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Abstract

Objective

To evaluate the in vivo technical feasibility, efficiency, and safety of switching bipolar (SB)

and switching monopolar (SM) radiofrequency ablation (RFA) as a no-touch ablation tech-

nique in the porcine liver.

Materials and methods

The animal care and use committee approved this animal study and 16 pigs were used in

two independent experiments. In the first experiment, RFA was performed on 2-cm tumor

mimickers in the liver using a no-touch technique in the SM mode (2 groups, SM1: 10 min-

utes, n = 10; SM2: 15 minutes, n = 10) and SB-mode (1 group, SB: 10 minutes, n = 10). The

technical success with sufficient safety margins, creation of confluent necrosis, ablation

size, and distance between the electrode and ablation zone margin (DEM), were compared

between groups. In the second experiment, thermal injury to the adjacent anatomic organs

was compared between SM-RFA (15 minutes, n = 13) and SB-RFA modes (10 minutes, n =

13).

Results

The rates of the technical success and the creation of confluent necrosis were higher in the

SB group than in the SM1 groups (100% vs. 60% and 90% vs. 40%, both p < 0.05). The

ablation volume in the SM2 group was significantly larger than that in the SB group (59.2

±18.7 cm3 vs. 39.8±9.7 cm3, p < 0.05), and the DEM in the SM2 group was also larger than

that in the SB group (1.39±0.21 cm vs. 1.07±0.10 cm, p < 0.05). In the second experiment,

the incidence of thermal injury to the adjacent organs and tissues in the SB group (23.1%,

3/13) was significantly lower than that in the SM group (69.2%, 8/13) (p = 0.021).
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Conclusion

SB-RFA was more advantageous for a no-touch technique for liver tumors, showing the

potential of a better safety profile than SM-RFA.

Introduction

Radiofrequency ablation (RFA) is widely accepted as a nonsurgical option for treating primary

and metastatic hepatic tumors, a potentially curative treatment for early-stage hepatocellular

carcinoma (HCC), and as a bridge therapy for patients waiting for a liver transplant [1–5]. Fur-

thermore, according to the recent Barcelona Clinic Liver Cancer Staging and Treatment Strat-

egy guidelines for HCCs, RFA is favored over surgical resection for very early stage HCCs

(single nodule <2 cm) [3]. However, one of the major disadvantages of RFA is a higher local

tumor progression rate when compared to conventional surgery [6, 7]. Conventionally, RFA is

performed by inserting a monopolar electrode into the tumor. However, it is not always possi-

ble to generate an ablation zone with a sufficient peritumoral margin (>5 mm) when using

single monopolar electrode, and so it is often necessary to perform multiple ablations with

overlapping techniques or ablations with multiple electrodes [8]. Various methods have been

used to generate larger and more uniform ablation zones in a given time duration. These

include switching ablation with or without a multipolar approach, modifying tissue character-

istics using saline perfusion, and combination therapy with RFA or other therapies such as

arterial chemoembolization [8–12]. However, despite their success in generating a sufficient

ablation margin, these approaches also increased treatment complexity and complications [8].

The use of multiple ablation electrodes or multiple overlapping techniques can increase the

risk of tumor seeding along the puncture route particularly for tumors located on the liver sur-

face; however, this risk can be lowered by the use of tract ablation [13–16].

Recently, a number of studies [17–20] demonstrated the feasibility of multipolar RFA using

multiple electrodes with no-touch techniques, and the promising outcomes of the no-touch

RFA included high technical success, local tumor progression-free survival rates, and the

absence of tract seeding episodes in HCC treatment. To avoid direct puncturing of the tumors,

no-touch RFA is performed by inserting multiple electrodes outside of the tumor tissue. Thus,

the risk of tract seeding is extremely low and a sufficient peritumoral margin is achievable.

However, this technique requires a relatively long ablation time (18.5–27.4 minutes) and a

significant amount of radiofrequency energy, which may result in parenchymal damage out-

side of the target tumor [17–20]. In monopolar RFA, the current spreads from each electrode

centrifugally to the periphery and treatment was performed with a single electrode, whereas

during bipolar RFA the electrical current flows between a pair of electrode. So theoretically,

delivery of a high-density current into target tissues could be obtained more quickly in a

bipolar mode than a monopolar mode, and subsequently, the ablation of tissues lateral to the

electrodes could be reduced [8]. Although increased ablation efficiency is achieved using mul-

tipolar or switching bipolar RFA [21–23], a comparison between monopolar and bipolar RFAs

for the no-touch technique has not been assessed in vivo.

Therefore, we evaluated the in vivo technical feasibility, efficiency, and safety of switching

bipolar (SB) and switching monopolar (SM) radiofrequency ablation (RFA) as a no-touch

ablation technique in the porcine liver.
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Materials and methods

This study received technical support and a research grant from STARmed Co. (Goyang,

Republic of Korea). All authors had complete control of all the experimental data and informa-

tion submitted for publication at all times. The funders had no role in study design, data collec-

tion and analysis, decision to publish, or preparation of the manuscript.

