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Abstract
Developing suitable methods for the detection of protein complexes in protein interaction

networks continues to be an intriguing area of research. The importance of this objective

originates from the fact that protein complexes are key players in most cellular processes.

The more complexes we identify, the better we can understand normal as well as abnormal

molecular events. Up till now, various computational methods were designed for this pur-

pose. However, despite their notable performance, questions arise regarding potential

ways to improve them, in addition to ameliorative guidelines to introduce novel approaches.

A close interpretation leads to the assent that the way in which protein interaction networks

are initially viewed should be adjusted. These networks are dynamic in reality and it is nec-

essary to consider this fact to enhance the detection of protein complexes. In this paper, we

present “DyCluster”, a framework to model the dynamic aspect of protein interaction net-

works by incorporating gene expression data, through biclustering techniques, prior to

applying complex-detection algorithms. The experimental results show that DyCluster

leads to higher numbers of correctly-detected complexes with better evaluation scores. The

high accuracy achieved by DyCluster in detecting protein complexes is a valid argument in

favor of the proposed method. DyCluster is also able to detect biologically meaningful pro-

tein groups. The code and datasets used in the study are downloadable from https://github.

com/emhanna/DyCluster.

Introduction
Protein complexes are groups of interacting proteins associated to specific cellular functions
[1] and they are fundamental players in almost all biological processes. The identification of
the complexes incorporated in a protein-protein interaction (PPI) dataset is indeed highly ben-
eficial. One of the ultimate goals of this scenario is to be able to associate protein complexes
with normal molecular events, and subsequently, to link the occurrence of inconsistent pro-
cesses with different diseases. Undoubtedly, such knowledge could lead to the development of
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more effective therapies. The experimental methods designed to study the PPI and incorpo-
rated complexes, such as yeast two-hybrid (Y2H) [2] and tandem affinity purification
(TAP-MS) [3] approaches, are vulnerable to high error rates [4] and practically limited in
terms of time and cost. As a result, various computational methods were developed to comple-
ment and to reduce the required experimental efforts. A graph G = (V, E) is conventionally
used to represent proteins V and their interconnections E as nodes and edges, respectively.
Such representation was, and still is, the basis of many computational methods seeking to accu-
rately describe and to identify enclosed protein-complex structures. A large number of these
methods are based on the assumption that protein complexes correspond to dense and highly-
interconnected sub-graphs. Among those methods, we here point out: Markov Clustering
(MCL) [5] which uses random walks in protein interaction networks; the molecular complex
detection (MCODE) algorithm [6] which considers complexes as dense regions grown from
highly-weighted vertices; the clustering based on maximal cliques (CMC) method [7]; the
Affinity Propagation (AP) algorithm [8]; ClusterONE [9] which identifies protein complexes
by clustering with overlapping neighborhood expansion; the restricted neighborhood search
(RNSC) algorithm [10, 11]; and CFinder [12] which is based on the clique percolation method.
Other approaches which are not centered on the density notion were also presented; namely:
ProRank [13, 14] and ProRank+ [15] which mainly use a protein ranking algorithm to identify
essential proteins in a PPI network and form complexes accordingly; and finally PEWCC [16]
which assesses the reliability of PPI data based on the weighted clustering coefficient notion
prior to detecting protein complexes.

When compared to reference sets of biologically-identified protein complexes, most of the
introduced computational approaches could achieve good complex-detection rates with ade-
quate evaluation scores. Certainly, the higher their accuracy levels, the more they are reliable
and the more likely they can be utilized by scientists and biologists. The improvements of pro-
tein-complex detection algorithms as well as the design of novel approaches seem to meet at
the notion of reforming the way in which a PPI dataset is initially represented. PPI networks
are in fact dynamic [17]. Hence, the shift from viewing PPI networks as static to modeling the
dynamicity of these networks became fundamental [18]. This adaptation can currently be
acquired thanks to the amounts and the diversity of biological information, whether temporal,
spatial or contextual, generated by advanced experimental techniques such as ChIP-chip [19]
and ChIP-seq [20].

In this paper, first we emphasize the advantages of shifting to dynamic PPI networks, specif-
ically when it comes to the problem of detecting protein complexes; then we underline possible
approaches to model the dynamic aspect of protein interactions and we highlight some of the
existing methods. Second, we introduce “DyCluster”, a framework for the detection of protein
complexes in dynamic PPI networks modeled using gene expression data, through biclustering
techniques. Finally, we present our experimental study which shows that the results generated
by applying complex-detection methods based on our framework are better than those corre-
sponding to the methods applied on static PPI networks, in terms of the number of matched
complexes, accuracy and other evaluation scores. An additional experiment on biological data
is also presented.

