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Abstract

Introduction

Mechanical cardiopulmonary resuscitation (CPR) devices are widely used to rescue

patients from cardiac arrest. This study aimed to compare hemodynamic effects and resus-

citation outcomes between a motor-driven, automatic simultaneous sterno-thoracic cardio-

pulmonary resuscitation device and the Lund University cardiac arrest system (LUCAS).

Material and methods

After 2 minutes of electrically induced ventricular fibrillation (VF), Yorkshire pigs (weight 35–

60 kg) received CPR with an automatic simultaneous sterno-thoracic CPR device (X-CPR

group, n = 13) or the Lund University cardiac arrest system (LUCAS group, n = 12). Basic

life support for 6 minutes and advanced cardiovascular life support for 12 minutes, including

defibrillation and epinephrine administration, were provided. Hemodynamic parameters and

resuscitation outcomes, including return of spontaneous circulation (ROSC), 24-hour sur-

vival, and cerebral performance category (CPC) at 24 hours, were evaluated.

Results

Hemodynamic parameters, including aortic pressures, coronary perfusion pressure, carotid

blood flow, and end-tidal carbon dioxide pressure were not significantly different between

the two groups. Resuscitation outcomes were also not significantly different between the

groups (X-CPR vs. LUCAS; rate of ROSC: 31% vs 25%, p = 1.000; 24-hour survival rate:

31% vs 17%, p = 0.645; neurological outcome with CPC�2: 31% vs 17%, p = 0.645). Also
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no significant difference in incidence complications associated with resuscitation was found

between the groups.

Conclusions

CPR with a motor-driven X-CPR and CPR with the LUCAS produced similar hemodynamic

effects and resuscitation outcomes in a swine model of cardiac arrest.

Introduction

Sudden cardiac arrest is a major healthcare issue worldwide, but the survival rate remains low

[1]. The quality of cardiopulmonary resuscitation (CPR) is well known to be a major determi-

nant of survival and favorable neurological outcome in patients with cardiac arrest [2–4]. Dur-

ing the treatment of patients with cardiac arrest, a substantial period of resuscitation is often

required to achieve return of spontaneous circulation (ROSC) [5]. Recent CPR guidelines rec-

ommend changing rescuers every 2 minutes and use of a feedback device for monitoring CPR

quality [2–4]. However, high-quality CPR is difficult to maintain especially in prolonged car-

diac arrest, even by well-trained rescuers [6–9].

Mechanical CPR devices can be alternative tools for maintaining good-quality CPR by

bypassing rescuer fatigue, especially in impractical resuscitation situations; therefore, the use

of mechanical CPR devices by trained rescuers was recommended in CPR guidelines [3, 4, 10–

12]. The simultaneous sterno-thoracic CPR (SST-CPR) device is designed to compress the

patient’s sternum directly using a piston and simultaneously straining the patient’s chest wall

with a thoracic strap [13]. SST-CPR showed superior hemodynamics, including aortic systolic

and diastolic pressures, coronary perfusion pressure (CPP) and end-tidal carbon dioxide

(ETCO2), and short-term survival, as compared with the standard manual CPR in animal

experiments and better ETCO2 in a human study [14, 15]. Recently, we developed a new

model of an automatic CPR device for performing simultaneous sterno-thoracic CPR that is

driven by a battery-powered motor to minimize the inconvenience of using a pneumatic

actuator.

We conducted this study to evaluate the hemodynamic effects and resuscitation outcomes

of the newly developed, motor-driven, automatic SST-CPR device, in comparison with an

automatic mechanical CPR device currently used in clinical practice.

Materials and methods

Description of the motor-driven automatic SST-CPR device

The motor-driven, automatic SST-CPR device (X-CPR 2, CU medical systems, Inc., Wonju,

Korea) consists of a piston to compress the patient’s sternum and a thoracic strap to strain the

patient’s chest wall while the piston compresses the sternum (S1 and S2 Figs). Additional strain

of the thorax is presumed to contribute to a further increase in the pressure of the intrathoracic

compartment by preventing configurative changes of the thorax during chest compression.

The first version of the automatic SST-CPR device was operated by a pneumatic actuator.