The RFA equipment

A prototype of the multichannel radiofrequency (RF) system was developed to deliver RF

energy in the SB mode using three electrodes. This allows the automatic switching of energy to

one electrode or electrode pair depending on changes in electrical impedance, using the inher-

ent “off time” of the power pulsing algorithm [8, 11, 24]. If the impedance of an active elec-

trode or electrode pair increased to 50 ohms above baseline impedance, the energy delivery

was switched to the inactive electrode pair or electrode [25]. A separable clustered electrode

(Octopus1 electrode; STARmed, Goyang, Korea) with three internally cooled electrodes and

a 2.5-cm long active tip, was used for the no-touch technique [25] (Fig 1).

Chilled normal saline solution was infused into the lumen of each electrode and a peristaltic

pump (VIVA Pump; STARmed, Goyang, Korea) was used to ensure the tip temperature

remained below 25˚C. Technical parameters such as average power output, electrical imped-

ance, currents applied, and total energy delivered were monitored continuously and recorded

using a monitoring software (VIVA Monitor Software V 1.0; STARmed, Goyang, Korea).

Animals, anesthesia, and surgery

The study was approved by our Institutional Animal Care and Use Committee and all experi-

ments were conducted in accordance with institutional guidelines. A total of 16 domestic male

pigs (mean weight, 65 kg; range 60–70 kg) were used in our in vivo studies.

Each animal was sedated with an intramuscular injection of zolazepam (5 mg/kg, Zoletil;

Virbac, Carroscedex, France) and xylazine (10 mg/ kg, Rompun; Bayer-Schering Pharma, Ber-

lin, Germany), and the animals were intubated and ventilated during the procedures. Anesthe-

sia was maintained by the inhalation of 1%-4% isofluorane (IsoFlo1; Abbott Laboratories,

North Chicago, IL) in pure oxygen gas with mechanical ventilation. The pigs were placed in

the supine position and a midline incision was made after sterile draping. One of the authors

(W.C., with five years of experience in the RFA procedure and experiments) performed the

ablation procedures through the midline incision under the guidance of ultrasonography (6–

12 MHz linear transducer; Accuvix XQ; Medison, Seoul, Republic of Korea). Two to four abla-

tion zones were generated in the liver of each animal; however, only one ablation was per-

formed in each lobe of the liver. Therefore, a total of 56 ablation zones were created in 16 pigs.

The animals’ vital signs, including pulse rate, electrocardiogram, and temperatures, were care-

fully monitored during the entire procedure.

Tumor mimickers

For simulating the no-touch tumor ablation technique, tumor mimickers were made using a

mixture of agarose, cellulose, glycerol and methylene blue as previously reported [26]. To cre-

ate a 2 cm sized spherical or elliptical mass, approximately 2.5 cc of the mixture was injected

using a 18G spinal needle into the porcine liver under the guidance of ultrasonography. In

order to avoid the heat sink effect, care was taken not to inject tumor mimickers in the vicinity

of large vessels. Tumor mimickers were detected via ultrasonography as hyperechoic lesions

and blue nodules on gross specimens (Fig 2). Three perpendicular diameters of each tumor
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mimicker were measured using the electronic caliper on the ultrasonograph, and the volume

was calculated by approximating the shape of the lesion to an ellipsoid.

In vivo experimental setting

We performed two in vivo experimental studies to compare the efficiency and safety of per-

forming no-touch RFA techniques in porcine livers, using SM and SB energy delivery modes.

Experiment 1 compared the feasibility and efficiency of SM- and SB-RFA using no- touch

ablation techniques by means of assessing technical success and ablation zone. Tumor mi-

mickers were generated and injected as previously described. Three electrodes were inserted

around the tumor mimicker through a triangular acryl plate containing multiple holes to

maintain an interelectrode distance of 2.5 cm [25].

Experiment 2 was conducted to evaluate the safety of SM- and SB-RFA techniques. As a

safety parameter, we checked the presence of thermal injury in adjacent organs or structures

including the stomach, gallbladder, small bowel, and biliary tract at each segmental level. One

Fig 1. Photograph of a prototype RFA generator and a clustered separable Octopus® electrode.

https://doi.org/10.1371/journal.pone.0176350.g001
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of the electrodes was inserted in the liver 1 cm away from the liver surface, gallbladder or bili-

ary tract (Fig 2). The other two electrodes were inserted through the same acryl plate used in

experiment 1, thereby ensuring an inter-electrode interval of 2.5 cm. Temperature at the center

of each ablation zone was measured in real-time using a thermometer placed at the center of

the ablation zone. Moreover, times to reach tissue temperatures of 50˚C, 60˚C, 70˚C, 80˚C,

and 90˚C were recorded.