Dynamic PPI Networks
As an inter-disciplinary research area, computational biology is expected to profit from the
continuous growth and diversity of biological data collected using advanced experimental tech-
niques. Such information includes, but is not limited to, gene expression data [21] which report
quantitative measurement of RNA species in cellular compartments across various conditions;
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sub-cellular localization annotations [22] which provide spatial positions of elements in cellu-
lar components; and gene ontology annotations [23] which highlight genes that are present
across different species. The enrichment of biological representations, and particularly PPI net-
works, using such data types indeed allows better replication of real cellular events through the
modeling of temporal, spatial and contextual dynamics which describe and influence cellular
processes [24–26]. When the dynamics controlling the occurrence of protein interactions are
included in PPI networks, the analytical results, and namely the detected protein complexes in
such network variants, would potentially be more accurate. Since PPI datasets are generated by
experimental techniques that are liable to high error rates [4], the computational methods
designed to explore them are also susceptible to those errors. Various filtering techniques were
thus proposed to pre-process PPI data before analyzing them, such as FSWeight [27],
AdjustCD [28] and PE-measure [16]. Nevertheless, issues also exist in other biological infor-
mation, such as gene expression data, which have yet low protein coverage in contrast with PPI
datasets that are typically very large. Despite that, the combination of different descriptive bio-
logical data may be considered as a search for evidence intersection. The higher the recurrence
of information and/or inferences in experimental results, the better could be our confidence
that they exist in reality. Consequently, dynamic PPI networks, modeled using various experi-
mental data, could verify or possibly contradict known biological concepts and may as well
uncover previously-unknown biological facts. Different kinds of information could be drawn
when exploring a PPI data set. Nonetheless, the categorization of such data is generally not
simple; as in the case of distinguishing between protein complexes and functional modules, for
example. In fact, complexes are formed by proteins which interconnect at the same time and
place, whereas the members of functional modules may interact at different times and places
[29]. Accordingly, by incorporating spatiotemporal information drawn from gene expression
and sub-cellular localization annotations datasets, for instance, such classification of network
modules can be acquired. Similarly, the biological enrichment of a PPI network potentially
allows the identification of protein sub-complexes. Many methods were developed to solve this
important research problem, but they all apply to static PPI networks [30]. The inclusion of
temporal, spatial and contextual attributes, which guide PPIs, can lower the rates of false posi-
tives and false negatives at the level of the detected complexes and their protein members as
well. In other words, these attributes can be used to cluster the proteins and their interconnec-
tions based on the conditions which govern them. A protein complex-detection method shall
be applied on the clusters, with a generalization capability indeed. Consequently, the overall
accuracy of the produced results would be better. The former potentially applies to other
exploratory approaches of PPI networks.

Instead of a single and comprehensive representation of a PPI dataset, by incorporating con-
ditionality features of PPI events, we would rather be looking at a series of snapshots of a PPI
network modeled based on either one or a combination of temporal, spatial and contextual set-
tings (Fig 1). The interpretation of a dynamic interaction network and its state transitions
depends on the types of data which are used to biologically-condition PPI events.

Gene expression data report quantities of RNA across different time points in cellular pro-
cesses. It is believed that genes with correlated expressions across different conditions most
likely interact. The combination of gene expression information with PPI data to model the
dynamics of the corresponding PPI networks could potentially reveal the processes which
underline the formation of protein complexes. For instance, Wang et al. [31] showed that a
just-in-time mechanism elapsing through continuous time points delineates the formation of
most complexes. The statistical 3-sigma principle was then used by the works presented in [31]
and [32] to define the active time points of proteins based on their gene expression levels and
consequently, introduce approaches to detect and refine protein complexes. The core-
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attachment interpretation of complexes was recently adopted in [33]; based on the dynamics
inferred by gene expression data, the identification of a protein complex is split into two main
parts: a static core consisting of proteins expressed throughout the whole cell cycle and a short-
lived dynamic attachment. The results achieved by these approaches were better than the ones
based on static PPI networks. Kim et al. [24] highlighted some of the computational methods
used to infer dynamic networks from expression data based on statistical dependence to clas-
sify nodes and edges as active or inactive. These methods include: Bayesian networks [34], rele-
vance networks [35], Markov Random Fields [36], ordinary differential equations [37] and
logic-based models [38]. Since it is favorable to incorporate the spatial dynamics towards
improving complex-detection approaches, various methods were designed to study the spatial
movements of proteins [25]. However, in addition to mathematical modeling techniques, fur-
ther approaches to appropriately integrate spatial protein dynamics in PPI networks are still
required. By providing information about genes that are shared across species, gene ontology
annotations can also be used to model the dynamics of PPI networks [26]. As an indicator of
interaction probability, various weighting schemes were introduced to assign PPI weights
based on the similarity degrees of gene ontology terms between interacting partners. Among
these approaches are SWEMODE [39], which detects communities within PPI networks based
on weighted clustering coefficient and weighted average nearest-neighbors degree measures,
and OIIP [26], which is a method to detect protein complexes in PPI networks by assigning
node and edge weights based on the size of gene annotations.

