeline technique for 
creating more accurate machine learning algorithms with potential clinical applications. The central executive network significantly 
contributed to the model’s performance in both adults and children. Medial prefrontal cortex, amygdala, thalamus, hippocampus, and 
precuneus were chosen as the region of interests （ROIs） and compared the functional connections among them in another study. 
Saba T et al. [21] tested five machine learning algorithms and discovered that SVM had the greatest classification accuracy of 99.2%. 
The author concluded that this will identify the best algorithm for providing identification recommendations. 

Gong et al. [22] compared gray and white matter volumes(prefrontal, temporal, parietal and occipital regions as well as subcortical 
structures) in PTSD patients and HC, with an accuracy of 91%. The author proposed the patterns of neuroanatomical alterations might 
be a possible biomarker for detecting structural brain abnormalities in people suffering from PTSD. 

A further study suggested that a potential biomarker for PTSD is WM changes based on a tract-profile quantification method. Suo 
et al. [23] found PTSD had lower fractional anisotropy（FA） with greater radial diffusivity（RD） and mean diffusivity（MD） in the 
left uncinate fasciculus and lower FA with higher RD in the right anterior thalamic radiation compared to TEHC. Then the results of 
SVM revealed the axial diffusivity（AD） profile performed the best, with a mean balanced accuracy of 73.8%, sensitivity of 59.5%, 
and specificity of 88.2%. 

3.2. Studies of classification methods using MGPC 

All three investigations delved into the classification of individuals across distinct categories: those with post-traumatic stress 
disorder (PTSD), a subtype characterized by both PTSD and dissociative symptoms (PTSD + DS), and a control group of healthy in-
dividuals (HC). Harricharan et al. [24] used insula subregion connectivity patterns with 80.4% balanced accuracy. Using this meth-
odology, the author identified that PTSD was associated with heightened bilateral posterior insula connections to subcortical regions, 
including the periaqueductal gray. In contrast, individuals with PTSD + DS exhibited more pronounced bilateral anterior and posterior 
insula connections with posterior cortices, specifically the left lingual gyrus and the left precuneus, in comparison to both PTSD and 
control groups. These findings underscore a discernible neurobiological distinction between PTSD and its dissociative subtype, 
particularly in terms of insula subregion functional connection patterns. 

In the study by Nicholson et al., （2019） [25], it was revealed that the PTSD + DS group exhibited heightened activation in 
emotion regulation areas compared to the PTSD group, which, in turn, displayed increased activation in the amygdala, globus pallidus, 
and motor/somatosensory regions. The extracted features from both resting-state mean amplitude of low-frequency fluctuations 
(mALFF) (91.63% balanced accuracy) and amygdala complex connectivity maps (85.00% balanced accuracy) reliably predicted the 
categorization. 

Furthermore, Nicholson et al., （2020） [26] employed alterations in intrinsic connectivity networks (ICN) to predict PTSD and its 
subtypes, achieving an impressive classification accuracy of 88.92%. The findings suggested that differences in intrinsic connectivity 
networks may serve as the foundation for distinct psychopathology and symptom presentation among PTSD subtypes. The findings of 
the author showed that differences in intrinsic connectivity networks may underpin distinct psychopathology and symptom presen-
tation among PTSD subtypes. 

3.3. Studies of classification methods using other method 

Nicholson et al., （2022） [27] conducted a study exploring the effects of neurofeedback (NFB) training on symptoms related to 
trauma or stress word processing, specifically targeting the downregulation of the posterior cingulate cortex (PCC). Their investigation 
revealed immediate reductions in symptoms following the NFB training. Notably, they employed L1-Multiple Kernel Learning (MKL) 
Classification algorithms to achieve an 80% accuracy in classifying individuals with PTSD compared to healthy controls (HC). 

In a similar vein, Zhu, H et al. [28] employed a different approach by extracting node-to-network functional connections. Utilizing 
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Relevance Vector Machine (RVM), they achieved an impressive diagnostic accuracy of 89.2% in distinguishing between individuals 
with PTSD and trauma-exposed controls (TEC). The study highlighted the significance of various networks, such as the default mode 
network (DMN), visual network (VIS), somatomotor network, limbic network, and dorsal attention network (DAN), as being partic-
ularly influential in the categorization of PTSD. 

4. Discussion 

The study and implementation of artificial neural networks(ANNs) have contributed significantly to the advancement of ML [29], 
and the use of ML techniques is a promising strategy that could assist clinicians in the identification of mental illnesses and could be 
helpful in the classification of PTSD using MRI. The majority of the studies in the review had accuracy levels between 75% and 90%, 
with all of them achieving at least a minimum accuracy of about 70%. 