Fig 2. (a) Ultrasonograph of the agarose-based tumor-mimicker. (b) Photograph of the tumor mimicker on a sliced specimen. Ultrasonographs of an

electrode inserted 1 cm apart from (c) the gallbladder and (d) liver surface. Electrodes were inserted parallel to the liver surface or gallbladder where

possible.

https://doi.org/10.1371/journal.pone.0176350.g002
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Ablation protocols

In experiment 1, a total of 30 ablation lesions were made in either the SM mode (n = 20) or SB

mode (n = 10). RF energy was applied in the SM mode for 10 minutes (group SM1, n = 10) or

15 minutes (group SM2, n = 10) and in the SB mode for 10 minutes (group SB, n = 10). The

modes of the ablation were randomized after inserting electrodes to minimize a selection bias

and other variations, including potential heat sink effects. The maximum RF delivered energy

was 200 W in the SM mode and 100 W in the SB mode. The smaller energy level and 10-minute

ablation time used in the SB mode were based on previous studies reporting that bipolar RFA

could be performed with a relatively faster ablation time a better energy delivery efficiency than

monopolar RFA [8, 21, 23]. In our clinical RFA practice we usually use 10~15 minutes ablation

time as a single RF energy application unit with SM mode. Therefore, we evaluated the ablative

efficiency of SM mode in two subgroups using the same 10 minutes ablation time, as well as a

longer 15 minutes ablation time; these subgroups were SM1 and SM2, respectively [21, 23].

In experiment 2, thermal injury was compared between 15 minutes SM ablation and 10

minutes SB ablation modes. The maximum RF energy and ablation times were the same as in

experiment 1. The rates of thermal injury in our previous ex vivo study were 30% and 100% in

SB-RFA and SM-RFA using the same ablation time. However, we considered the heat sink

effect might decrease the rates to 20% and 80% in SB-RFA and SM-RFA, respectively. The

sample size was calculated with 0.05 of alpha and 0.20 of beta and therefore 13 ablations per

group were required. We performed 26 ablations and the presence of thermal injury in the

stomach (n = 4), gallbladder (n = 4), small bowel (n = 3) and segmental intrahepatic biliary

tract (n = 2) were checked in each group.

Assessment of technical success and ablation zone

All animals were euthanized by intravenous injection of potassium chloride immediately after

the RFAs were performed.

The livers were removed en bloc and hepatic segments containing ablation zones were

excised along the electrode tract, then sliced in the transverse plane perpendicular to the elec-

trode tract axis at 5–7 mm intervals so that sections included the largest areas of ablation and

tumor mimicker. To prevent any bias in the measurements of ablation size, slices were photo-

graphed beside a ruler on a copy stand using a digital camera (Nikon Coolpix S6900; Nikon

Inc., Tokyo, Japan). Two observers (W.C. and a technician, with 5 years and 10 years of experi-

ence in RFA experiments) measured the vertical diameter (Dv) in the vertical plane, the long-

axis diameter (Dmx) and the short-axis diameter (Dmi) of RF-induced ablation zones at the

transverse plane with the maximum area in consensus [27]. Technical success of the no-touch

technique, size and shape of the ablation zone were evaluated. A technical success in terms of

ablation was defined as>5-mm peritumoral ablation margins outside the tumor mimicker in

all directions on the slices [28–30] (Fig 3).

Specimens were stained with 2% 2,3,5-triphenyl tetrazolium chloride (TTC) (Sigma-

Aldrich, St Louis, MO) for 30 minutes at 20–25˚C to assess cell viability. Distances between

the electrode and outer margin of ablation zone (DEM) were measured on the plane with the

maximum coagulation area (Fig 3). If the ablation zone reached the liver surface, DEM near

the saturated surface was not measured, and the mean value of the measurable DEMs was

calculated (Fig 3). In cases with confluent or partial confluent necrosis, the shape of the RF-

induced ablation zone was quantitatively evaluated on the same plane using the ratio between

the Dmi and Dmx and the circularity defined by the following formula: circularity = 4πA/P2,

where A is the area of the measured zone and P is the perimeter of the area [23]. All measure-

ments of diameter, distance, and circularity were performed on image files of the slices using
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Image J software (https://imagej.nih.gov). The volumes of ablation zones were only calculated

when technical success was achieved. In the case of confluent ablation, the volume was calcu-

lated using the following formula by approximating the shape of the lesion to an ellipsoid: π
(Dv × Dmx × Dmi)/6. In cases where the ablation zone was non-confluent, an ellipse inter-

sected by the tangent points of the coagulation zone was drawn; the maximum (Dmx-eff) and

minimum (Dmi-eff) diameters of the ellipse were measured. The volumes of the ablation

zones were evaluated using the following formula according to the same approximation of the

shape to an ellipsoid: Volume = π/6 × Dmx-eff × Dmi-eff × Dv. In order to compare the vari-

ability in ablation volumes among the three groups, the coefficient of variation of the ablation

volume was calculated as the ratio of the standard deviation to the mean value of gross ablation

volume. The effective ablation volume (Volume-eff) was also calculated using the formula:

Volume-eff = π/6 × Dmin3, where Dmin is the shortest diameter measured.