Modeling the dynamics of PPI networks through the integration of biological attributes par-
ticularly enhances the computational methods designed to detect protein complexes. It not
only participates in uncovering the mechanisms of protein-complex formation but also points
out useful details for the design of such methods. In addition, the former may help categorize
protein complexes and could be informative regarding their building blocks as well.

Methods
We hereafter present DyCluster, a framework for detecting protein complexes in dynamic PPI
networks modeled using gene expression data through biclustering techniques. Our framework
requires a gene expression dataset and a PPI dataset. It consists of five main steps:

1. Biclustering the gene expression data

2. Extracting the biclusters’ PPIs from an assigned PPI dataset

Fig 1. Snapshots of a hypothetical PPI network, showing its dynamics through different temporal, spatial and/or contextual settings.Nodes and
edges of the same color belong to the same protein complex.

doi:10.1371/journal.pone.0144163.g001

Detecting Protein Complexes Using Gene Expression Biclusters

PLOS ONE | DOI:10.1371/journal.pone.0144163 December 7, 2015 4 / 19



3. Pruning the biclusters’ PPIs

4. Detecting the protein complexes

5. Merging and filtering the sets of detected protein complexes

An outline of the approach is presented in Fig 2.

Biclustering Gene Expression Data
A gene expression dataset reports the expression levels of a large number of genes across differ-
ent environmental conditions, time points, organs, species, etc. It is conventionally represented
as a matrix in which rows and columns correspond to genes and their expression levels at dif-
ferent conditions (samples), respectively. Various methods were developed to analyze gene
expression data under the assumption that the ones which exhibit similar expression patterns
across a set of conditions are more likely functionally-related [40]. The analysis of these data-
sets is challenging because they are usually unbalanced, i.e. the number of genes is quite larger
than the number of conditions [41]. Many approaches were proposed to group genes according
to their expression patterns; in particular, data mining approaches such as classification and
clustering. Classification methods require knowing the label of the resulting classes in advance.
Several research efforts were invested in studying the application of such supervised techniques
on gene expression data [42]. However, the prior suggestion of classes somehow limits the pro-
cess of data exploration. On the other hand, typical clustering techniques have two drawbacks
when applied on gene expression data [43]: first, each gene must be grouped into a cluster even
if its similarity with the cluster members is relatively low; and second, a gene can belong to one
cluster only. Consequently, classical clustering methods cannot fully handle gene expression
data since they do not account for the fact that a large number of genes can exhibit multiple
biological functions [44], and thus can belong to more than one cluster. Besides, clustering
spans the whole samples set whereas in reality, the expression patterns of a gene cluster may be
correlated based on a subset of samples only. It is actually expected to produce groupings of co-
expressed elements under subsets of conditions whose expression patterns are presumably
independent across the rest of the conditions.

Thanks to the simultaneous two-dimensional clustering capability which they provide, biclus-
tering techniques presented better means to explore expression data [45, 46]. Actually, they allow
the identification of subsets of co-regulated genes across subsets of samples. And in analogy to
biological facts, a gene may belong to multiple clusters and a gene may not fit in any cluster in
some cases. A formal problem formulation of biclustering gene expression data is as follows: Let
A be an n�m data matrix representing a gene expression dataset consisting of n genes measured
acrossm conditions, aij is a real value corresponding to the expression level of the gene at row i
and the condition at column j. The goal is to find a set of biclusters BC(I, J); where I is a subsets
of genes which exhibit similar expression patters across the subset of conditions J.

We hereafter, highlight some of the existing biclustering approaches which will also be used
at later stages to evaluate DyCluster. The first application of biclustering on gene expression
data was conducted by Cheng and Church [47]. They presented a method (CC) consisting of a
greedy search heuristic to form the biclusters, namely the set covering algorithm, and relying
on the Mean Square Residue (MSR) measure to assess their quality based on a specified thresh-
old. The MSR of a bicluster BC, of I rows and J columns, reflects the degree of coherence of the
genes and the conditions that it includes (as shown in Eq (1)).