The synthesis of findings from the 13 studies reveals distinct neural patterns associated with PTSD, TEHC, and HC. ML techniques 
applied across these investigations have elucidated specific brain regions critical for discriminating among these groups. At the 
forefront, the insula emerges as a key player in distinguishing between different trauma-related states. In PTSD patients compared to 
healthy controls, heightened connectivity between bilateral insular cortices and brainstem regions, notably the brainstem gray matter, 
was observed. This finding suggests aberrant responses to stress and emotional regulation in PTSD individuals. Further, in PTSD + DS, 
there was more pronounced connectivity between the anterior and posterior insular cortices and the posterior cingulate cortex, 
indicating nuanced neurobiological differences. The amygdala, a pivotal region in emotion regulation, exhibited increased activity in 
PTSD patients compared to trauma-exposed healthy controls. This heightened amygdala activation suggests specific neural activity 
patterns associated with processing emotional stimuli in PTSD individuals. Exploring intrinsic connectivity networks (ICN), the ML 
analyses demonstrated alterations in ICNs in PTSD patients, allowing for accurate prediction of PTSD. These findings underscore the 
potential of ML techniques to uncover neurobiological distinctions related to trauma exposure. Beyond specific brain regions, changes 
in the prefrontal cortex, hippocampus, and posterior cingulate cortex were identified as neuroimaging indicators contributing to the 
diagnosis of PTSD. 

Importantly, the inclusion of TEHC as a distinct group plays a pivotal role in this investigation. ML applications revealed that TEHC 
exhibited more normalized connectivity patterns in these brain regions compared to PTSD patients and those with the dissociative 
subtype. This suggests that TEHC may represent a healthier emotional processing profile. Recognizing the significance of TEHC in 
distinguishing between trauma-exposed states enhances the clinical applicability and generalizability of ML techniques in the context 
of PTSD diagnosis and understanding its neurobiological underpinnings. 

According to our review, SVM appears to be the preferred approach for classification investigations. SVM emerged as the preferred 
approach in more than half of the studies (8 out of 13), either used alone or in combination with other approaches to optimize the 
model across various datasets. Studies attempting to predict whether a person has PTSD appear to be well suited for the initial use of 
SVM, which addresses binary classification problems [30]. Several inputs have been employed to increase the technique’s accuracy: 
changes in GM and WM (particularly in sMRI studies), anomalies in brain functional connectivity（FC）parameters (e.g., ReHo or 
ALFF), and networks or whole groups of functional connections. Previous MRI findings suggest that the medial and dorsolateral 
prefrontal cortex, orbitofrontal cortex, insula, amygdala, anterior and posterior cingulate, hippocampus and para-hippocampus cortex, 
precuneus, cuneus, syrinx, and lingual gyrus, as well as the white matter tracts connecting these brain regions, are relevant to PTSD 
pathophysiology. Of these, changes in the anterior cingulate, amygdala, hippocampus, and insula are highly repeatable across 
structural and functional MRI [31,32]. In the analysis of machine learning, particularly the prefrontal (e.g., DLPFC, prefrontal cortex of 
the eye sockets), amygdala, and posterior cingulate cortex, which appear to be most useful in predicting the diagnosis of PTSD. In 
addition the fusion of different inputs has contributed to improving the accuracy of classification techniques. 

A MGPC machine learning study was performed within SPM12 utilizing the Pattern Recognition for Neuroimaging Toolbox 
(PRoNTo). Using fMRI feature sets, MGPC predicts group categorization across several classes [33]. The insula, amygdala, and limbic 
system are considered to be objective biomarkers with heterogeneity in the classification of PTSD dissociation subtypes, and the 
current study has important implications for advancing the application of machine learning with different algorithms in the field of 
psychiatry and the discovery of new biomarkers. 

ML techniques exhibit the capability to handle large-scale, high-dimensional datasets, particularly crucial in neuroimaging 
research. They can capture complex nonlinear relationships, aiding in a comprehensive understanding of the neural mechanisms of 
PTSD [34]. In current literature, ML analysis can reveal drastically altered brain connections in PTSD subjects compared to healthy 
controls (e.g., default mode network, central executive network, visual network, and salience network, etc.). In other psychiatric 
disorders, such as schizophrenia（SCZ）, ML analysis can also distinguish patients from healthy controls by altered brain connection 
[35,36],and alterations in brain connection overlap between different psychiatric disorders. So an integrated study employing bio-
markers from various biological sources (e.g., fMRI, sMRI) should be studied to increase the ability to identify PTSD patients from HC 
and expedite diagnosis. From the extensive literature on traditional methods combining ML techniques for studying mental disorders, 
we can observe that, in comparison with traditional analytical approaches, ML has the ability to comprehensively explore patterns in 
data, thereby enhancing sensitivity to differences between PTSD patients and control groups. Traditional methods may rely on prior 
knowledge and assumptions, while ML methods engage in data-driven learning without predefined hypotheses. However, ML models 
often lack interpretability, making it challenging to understand the underlying mechanisms driving their predictions. This can be a 
drawback when aiming for a clear understanding of neural alterations in PTSD. Moreover, ML methods heavily rely on the quality and 
representativeness of the training data. Issues such as bias or noise in the data may impact the generalization and validity of the results. 
In summary, a synergistic approach combining ML and traditional analytical methods might prove effective. Traditional methods 
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provide insights into specific biomarkers or brain regions based on prior knowledge, while ML methods uncover more complex and 
abstract relationships. 