Assessment of thermal injury

Thermal injury of adjacent organs or biliary tract was checked as a safety parameter. After

sacrificing the animals, the adjacent stomach, small bowel, gallbladder and liver segment

Fig 3. Photographs showing transverse and vertical planes of the specimen. (a, b) technical success with confluent necrosis (in the SB group). (d, e)

technical failure with partial necrosis (in the SM2 group). (c) same specimen as shown in Fig 3a after TTC treatment. Arrows indicate the distance between

the outer margin of the ablation zone and the electrode.

https://doi.org/10.1371/journal.pone.0176350.g003
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containing targeted biliary tract were resected and fixed in 40 g/L formaldehyde solution.

Specimens were cut into 3-mm thick slices, embedded in paraffin, and stained with hematoxy-

lin and eosin for analysis by light microscopy. One of the authors (K.B.L. with ten years of clin-

ical experience in the interpretation of liver and gastrointestinal pathology) reviewed the slides

for the presence and depth of thermal injury. The depth of thermal injury was recorded as the

deepest layer with thermal injury for the stomach, small bowel, and gallbladder [31–34].

Although an electrode was inserted 1cm away from the liver surface, gall bladder or biliary

tract using USG guidance, distances were re-measured on the excised liver specimens using

same manner, previously described for DEM measurement. And whether the ablation zone

was reached to the liver surface adjacent to the target organs or biliary tract was recorded.

Statistical analysis

For each experiment, the results were presented as the mean value ± standard deviation (SD).

In experiment 1, results were compared between the SM-RFA groups (SM1 and SM2) and the

SB-RFA group (SB) and then subgroup analyses among these three groups (SM1, SM2, and

SB) were performed. The measured and calculated values as well as the monitored technical

parameters were compared by t-test with unequal variances and the analysis of variance

(ANOVA) test with Scheffe’s method as a post-hoc analysis. Regarding the rates of technical

success and creation of confluent necrosis, we used the chi-square test and Marascuilo proce-

dure for multiple comparisons of proportions [35]. The rate of thermal injury was compared

using the chi-square test; and times to reach certain temperatures were compared using the t-

test with unequal variances. For all statistical analyses, p-values< 0.05 were considered statisti-

cally significant. Statistical analyses were performed using the MedCalc statistical software,

version 12.2.1 (MedCalc Software, Mariakerke, Belgium).

Results

Technical parameters and tumor mimickers

The maximum diameters of tumor mimickers were 1.99 ± 0.25 cm, 2.04 ± 0.15 cm, and

2.08 ± 0.20 cm, and their volumes were calculated to be 2.78 ± 0.68 cm3, 2.41 ± 0.69 cm3, and

2.42 ± 0.50 cm3 in the groups SM1, SM2, and SB, respectively. Despite efforts to avoid perivas-

cular areas during implantation of tumor mimickers, we found that 30% (3/10), 40% (4/10),

and 30% (3/10) of mimickers were contiguous to large vessels (> 3 mm) in the groups SM1,

SM2, and SB, respectively [36].

The mean electrical impedance of SM mode was significantly lower than that of SB mode

(all p-values< 0.001) (Table 1 and S1 Table). The average power and total amounts of energy

delivered were significantly lower in the SB mode than in the SM mode (all p-values< 0.001).

There were no significant differences in the maximum diameter and volumes of tumor

mimickers among the groups (p = 0.580 and 0.264, respectively).

Table 1. Measured values of technical parameters according to the power application modes.

Parameters Group SM1 (n = 10) Group SM2 (n = 10) Group SB (n = 10) SM1 vs. SM2 SM1 vs. SB SM2 vs. SB

Total energy delivered (Kcal) 11.2 ± 0.7 16.2 ± 2.0 8.2 ± 0.8 < 0.001 < 0.001 < 0.001

Average power (W) 105.7 ± 5.8 102.2 ± 7.8 79.1 ± 4.4 0.266 < 0.001 < 0.001

Impedance (Ohm) 65.3 ± 8.2 63.3 ± 7.0 84.9 ± 12.3 0.563 < 0.001 < 0.001

Note–SM = switching monopolar, SB = switching bipolar.

https://doi.org/10.1371/journal.pone.0176350.t001
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Technical success, size of ablation, and shape analysis

Technical success. A 100% (10/10) technical success was achieved using SB-RFA, which

was significantly higher than the success of SM-RFA (SM1 and SM2, 65% [13/20], p = 0.0357).