MSRðBCÞ ¼ 1

jIjjJj
XjIj

i¼1

XjJj

j¼1

ðbcij � bciJ � bcIj þ bcIJÞ2 ð1Þ
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Fig 2. An outline of the DyCluster framework developed for the detection of protein complexes in
dynamic PPI networks modeled as gene expression biclusters.

doi:10.1371/journal.pone.0144163.g002
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where bcij, bciJ, bcIj and bcIJ represent the elements in row i and column j, the row and the col-
umn means, and the mean of BC, respectively. The lower the MSR, the higher is the bicluster
coherence. Correlations among genes can be expressed in terms of scaling and shifting pat-
terns. One aspect of the robustness of a biclustering algorithm, when applied on expression
data, is in its ability to capture both types of patterns. MSR can only detect shifting correspon-
dences among the expression levels of genes [48]. Despite that, it has been adopted by several
similar approaches and some variants of this measure were also introduced to identify scaling
patterns [49]. Other methods, that do not use metrics to evaluate the formed groupings
throughout their operations, were also developed. The Order Preserving Sub Matrix (OPSM)
algorithm [50] searches for large sub-matrices in which genes have the same linear ordering of
the samples. The Iterative Signature Algorithm (ISA) [51] uses the signature algorithm to iden-
tify self-consistent transcriptional modules consisting of co-expressed genes and the samples
corresponding to them. A comprehensive survey of these methods and others can be found
in [45].

Given a gene expression dataset, the first stage of our framework involves biclustering these
data into subsets of genes which exhibit similar variations in their expression levels across sub-
sets of conditions, as shown in Fig 2(a).

Extracting Biclusters’ PPI Data
Given the generated set of gene biclusters as shown in Eq (2):

BC ¼ fBC1ðI1; J1Þ; BC2ðI2; J2Þ; :::;BCkðIk; JkÞg ð2Þ

The next step consists of finding the interconnections among the members of each bicluster
based on a specified PPI dataset. The interactions in the PPI dataset which involve elements
belonging to the set of proteins, Pl = {pl1, pl2, . . ., plIl}, contained in BCl(Il, Jl), are added to the
sub-PPI dataset, BCl(Il, Jl)_PPI, corresponding to this bicluster. The sub-PPI dataset will then
include the proteins initially existing in the bicluster in addition to their interaction partners
drawn from the considered PPI dataset as shown in Fig 2(b).

Pruning Biclusters’ PPI Data
The biological approaches used to identify PPIs are very sensitive to experimental conditions
and are thus susceptible to high error rates [4]. As a result, many methods were developed to
filter PPI datasets in order to reduce the level of false positive and false negative interactions
[16, 27, 28]. In our work, we use the PE method introduced by Zaki et al. in [16] to assess the
reliability of protein interactions at the level of generated biclusters and prune the correspond-
ing PPI subsets accordingly. Experiments show that PE-measure is efficient as it reduces the
level of noise in protein interaction networks by looking for sub-graphs that are closest to max-
imal cliques, based on the weighted clustering coefficient measures, Fig 2(c).

Detecting Protein Complexes
Successively, a protein-complex detection method is applied on the pruned biclusters’ PPIs,
disjointedly on every bicluster. Subsequently, several sets of identified protein complexes are
formed (DC1, DC2, . . ., DCk) as shown in Fig 2(d).

Merging and Filtering the Detected Sets of Protein Complexes
Merging and filtering the resultant sets of complexes is crucial to the overall accuracy of our
approach. However, developing an appropriate post-processing method is challenging because
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it is subject to various considerations. For instance, in its simplest form, it may consist of
matching the detected entities against each other and combining the ones which have an over-
lap greater than a certain threshold. In contrast, keeping the common members of highly-over-
lapping entities may also be explored and it might lead to better outcomes. Another approach
may think through the core-attachment interpretation of complexes [1] and consider that a
repeated subgroup of interacting proteins in several detected groupings may be a potentially
correct core, which forms different complexes when linked with various protein attachments.
Nonetheless, in our paper, we keep this task for later research stages and we hereby limit the
formation of the combined set of complexes to merging based on an overlap threshold and a
condition by which members of one complex interact with a certain percentage of members of
the other complex; in addition to filtering duplicates. This step finalizes the complex-detection
process outlined by our framework, Fig 2(e).

Experimental Study

Datasets
DyCluster requires a gene expression dataset to model the dynamic aspect of protein interac-
tions and a PPI dataset from which the interconnections among those proteins are extracted.
Indeed, the higher the homogeneity of both sets, namely in terms of the species and the num-
ber of common genes that they cover, the better are the expected outcomes. We referred to
Gene Expression Omnibus (GEO) repository [52] from which we selected the expression data-
set of accession number GSE3431 [53], entitled “Logic of the yeast metabolic cycle”. It reports
the expression levels of genes across twelve time intervals in three successive metabolic cycles.
Our choice was primarily based on its wide coverage of yeast proteins and potentially, a high
number of participants in various cellular processes. The yeast PPI dataset was downloaded
from the Database of Interacting Proteins (DIP) [54] catalogue of experimentally-determined
protein interactions. Finally, as reference set of yeast protein complexes with which we com-
pared our results is the CYC2008 catalogue [55] containing 408 complexes.