Hence, rescuers were required to carry an oxygen tank, thereby precluding the use of the

device in places other than hospitals or in places without pressurized oxygen supply. To over-

come these disadvantages, we remodeled the device with a motor-driven piston that is pow-

ered by an electrical battery (Fig 1).

Hemodynamic effect of automatic simultaneous sternothoracic cardiopulmonary resuscitation device
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Study design and ethical considerations

To evaluate the motor-driven, automatic SST-CPR device, we compared it with the Lund Uni-

versity Cardiac Arrest System, second edition (LUCAS Chest Compression System, Physio-

Control, WA), which is commonly used in clinical practice. This study was approved by the

Institutional Animal Care and Use Committee of Yonsei University Wonju College of Medi-

cine, Wonju, Republic of Korea (YWC-160324).

Animal preparation

All study animals were adopted from an institution (Daehan Biolink, Eumseong, Repulic of

Korea) accredited from Association for Assessment and Accreditation of Laboratory Animal

Care International. Twenty-five Yorkshire pigs (weight 35–60 kg) were used in this study. The

Fig 1. Automatic SST-CPR device (X-CPR). The main compression unit is positioned at the top of the device, which

is operated by a battery-powered motor. The strap is attached to both sides of the central piston.

https://doi.org/10.1371/journal.pone.0221965.g001
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pigs were allowed full access to water and food until the day before the experiment and were

fasted from midnight. The pigs were initially sedated with intramuscular ketamine (15 mg/kg)

and xylazine (2 mg/kg), followed by inhaled 3% isoflurane. After sedation, the pigs were placed

in a prone position, and endotracheal intubation was performed with a cuffed endotracheal

tube. The animals were then placed in a supine position and ventilated with room air via a vol-

ume-controlled ventilator (MDS Matrix 3000, Matrix, Orchard Park, NY). The tidal volume

was set at 10 mL/kg, with a ventilation rate of 18 breaths per minute. Intramuscular ketoprofen

1 mg/kg was injected for pain management during the experiment. Electrocardiography

(ECG) in lead II and ETCO2 were monitored continuously. Under aseptic conditions, the

right or left femoral artery was cannulated with a 5.5-Fr introducer sheath using the Seldinger

method, and the aortic blood pressures were recorded continuously with a 5-Fr microman-

ometer-tipped catheter introduced into the femoral artery. An introducer sheath was placed in

the right external jugular vein, and the atrial pressure was recorded via a 5-Fr microman-

ometer-tipped catheter. The right internal carotid artery was exposed, and a vascular flowme-

ter (Transonic, NY) was applied to monitor the carotid blood flow (CBF). An introducer

sheath placed via the right internal jugular vein was used as insertion route for a 5-Fr pacing

catheter for inducing VF and infusion of saline and epinephrine. Once the catheters were in

place, a 100-unit/kg intravenous (IV) heparin bolus was administered to prevent thrombosis.

Study protocol

The pigs were randomized into two groups according to the CPR device indicated in a sealed

opaque envelope opened by an investigator (KCC) before the induction of cardiac arrest. The

envelopes, which contained the name of the CPR device (X-CPR or LUCAS), were randomized

by shaking the box and selecting a random envelope from the top of the pile. We observed the

pigs without any intervention for 10 minutes after preparation. Baseline hemodynamic data

were collected after the observational period. After baseline measurement, a pacing catheter was

positioned in the right ventricle. VF was induced by delivering an alternating electrical current

at 60 Hz to the endocardium, which was confirmed by the ECG waveform and a decline in aor-

tic pressure. Once VF was induced, the endotracheal tube was disconnected from the ventilator,

and the pigs were observed for 2 minutes without any procedure or treatment. After 2 minutes

of untreated VF, mimicking the early phase of basic life support (BLS) in which a bystander rec-

ognizes cardiac arrest and calls for help, BLS CPR was performed for 6 minutes and advanced

cardiac life support (ACLS) CPR was performed for 12 minutes. The chest compression, artifi-

cial ventilation, and IV administration of epinephrine were performed in accordance with the

guidelines [2–4]. During CPR, the animals received chest compressions using the motor-driven,

automatic SST-CPR device or chest compressions with the LUCAS. A total of 30 chest compres-

sions and two consecutive ventilations were performed with the mechanical CPR devices during

BLS CPR. The chest compression depth was set at 5 cm, at a rate of 100 per minute. Positive

pressure ventilation at approximately 300-mL tidal volume was delivered with a resuscitator bag

(Silicone Resuscitator 870040, Laerdal Medical, Stavanger, Norway).