Moreover, subgroup analysis determined the technical success rate to be higher in the SB group

than in the SM1 groups (100% [10/10] vs. 60% [6/10], p< 0.05). Perivascular tumor mimickers

reduced the technical success rates to 0% (0/3), 25% (1/4), and 100% (3/3) in the groups SM1,

SM2, and SB, respectively. Technical success rate for perivascular tumor mimickers was higher

in the SB group than in the SM2 and SM1 groups (p<0.05). When cases of perivascular tumor

mimickers were excluded, the technical success rates increased to 85.7% (6/7) and 100% (6/6) in

the SM1 and SM2 groups and statistically not different among the three groups. The rate of con-

fluent necrosis was higher in the SB group than in either the SM1 group (90% [9/10] and 40%

[4/10], p< 0.05) or SM2 group; however, the difference in the rate between the SB and SM2

groups was not statistically significant (Table 2 and S1 Table, p> 0.05).

Measurements of ablation size. The volume of gross ablation was significantly smaller

with SB- than with SM2-RF (39.8 ± 9.7 cm3 and 59.2 ± 18.7 cm3) (Table 3 and S1 Table). The

overall DEM was lower in SB-RFA than in SM-RFA (1.31 ± 0.19 cm, and 1.07 ± 0.10 cm,

respectively, p< 0.001). DEMs of SM1, SM2, and SB were 1.22 ± 0.14 cm, 1.39 ± 0.21 cm, and

Table 2. Results of the technical success rate and shape analysis of RF-induced ablation zones in each group.

Parameters SM-RFA

(n = 20)

SB-RFA

(n = 10)

p-value Group SM1

(n = 10)

Group SM2

(n = 10)

Group SB

(n = 10)

p-value

SM1

vs. SM2

SM1

vs. SB

SM2

vs. SB

Qualitative analysis of Coagulation

Necrosis

Technical Success 65% (13/20) 100% (10/10) 0.0357 60% (6/10) 70% (7/10) 100% (10/10) NS < 0.05 NS

Confluent necrosis 55% (11/20) 90% (9/10) 0.0595 40% (4/10) 70% (7/10) 90% (9/10) NS <0.05 NS

Partial confluent necrosis 35% (7/20) 10% (1/10) 0.1512 40% (4/10) 30% (3/10) 10% (1/10) NS NS NS

Separated necrosis 10% (2/20) 0% (0/10) 0.3088 20% (2/10) 0% (0/10) 0% (0/10) NS NS NS

Quantitative analysis of Coagulation

Necrosis

Circularity 0.86 ± 0.08 0.91 ± 0.03 0.027 0.85 ± 0.07 0.87 ± 0.09 0.91 ± 0.03 0.234

Dmi/Dmx Ratio 0.88 ± 0.05 0.86 ± 0.10 0.982 0.84 ± 0.11 0.88 ± 0.09 0.86 ± 0.10 0.756

Note–SM = switching monopolar, SB = switching bipolar, Dmx = maximum diameter of the ablative zone, Dmi = minimum diameter of the ablative zone,

NS = not significant.

https://doi.org/10.1371/journal.pone.0176350.t002

Table 3. Results of ablation size measurement in each group.

Parameters SM-RFA

(n = 20)

SB-RFA

(n = 10)

p-value Group SM1

(n = 10)

Group SM2

(n = 10)

Group SB

(n = 10)

p-value SM1

vs. SM2

SM1

vs. SB

SM2

vs. SB

Dmx (cm) 4.91 ± 0.72 4.54 ± 0.33 0.114 4.57 ± 0.55 5.19 ± 0.76 4.54 ± 0.33 0.052

Dmi (cm) 4.33 ± 0.91 3.91 ± 0.53 0.188 3.87 ± 0.87 4.71 ± 0.79 3.91 ± 0.53 0.209

Dv (cm) 4.32 ± 0.65 4.27 ± 0.56 0.774 4.07 ± 0.63 4.53 ± 0.62 4.27 ± 0.56 0.383

Gross Ablation volume (cm3) 50.0 ± 19.5 39.8 ± 9.7 0.117 39.3 ± 15.3 59.2 ± 18.7 39.8 ± 9.7 0.023 NS NS < 0.05

Effective Ablation volume (cm3) 34.3 ± 12.7 29.5 ± 10.5 0.331 27.1 ± 12.6 40.4 ± 9.7 29.5 ± 10.5 0.863

DEM (cm) 1.31 ± 0.19 1.07 ± 0.10 < 0.001 1.22 ± 0.14 1.39 ± 0.21 1.07 ± 0.10 0.002 NS NS < 0.05

CV of the volume (%) 39 24.2 38.9 31.6 24.2

Note–SM = switching monopolar, SB = switching bipolar, Dmx = maximum diameter of the ablative zone, Dmi = minimum diameter of the ablative zone,

Dv = vertical diameter of the ablative zone, DEM = distance between electrode and ablation zone margin, CV, coefficient of variation.

https://doi.org/10.1371/journal.pone.0176350.t003
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1.07 ± 0.10 cm, respectively, and the SB group had a significantly lower DEM than the SM2

group (p< 0.05). Other size parameters including diameters and effective ablation volume

were not significantly different between the groups.