Experimental Settings
For the gene expression biclustering step, we used three algorithms: OPSM [50], CC [47] and
ISA [51]. Here, we note that although efforts are spent in the direction of finding suitable ways
to evaluate biclustering approaches [56], comparing their performances is still a challenging
task. Added to that, in order to shed the light on the advantage of using gene expression data,
we also examined the results of applying the framework using the one-way clustering method
k-means [57]. The parameters settings of these algorithms are presented in Table 1. For the CC
algorithm, as mentioned earlier, the Mean Square Residue (MSR) of a bicluster reflects the
degree of coherence of the genes and the conditions contained in it. And, the lower the MSR,
the higher is the coherence of the bicluster. Here, the upper limit of MSR is 0.5, by default. The
threshold for multiple node deletion is used throughout the iterations of the algorithm to
remove multiple nodes in the direction of lowering the MSR value of the generated biclusters.
The number of output biclusters can also be specified for the CC method, here 10. While
searching for large sub-matrices in which genes have the same linear ordering of the samples,
the number of passed models at each iteration of the OPSM algorithm is set to 10, by default.
The Iterative Signature Algorithm (ISA) identifies co-expressed genes across conditions based
on thresholds for gene scores (tg) as well as condition scores (tc), both set to 0.5 by default. It
also requires specifying the number of starting points for biclusters formation, here 100. The k-
means clustering method takes as input parameters the number of clusters to be generated, set
to 10, the number of iterations of the algorithm, set to 100, the number of replications, here 1,
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in addition to the distance measure used to calculate the level of expression similarity of genes,
here Pearson’s correlation. We used the BicAT tool [58] to visualize and perform the bicluster-
ing of the gene expression dataset.

For the step consisting of pruning the PPI data at the biclusters levels, we adopted the PE
method [16] with default parameters, specifically, with edges reliability score threshold equals
to 0.1. In terms of protein-complex detection methods, we used ProRank [13], ProRank+ [15],
ClusterONE [9] and CMC [7], MCODE [6] and CFinder [12]. ProRank, ProRank+, Cluster-
ONE and CFinder were applied with default parameters.

Given a protein interaction network, CMC generates maximal cliques which may overlap.
The highly-overlapping ones, i.e. with overlap greater than a specified threshold, are examined
for possible merging if their degree of inter-connectivity exceeds a merging threshold. The
overlap and merging thresholds were set to 0.75 and 0.5, respectively. For MCODE: the degree
cutoff for a node to be scored was set to 2; the node score cutoff was set to 0.2, i.e. a node can be
added to a cluster (complex) only if its score is no more than 20% less than the score of the
seed node of the cluster; the k-core parameter, here set to 2, filters out clusters that do not con-
tain a maximally inter-connected sub-cluster of at least degree k; and the maximum depth
parameter which limits the distance from the seed node within which the algorithm can search
for cluster members from seed was set to 3. Added to that, the generated sets of detected com-
plexes were examined and refined as follows: if two complexes have a number of overlapping
members greater than 75% of the size of the smaller complex; and if the members of the first
complex interact with at least 50% of the members of the second complex, then they are
merged.

Evaluation Scores
The quality scores, used to evaluate our approach, included: (a) the number of complexes in
the reference catalogue that are matched with at least one of the predicted complexes with an
overlap score, OS� 0.2; (b) the clustering-wise sensitivity (Sn) and (c) the clustering-wise posi-
tive predictive value (PPV) used to calculate the matching quality, mainly in terms of the cor-
rectly-matched protein members among the detected complexes; (d) the geometric accuracy
(Acc) which is the geometric mean of Sn and PPV; and (e) the maximum matching ratio
(MMR) which measures the maximal one-to-one mapping between predicted and reference
complexes by dividing the total weight of the maximum matching with the number of

Table 1. Parameter settings of the applied biclustering algorithms.

Parameter Settings

CC upper limit of MSR: δ = 0.5

threshold for multiple node deletion: α = 1.2

number of output biclusters = 10

OPSM number of passed models for each iteration: l = 10

ISA threshold of genes: tg = 0.5

threshold of chips: tc = 0.5

number of starting points = 100

k-means distance measure: Pearson’s correlation

number of clusters = 10

number of iterations = 100

number of replications = 1

doi:10.1371/journal.pone.0144163.t001
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reference complexes. Givenm predicted complexes and n reference complexes, the corre-
sponding formulas are shown in Table 2, where tij represents the number of proteins that are
found in both predicted complexm and reference complex n.