Within the scope of this review, the literature predominantly focuses on the diagnosis of PTSD and the prediction of its onset. 
Notably, Sheynin et al. [37] showcased a novel application of deep learning coupled with neuroimaging to predict the progression of 
PTSD symptoms at distinct time points post-occurrence. This represents a compelling facet of artificial intelligence, unveiling its 
potential beyond mere diagnostic capabilities. The ability to anticipate the trajectory of symptoms following PTSD onset, as 
demonstrated by Sheynin et al.’s study, presents a promising avenue for future research. This suggests a paradigm shift towards 
leveraging machine learning not only for early identification but also for forecasting symptom dynamics over time. Such predictive 
capabilities hold immense potential for clinicians to proactively intervene and tailor treatments based on specific time points and 
symptomatology. This nuanced approach aligns with the evolving landscape of artificial intelligence in mental health research, 
signifying a promising direction for advancing both diagnostic and therapeutic strategies in the clinical management of PTSD. 

There are various restrictions that should be taken into account with this systematic review. The majority of the studies extracted 
categorical features using resting-state fMRI, with only one study using both diffusion MRI and fMRI data. While resting-state fMRI is a 
promising technique for measuring spontaneous brain activity, it lacks direct observation of anatomical connections. Future studies 
may focus on merging resting-state fMRI and diffusion MRI data, as well as imaging data with other clinical biological data to train 
more robust models. The role of the elapsed time since trauma emerged as a critical factor in understanding the applicability and 
effectiveness of ML techniques. Moving forward, researchers are encouraged to delve into the temporal dynamics of trauma effects, 
investigating how machine learning can discern patterns and alterations in the brain at different post-trauma intervals. This approach 
may unveil nuanced insights into the evolving nature of trauma’s impact on neural mechanisms over time. Moreover，in the included 
studies, there were no longitudinal experimental designs, and all studies only differentiated between subgroups based on brain 
function or structure; future experimental designs may need to be prospectively designed and observe the process of treatment 
response and drug type/dose effects on PTSD brain structure or neural networks. The task completed by Nicholson et al., （2022）is 
the single study in this review that utilizes changes in neural networks during treatment to classify PTSD and healthy controls; the goal 
of further research is to provide as much evidence as possible for clinically targeted interventions in relevant brain regions. In addition 
to this, another important aspect is the need for early differentiation of HC from high-risk groups. In fact, it seems to be easier to 
distinguish patients from HC than from high-risk groups, and the application of simply distinguishing PTSD from HC is still limited in 
the real clinical field. Despite including comparisons between TEHC and non-TEHC groups in our incorporated studies, there is 
currently a lack of dedicated research specifically addressing individuals exposed to trauma without PTSD and normal controls. Future 
research efforts could concentrate on leveraging machine learning techniques for a more accurate differentiation between these two 
groups, exploring potential biological markers and neural mechanisms. This approach not only enhances our comprehension of the 
impact of trauma on the brain but also introduces new perspectives for precise diagnostic and treatment strategies. As a result, the goal 
will be to make ML more complex so that it can do not only category classifications but also dimensional diagnostics (eg, patients with 
prodromal symptoms of PTSD from HC). 

5. Conclusion 

In conclusion, the adoption of ML algorithms will be beneficial in automatically classifying patients with PTSD based on neuro-
imaging. These strategies, if consistently incorporated in the diagnosis process of patients with PTSD, might enable clinicians recognize 
individuals even in the early stages of the condition, offering a significant treatment advantage. We anticipate that the increased 
accuracy demonstrated by the various predictive models illustrated in this systematic review, as well as new models resulting from the 
integration of multiple ML techniques, will become increasingly important in the future for the early diagnosis and evaluation of 
treatment response, as well as determining the prognosis of patients with PTSD. To truly benefit patients, the next challenge will be to 
arrive at an accurate diagnosis not just through clinical examination but also with the assistance of ML algorithms. 
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Abbreviation list 

PTSD post-traumatic stress disorder 
fMRI functional MRI: structural MRI 
DTI Diffusion Weighted Imaging 
ML Machine learning 
PRISMA Preferred Reporting Items for Systematic reviews and Meta-Analyses 
SVM support vector machine 
AI artificial intelligence 
TEHC trauma-exposed healthy controls 
HC healthy controls 
RVM random vector machine 
MGPC Multiclass Gaussian process classification 
MKL multi-kernel learning 
GMV gray matter volume 
ALFF amplitude of low frequency fluctuations 
ReHo regional homogeneity 
PTSD + MDD PTSD and major depressive disorder 
ROIs region of interests 
FA fractional anisotropy 
RD radial diffusivity 
MD mean diffusivity 
AD axial diffusivity 
PTSD + DS PTSD and dissociative subtypes 
ICN intrinsic connectivity networks 
NFB neurofeedback 
DMN default mode network 
VIS visual network 
DAN dorsal attention network 
ANNs artificial neural networks 
FC functional connectivity 
SCZ schizophrenia 
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