Quantitative analysis of ablation shape. Circularity was significantly higher when

SB-RFA was used compared to that when SM-RFA was used (0.91 ± 0.03 vs. 0.86 ± 0.08,

p = 0.027); however, a subgroup analysis did not reveal any significant differences between the

groups.

Time to reach specified temperatures

The times to reach 50˚C, 60˚C 70˚C, 80˚C, and 90˚C were 94.0 ± 54.1, 159.4 ± 87.1,

228.3 ± 143.5, 310.3 ± 193.1, 396.3 ± 212.3 seconds in SM-RFA and 62.8 ± 44.0, 109.0 ± 76.1,

114.5 ± 54.4, 171.4 ± 80.1, 221.8 ± 94.3 seconds in SB-RFA and significantly shorter in the

SB-RFA group than in the SM-RFA group (p = 0.015, 0.030 and 0.048 for 70˚C, 80, and 90˚C;

p = 0.091 for 50˚C and p = 0.102 for 60˚C).

Safety assessment

Mean distances between an electrode and liver surface or targeted biliary tract were 1.16 ± 0.11

cm (range: 0.99 cm– 1.35 cm) and 1.11 ± 0.09 cm (range: 0.94 cm– 1.28 cm) in SM-RFA and

SB-RFA, respectively (p = 0.218)whilst we had tried to insert an electrode keeping 1cm away

from targeted organ or biliary tract. When the ablation area was reached to the targeted liver

surface, and biliary tract, thermal injury of the adjacent organs or biliary tract was always

found.

Thermal injury to adjacent organs and biliary tracts was less frequently noted with SB-RFA

than with SM-RFA (23.1% (3/13) and 69.2% (9/13), respectively, p = 0.021) (Table 4 and S2

Table; Fig 4). Excluding injury to the biliary tract, the rate of thermal injury penetrating the

muscle layer was lower when SB-RFA was used compared to that when SM-RFA was used;

however, these differences were not statistically significant (18.2% (2/11) and 54.5% (6/11),

respectively, p = 0.084) (Figs 5–7).

Discussion

Our in vivo study demonstrated that the no-touch RFA technique, using an Octopus electrode,

was feasible for treating tumors using SM and SB energy delivery modes. With the exception

Table 4. Thermal injury to the adjacent organs and structures in Each RFA mode.

Mode Target Thermal injury Depth

SM-RFA Stomach 75% (3/4) Proper muscle (n = 1); Mucosa (n = 2)

Gallbladder 50% (2/4) Mucosa (n = 2)

Small bowel 100% (3/3) Proper muscle (n = 1); Submucosa (n = 1); Mucosa (n = 1)

Biliary tract 50% (1/2)

Total 69.2% (9/13)

SB-RFA Stomach 25% (1/4) Subserosa (n = 1)

Gallbladder 50% (2/4) Mucosa (n = 2)

Small bowel 0% (0/3)

Biliary tract 0% (0/2)

Total 23.1% (3/13)

Note–SM = switching monopolar, SB = switching bipolar.

https://doi.org/10.1371/journal.pone.0176350.t004
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of cases with perivascular tumor mimickers, technical success rates were 100% in both the

SM2 and SB groups. However, the overall rates of technical success and confluent necrosis

were significantly better in the SB group compared with the SM1 group. Technical success

rates in SM-RFA could be increased with a longer ablation time. Technical success rate for the

perivascular mimickers was increased in the SM2 group (25% (1/4)) compared to the SM1

group (0%, 0/3), but not statistically significant and still lower than that of the SB group (100%

(3/3), p< 0.05). Therefore, in order to achieve confluent necrosis with SM-RFA, it might be

necessary to perform additional ablations while changing the position of electrodes; however,

Fig 4. (a) Photograph showing the absence of stomach injury after SB-RFA. (b) Corresponding liver specimen, showing the ablation zone did not reach

the liver surface abutting the stomach (arrow). (c) Photograph shows discolored thickened whitish area of the stomach suggesting thermal injury. (d)

Corresponding liver specimen, showing the ablation zone reached the liver surface abutting the stomach (arrow).

https://doi.org/10.1371/journal.pone.0176350.g004
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this will increase the complexity of the procedure and related complications. Therefore, in sin-

gle ablation session, a higher technical success rate using the no-touch technique may be

achieved with SB-RFA rather than with SM-RFA.