Results
According to the presented framework, the gene expression dataset, GSE3431, was processed
by the three biclustering algorithms, OPSM, CC and ISA, and by the k-means clustering algo-
rithm, one at a time. The PPIs corresponding to the proteins contained in each of the resulting
biclusters were extracted from the specified yeast PPI dataset and were pruned using PE tech-
nique. The protein complex-detection methods, listed above, were applied on the generated
biclusters. Finally, the detected sets of complexes were merged, filtered and matched against
the CYC2008 reference catalogue.

In order to observe the advantage of our approach, Table 3 presents the results of detecting
protein complexes in static PPI networks using various methods, i.e. without incorporating
gene expression data. In contrast, Table 4 shows the outcomes corresponding results to our
proposed approach. Results in both tables are in terms of the number of matched protein com-
plexes and the number of detected complexes along with the corresponding evaluation scores.

As the experimental results show, the incorporation of gene expression data in the process
of detecting protein complexes in dynamic PPI networks is indeed beneficial, in contrast with
the outcomes of detecting complexes in static networks. On one hand, it could notably increase
the number of matched complexes, as it is the case for ProRank, ProRank+ and ClusterONE.
We note here that the total number of detected complexes increased. Nevertheless, the quality
scores, which depend on this number and the number of matched complexes as well, were

Table 2. The formula of the quality scored used to evaluate our approach.

Evaluation Scores Equations

Overlap score: between two protein complexes A and B OSðA;BÞ ¼ jA\Bj2
jAjjBj

Clustering-wise sensitivity
Sn ¼

Pn

i¼1
maxmj¼1

tijPn

i¼1
ni

Clustering-wise positive predictive value
PPV ¼

Pm

j¼1
maxni¼1

tijPm

j¼1

Pn

i¼1
tij

Accuracy Acc ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sn � PPV

p

doi:10.1371/journal.pone.0144163.t002

Table 3. Experimental results of matching the detected sets of protein complexes by various detection
methods against the CYC2008 reference catalogue.

Method No. of matched
complexes

No. of detected
complexes

Acc Sn MMR PPV

ProRank 41 230 0.4715 0.3072 0.1032 0.7237

ProRank+ 46 274 0.4788 0.3371 0.1161 0.6801

ClusterONE 76 365 0.6008 0.511 0.2349 0.7064

CMC 114 4292 0.6587 0.6517 0.347 0.6658

MCODE 62 168 0.55 0.4271 0.149 0.7082

CFinder 116 6381 0.6143 0.5641 0.3776 0.669

doi:10.1371/journal.pone.0144163.t003
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slightly better. The former underlines the effectiveness and the potential of our framework in
terms of increasing the number of matches while also ameliorating the quality of the detected
entities. Here, we recall the need to develop a more suitable approach for merging, filtering and
refining the identified sets of complexes (the last step of the presented framework) which
would potentially lead to enhanced evaluation scores. On the other hand, biclustering genes
based on their expression patterns could significantly reduce the large number of complexes
detected by some algorithms, such as CMC and CFinder, while not compromising the quality
of the results.

We also examine the statistical significance of the improvements in the evaluation metrics
(Acc, Sn, MMR and PPV). To do that, we perform a paired t-test to compare the results of just
applying each complex-detection method on the PPI data, i.e. scores in each row of Table 3,
with the scores corresponding to applying the framework with the same detection method and
various biclustering algorithm (scores in Table 4). The samples are considered related since
they are based on the same PPI data and reference set of protein complexes. Fig 3 shows the
resulting p-values less than or equal to 0.1, they correspond to significant improvements given
by the proposed framework. It is important to note that p-values tend to be lower when the dif-
ference in the sample means is higher. Although the mean differences among the considered

Table 4. Experimental results of matching the detected sets of protein complexes by our proposed
framework against the CYC2008 reference catalogue in comparison to ProRank, ProRank+, Cluster-
ONE, CMC, MCODE and CFinder.

Method Biclustering
Algorithm

No. of
matched
cmplxs

No. of
detected
cmplxs

Acc Sn MMR PPV

ProRank OPSM 78 335 0.5911 0.4627 0.2103 0.755

CC 63 252 0.5658 0.4296 0.1804 0.7451

ISA 71 320 0.564 0.4332 0.195 0.7342

k-means 71 331 0.556 0.4222 0.1896 0.7322

ProRank+ OPSM 81 397 0.5982 0.5116 0.225 0.6995

CC 65 305 0.5668 0.4724 0.1947 0.6802

ISA 78 392 0.5677 0.4719 0.2231 0.683

k-means 78 424 0.5687 0.4782 0.2196 0.6764

ClusterONE OPSM 89 929 0.6426 0.5758 0.2469 0.7172

CC 78 578 0.6267 0.5465 0.2036 0.7186

ISA 87 890 0.6015 0.5506 0.2499 0.6571

k-means 83 862 0.6153 0.533 0.2334 0.7102

CMC OPSM 100 1207 0.6159 0.5566 0.2903 0.6816

CC 95 1145 0.5983 0.5264 0.2844 0.6801

ISA 100 1843 0.6041 0.5518 0.3071 0.6614

k-means 94 1126 0.6088 0.5542 0.2913 0.6689

MCODE OPSM 71 475 0.5695 0.4602 0.1835 0.7049

CC 60 285 0.545 0.4058 0.1581 0.7321

ISA 63 315 0.5529 0.4232 0.171 0.7222

k-means 74 448 0.5658 0.4583 0.1947 0.6986

CFinder OPSM 94 2079 0.6187 0.525 0.2925 0.7291

CC 98 1236 0.5977 0.559 0.3005 0.6391

ISA 99 2119 0.5738 0.5393 0.3021 0.6104

k-means 99 1352 0.5988 0.5455 0.3098 0.6574

doi:10.1371/journal.pone.0144163.t004
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scores are not high in this case, we can still note the reflected statistical significance of the
improvements.

The conveyed study validates the enhancement of protein complex-detection approaches by
integrating gene expression data, particularly through biclustering techniques. The framework
models the dynamic aspect of PPI networks by grouping proteins according to the similarities
of their expression patterns across subsets of conditions. Moreover, our method is not
restricted by single threshold imposition on gene expression levels. As mentioned earlier,
biclustering approaches are better than conventional clustering methods when it comes to
expression data analysis [45, 46]. Nonetheless, the results attained by DyCluster using the k-
means clustering algorithm accentuate the improvement which can be gained by incorporating
gene expression information to model the dynamics of PPI interactions and to detect protein
complexes in PPI networks accordingly.

Testing DyCluster on Biological Data
In order to further test the effectiveness of the presented framework in identifying biologically
related group of genes/proteins, we selected 140 pathway-focused genes implicated in pro-
grammed cell death in Rat Apoptosis and inflammation. The Rat Apoptosis RT2 Profiler PCR
Array profiles the expression of 84 key genes (available at http://www.sabiosciences.com/rt_
pcr_product/HTML/PARN-012Z.html) involved in programmed cell death. Apoptosis plays a
critical role in normal biological processes requiring cell removal including differentiation,
development, and homeostasis. Similarly, the Rat Inflammatory Cytokines and Receptors RT2

Profiler PCR Array profiles the expression of another 84 key genes (available at http://www.
sabiosciences.com/rt_pcr_product/HTML/PARN-011Z.html) mediating the inflammatory
response. Acute inflammation occurs in response to cell damage due to infection or injury.
During this process, cellular and plasma derived factors encourage extravasation, the recruit-
ment of circulating immune cells into the affected tissue. The two set of genes which are rele-
vant to liver cancer are then combined and housekeeping genes and redundant genes are
removed. Monitoring the expression of these genes helps to determine the mechanisms behind
programmed cell death. The genes are then processed using String 9.1 [59] (Search Tool for the
Retrieval of Interacting Genes/Proteins). String is a biological database and web resource of
known and predicted protein-protein interactions. Genes with no records in String 9.1 were
removed and therefore, 140 genes were considered. All proteins and their interactions were
retrieved and the corresponding network was built. Once the PPI network (1,413 interactions
and 140 proteins) was built, several enrichment features available in String 9.1 (features related
to KEGG pathway, Reactome Pathway, Molecular function, Pfam domain, InterPro-Domains)
were used to generate several sub-networks/groups which were then treated as protein com-
plexes. The idea here is to see whether DyCluster is capable of detecting such groups of biologi-
cally-related proteins given only the PPI network information.

In this experimental work, the gene expression dataset, of accession number GSE17384, was
downloaded from the GEO [52] repository. It is entitled: “Gene expression data from the LEC
rat model with naturally occuring and oxidative stress induced liver tumorigenesis” [60]. It
reports the variations of gene expression levels in a stepwise manner from the normal liver

Fig 3. Statistical significance of scores differences between pairs of protein-complex detectionmethods without and with gene expression data
based on the proposed framework. The displayed p-values are the ones less than or equal to 0.1 reflecting improvements in the scores, i.e. the matching
qualities of the detected protein complexes.

doi:10.1371/journal.pone.0144163.g003
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condition, to chronic induced liver tumor by time-series microarray analysis. In other words,
the study involves a comparison between normal liver tissues and developed liver tumors at
different time points. It could potentially reveal genes which participate in the progressive for-
mation of the disease. The OPSMmethod [50] was used to bicluster the gene expression data
since it showed a relatively good performance in our experimental study.