The gross ablation volume was significantly larger in the SM2 group than in the SB group;

DEM was significantly smaller in the SB group than in the SM2 group (p< 0.05). Although

the previous ex vivo study showed DEM and gross ablation volume were significantly smaller

in the SB group compared to the SM1 and SM2 groups [37], but in our result of this in vivo

study, differences between SM1 and SB groups were not significant. Technical failure was

determined as insufficient peritumoral margin with partial or separated necrosis and may be

caused by the heat sink effect of adjacent vessels. Differences between ex vivo and in vivo stud-

ies showed heat sink effect in RFA. With respect to energy delivery, monopolar RFA was

Fig 5. (a) Photograph shows discolored thickened whitish area of the stomach suggesting thermal injury. (b) (c) Corresponding stomach specimen with

hematoxylin and eosin staining (H&E) shows thermal injury to the mucosa. Focal mucosal necrosis is present in (b) (arrow) (x40), and myxoid degeneration

of serosa, subserosa and proper muscle with dilated lymphatic channels, and fluid accumulation in subserosa are present in (c) (arrow) (x40). (d) Photograph

shows the H&E stained stomach specimen without thermal injury (x12.5).

https://doi.org/10.1371/journal.pone.0176350.g005
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vulnerable to the heat sink phenomenon, and the presence of large peritumoral vessels

increased the risk of incomplete ablation [36, 38], whereas, SB-RFA was less affected by the

heat sink phenomenon compared with SM-RFA in the perfused ex vivo bovine liver model

[39]. Since large-scale ablations around the perimeter of the tumor may be associated with a

greater risk of thermal injury to adjacent structures, it is necessary to create a sufficiently large

zone of confluent ablation zone to generate an adequate ablation margin; however it should

not be too large as that could create unnecessary injury to the adjacent normal tissue [23]. In

single ablation session, a higher technical success rate using the no-touch technique may be

achieved with SB-RFA rather than with SM-RFA.

Theoretically, no-touch RFA techniques can provide several advantages over conventional

tumor puncture RFA techniques, such as the absence of tract seeding or peritoneal seeding,

and the absence of an increase in intratumoral pressure. However, the peritumoral ablation

Fig 6. (a) Photograph shows the whitish area of the gall bladder suggesting thermal injury (arrow). (b) (c) Corresponding gall bladder specimen and

adjacent liver parenchyma with hematoxylin and eosin staining (H&E) show thermal injury to the mucosa. Mucosal and submucosal damage are

evident. Lymphatic dilatation of subserosa is noted in (b) (circle) (x12.5). The mucosal epithelium is replaced by dense fibrosis in (c) (arrow) (x100).

(d) Photograph shows the H&E stained gall bladder specimen without thermal injury (x100).

https://doi.org/10.1371/journal.pone.0176350.g006
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size could be larger for the no-touch RFA technique using multiple electrodes placed outside

the tumor than for conventional RFA methods that puncture the tumor, and may therefore,

increase the risk of thermal injury to adjacent structures. In the SM1 and SB groups, ablation

time was the same, and ablation volume and DEM were not significantly different; however,

the rates of technical success and confluent necrosis were significantly lower in the SM-RFA

than in the SB-RFA group. According to previous studies, bipolar RFA has greater energy effi-

ciency and enables a faster ablation time than monopolar RFA. The lower technical success

observed in the SM-RFA group SM1 was in good agreement with these studies [21, 23]. Ther-

mal injury was evaluated in the cases of successful ablation and ablations were compared

between SM-RFA (15 minutes) and SB-RFA (10 minutes). No-touch SB-RFA created less fre-

quent thermal injury to adjacent organs and structures than SM-RFA, although the differences

in mean DEM between SM2 and SB groups was only 0.33 cm. Moreover, in cases where there

Fig 7. (a) Photograph shows discolored thickened whitish area of the small bowel suggesting thermal injury. (b) (c) Corresponding small bowel

specimen with hematoxylin and eosin staining (H&E) shows thermal injury to the mucosa. Mucosal ulceration was noted in (b) (arrow) (x100).

Chronic active inflammation in serosa and subserosa with focal necrosis are present in (c) (arrow) (x100). (d) Photograph shows the H&E stained

small bowel specimen without thermal injury (x100).

https://doi.org/10.1371/journal.pone.0176350.g007
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were successful ablations in both SM- and SB-RFA groups, the ablation volume following SB-

RFA was significantly smaller than that in the SM2 group, and it showed less ablation of the

liver tissue outside of the electrode (shorter DEM). Conversely, the temperature at the center

of the ablation zone had risen more quickly in the SB mode than in the SM mode. These results

could be explained by the basic physical differences in electrical current flow between the SM

and SB RF energy delivery techniques. In monopolar RFA, the current spreads from each elec-

trode centrifugally to the periphery, whereas during bipolar RFA the electrical current flows

between a pair of electrodes and prevents the ablation zone from perfusion-mediated tissue

cooling effect, thereby resulting in a faster and more focal heating between the electrodes [8,

23]. In our study, although the delivered energy and power was significantly lower in SB-RFA

group, ablation volume was not significantly different between the SM1 and SB groups, which

suggest the higher energy efficiency of the SB-RFA[23]. And there is an increasing risk of skin

burn related with ground pads, when large amount of RF current was used with multiple elec-

trodes during the RFA procedure. Also, there have been theoretical concerns on RF energy

induced damage in patients with metallic implants or cardiac pacemakers in monopolar RF

ablation. But there has been no definite evidence supporting that dispersed energy through the

patients used in RFA is related to the internal damage of the body near the metallic implants

[40, 41]. Based on our results, we believe that the SB mode may be the optimal energy delivery

mode for the no-touch RFA technique than the SM mode, because it effectively increases tissue

temperature at the center, and induces lesser thermal injury to the surrounding organs.