The PPI dataset was deduced from two sets of genes involved in apoptosis (RT2 Profiler
PCR Array Rat Apoptosis, PARN-012A. The ProRank+ algorithm was employed to detect the
corresponding protein entities/complexes. Then, we examined the generated results for poten-
tial matching with the reference sub-networks/groups generated using String. Table 5 shows
the detected components by DyCluster framework, listed by types, along with their matching
percentages. The experimental results thus confirm the potential of our approach in detecting
and understanding protein entities of key roles in normal and abnormal cellular functions.

Discussion
DyCluster was tested using several biclustering techniques and various protein complex detec-
tion methods. As the experimental results show, the incorporation of gene expression data in
the process of detecting protein complexes in dynamic PPI networks is indeed beneficial, in
contrast with the detection of complexes in static networks. Fig 4 shows the number of
matched and detected complexes per detection method presented in Tables 3 and 4. It can be
noticed that on one hand, our framework can notably increase the correctness and the quality
of the results, as it is the case for ProRank, ProRank+ and ClusterONE where the numbers of
matched complexes, Acc, Sn, PPV and MMR are higher. On the other hand, biclustering genes
based on their expression patterns can significantly reduce the large number of complexes
detected by some algorithms, such as CMC and CFinder, while not compromising the quality
of the outcomes. The framework models the dynamic aspect of PPI networks by grouping pro-
teins according to the similarities of their expression patterns across subsets of conditions.
Moreover, it is not restricted by threshold imposition on gene expression levels. As mentioned
earlier, biclustering approaches are better than conventional clustering methods when it comes
to expression data analysis. Nonetheless, the results attained by DyCluster using the k-means
clustering algorithm accentuate the improvement which can be gained by incorporating gene
expression information to model the dynamics of PPI interactions and to detect protein com-
plexes in PPI networks accordingly. Finally, the produced results based on the case study
shown Table 5 are in favor of the DyCluster framework.

Conclusion
DyCluster is a framework for the detection of protein complexes in dynamic protein interac-
tion networks modeled by incorporating gene expression data, through biclustering techniques.
It responds to the important shift from interpreting PPI data as a single static network to
modeling and exploring the dynamic nature of these networks. That is done by incorporating
gene expression data, interpreted using biclustering techniques, in the interaction networks
and detecting complexes accordingly. The experimental results greatly favor our approach
which allows the correct identification of more protein complexes. Moreover, in cases where
this is not attained, the overall number of detected complexes is decreased and this leads to bet-
ter evaluation scores. Hypothetically, the more biological information is added to PPI net-
works, the better the interaction dynamics are reflected. Therefore, and based on our results,
further extensions consist of refining the modeling of PPI dynamics using additional biological
data types.
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Table 5. The biological components detected by our framework, listed by types, along with their
matching percentages.

Detected Component Matching Percentage

InterPro-Domains Chemokine receptor family 100

G protein-coupled receptor, rhodopsin-like 100

GPCR, rhodopsin-like, 7TM 100

BLC2 family 83.3

BLC2-like 83.3

Death effector domain 66.7

Interleukin-6 receptor alpha, binding 50

Death domain 100

Apoptosis regulator, Bcl-2, BH2 motif, conserved site 75

Chemokine interleukin-8-like domain 60

KEGG Pathway Chemokine signaling pathway 40

Cytokine-cytokine receptor interaction 32.8

NOD-like receptor signaling pathway 31.3

Apoptosis 34.4

Autoimmune thyroid disease 71.4

Huntington’s disease 66.7

Systemic lupus erythematosus 40

Asthma 50

Intestinal immune network for IgA production 25

Cell adhesion molecules 50

Pathways in cancer 70

Molecular Function Peptide receptor activity 58.3

Receptor activity 52.2

Growth factor activity 60

C-C chemokine binding 66.7

Tumor necrosis factor receptor superfamily binding 40

Death effector domain binding 66.7

Growth factor binding 50

Nucleic acid binding transcription factor activity 75

Chemokine activity 77.8

Pfam Domains 7 transmembrane receptor, rhodopsin family 100

Apoptosis regulator proteins, Bcl-2 family 83.3

Death effector domain 66.7

Interleukin-6 receptor alpha chain, binding 50

Small cytokines (intecrine/chemokine), interleukin-8 like 53.3

Death domain 100

Reactome Pathway Activation of DNA fragmentation factor 66.7

Interleukin-1 family precursors are cleaved by caspase-1 100

Downstream TCR signaling 100

FasL/CD95L signaling 100

Exocytosis of platelet alpha granule contents 100

IRAK4 is activated by autophosphorylation 75

Beta defensins 66.7

TRAIL signaling 66.7

Interleukin-1 processing 75

FASL:FAS Receptor Trimer, FADD complex 100

doi:10.1371/journal.pone.0144163.t005
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