RFA is widely accepted as one of the curative treatment options for early stage HCC in

patients who are not good surgical candidates, primarily because it is more cost-effective and

less invasive than surgery [2, 42]. Monopolar RFA is the most commonly used technique, and

requires placement of the electrode within the target tumor. It creates an ablation zone centrif-

ugally along the flow of electrical current in the tissue surrounding the electrode [27]. Risk of

tract or peritoneal seeding after RFA is inevitable [15]; however, an increased risk of tumor

seeding is associated with pericapsular tumors, poorly differentiated tumors, and high α-feto-

protein levels [43]. After Llovet et al. reported a high rate (12.5%, 4/32 patients) of tumor tract

seeding when treating HCC with RFA [43], it has been raised as a major issue, particularly in

patients treated for a curative purpose [44]. According to a systematic review of tumor seeding

after percutaneous diagnostic and therapeutic procedures for HCC [14], the mean risk for

tumor seeding after RFA alone was 1.73% (range, 0–5.56%), and after RFA with biopsy, the

mean risk increased to 2.5%. Despite the relatively low risk of tumor seeding, and considering

the cumulative risk of tract seeding for multisession RFAs or RFAs with multiple electrode

insertions, the no-touch technique could be valuable for preventing tract seeding after RFA,

particularly in patients waiting for liver transplants or patients with HCCs located on the liver

surface [44, 45]. In order to avoid capsular breach during ablation, the no-touch wedge abla-

tion technique may reduce the potential risk of tumor rupture and consequent hemorrhage

[46]. Additionally, as the drainage vessels of HCC change from hepatic veins to peritumoral

sinusoid or portal veins [47, 48], the no-touch technique can induce thrombosis in the drain-

ing peritumoral vessels which may be advantageous in decreasing the risk of metastases via the

vessels. Until now, few studies have reported on the use of no-touch tumor ablation techniques

using multipolar RFA with multiple bipolar electrodes, or multiple microwave antennae for

liver tumors, especially for subcapsular tumors [17, 20, 45, 46]. When a traditional ablation

technique using the monopolar mode with placement of electrode in the tumor has been used,

the areas near the ablation probe are heated to greater than tumor-lethal temperatures; how-

ever, this is not as readily achieved at the periphery of the ablation zone. Therefore, residual

tumor is often seen as scattered, nodular, or as eccentric enhancement at the margin of the

ablation zone [49].
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The present study has several limitations. First, the feasibility and safety of the no-touch

technique were evaluated intraoperatively; therefore, we were unable to assess the feasibility

and safety of percutaneous RFA. Thus, the feasibility of the no-touch technique in percutane-

ous RFA should be evaluated. Since the use of RFAs with multiple electrodes is routine in clini-

cal practice, the differences in safety profile between the intraoperative and percutaneous

approaches are expected to be minimal. Second, we did not compare our SB-RFA system with

the multipolar RFA system, which shows promising results for no-touch ablation [19, 20].

Third, this in vivo study was performed in a relatively small number of animals, so we could

not demonstrate significant differences in technical success between the SM2 and SB groups

and differences in thermal injury in each adjacent organ which have different characteristics

including heat sink effects. In the SM2 group, technical failure resulted from the perivascular

location of tumor mimickers. Further studies to evaluate the adjacent organ injury and heat

sink effect especially for perivascular tumors are required. Fourth, although SM-RFA with

would be feasible with no-touch technique for the non-perivascular tumor, we could not sug-

gest the optimal ablation time for SM-RFA. Because technical success rate for non-perivascular

mimicker was 100% in SM RFA for 15 minutes, the optimal ablation time to cover the whole

tumor mimicker and to reduce adjacent organ injury might be shorter than 15 minutes. Fifth,

we only tested the no-touch technique with a single inter-electrode interval of 2.5 cm. Addi-

tional studies using larger interelectrode intervals would be valuable. Finally, the RF ablations

were performed using a tumor mimicker; although there was no significant difference in tissue

impedance and ablation size between groups with or without tumor mimickers [26], the ther-

mal efficiency of the current RF system might not be translated into clinical practice owing to

different tissue textures of target tumors.

In conclusion, our results demonstrate that SB-RFA with no-touch technique enables faster

ablation with sufficient peritumoral margin and has potential to provide better safety profile

with smaller adjacent parenchymal ablation zones, sufficient peritumoral margins, and lesser

thermal injury to the adjacent organs compared with the SM-RFA techniques.
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