Defibrillation (2 J/kg) was performed after 6 minutes of BLS CPR if the ECG rhythm was

shockable, and consecutive defibrillation (4 J/kg) was performed as indicated. During the next

12 minutes of ACLS CPR, chest compression was changed to a continuous mode, and ventila-

tion with 15-L/min oxygen was delivered every 10 chest compressions. One milligram epi-

nephrine in 20-mL saline was administered every 4 minutes until ROSC or until the end of the

experiment.

If an animal did not achieve ROSC at 20 minutes after VF induction, the experiment was

terminated and the animal was considered dead. When a pig achieved ROSC, we observed it

Hemodynamic effect of automatic simultaneous sternothoracic cardiopulmonary resuscitation device
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for 2 hours under mechanical ventilation with inhalation anesthesia. After 2 hours, the animal

was transferred to the breeding room and observed for 24 hours without post-cardiac arrest

care, including targeted temperature management, and intramuscular ketoprofen 1 mg/kg was

injected for pain control. Respiratory rate, spontaneous movement, and feeding status were

evaluated every 2 hours, and the swine cerebral performance category (CPC) was determined

after 24 hours from ROSC, as previously described.[16] In summary, a score of 1 is normal, 2

is mild neurological deficit (e.g., eating or drinking abnormally, unsteady gait, or slight resis-

tance to restraint), 3 is severe neurological deficit (recumbent, unable to stand, and only par-

tially responsive to stimuli), 4 is comatose, and 5 is dead. After the neurological examination,

the animals were sedated with intramuscular ketamine and isoflurane inhalation. If the ani-

mals had respiratory rate< 5 breaths/min and no response to tactile stimulation, we eutha-

nized with an IV injection of 60-mEq potassium chloride.

We performed autopsy to identify CPR-induced complications at the end of each experi-

ment. The number of rib fracture(s), presence of sternal fracture, pneumothorax, hemothorax,

lung contusion, cardiac injury, or great vessel injury was evaluated.

Measurements

The data were digitized using a digital recording system (PowerLab, ADInstruments, Colorado

Springs, CO). Aortic and right atrial pressures, CBF and ETCO2 were continuously recorded

and analyzed at baseline and every 2 minutes until 20 minutes had elapsed. The CPP during

CPR was calculated as the difference between the aortic and right atrial pressures in the mid-

diastolic phase using an electrical subtraction unit. Once the pigs achieved ROSC, the mea-

surements of the hemodynamic parameters were stopped because of the possibility of bias

from spontaneous circulation.

ROSC was defined as the maintenance of aortic perfusion pressure over 20 minutes. The

24-hour survival rate and swine CPC at 24 hours were evaluated for outcome variables. A

favorable neurological outcome was defined as a CPC 1 or 2. The autopsy results were also

recorded to compare complications associated with the use of the CPR devices.

Sample size

On the basis of a previous study that reported a 44-mmHg difference in mean systolic pressure

with a standard deviation (SD) of 24 mmHg between the experimental and control groups, at

least 12 subjects would be required for both groups to provide a statistical power of 90% with a

two-sided alpha value of 0.05 [14]. Twenty-six pigs were chosen, considering that 10% of the

animals would be excluded in the analysis owing to unpredictable experimental failure.

Data analysis

Hemodynamic effects and resuscitation outcomes were compared between the X-CPR and

LUCAS groups. Continuous variables were presented as mean ± SD. A Student t test or Mann-

Whitney U test was used to compare the continuous variables between the X-CPR and

LUCAS-CPR groups as appropriate. The nominal variables were reported as counts and per-

centages, and compared using a chi-square or Fisher exact test, as appropriate. A linear mixed

model analysis was used to compare hemodynamic parameters, including systolic arterial

pressure (SAP), diastolic arterial pressure (DAP), right atrial diastolic pressure (RADP), CBF,

CPP, and ETCO2 between the two groups. The statistical results are presented as group-time

interaction. A p value of<0.05 was considered significant. Analyses were performed using

SPSS Statistics 20.0 for Windows (IBM Corp., Chicago, IL, USA).

Hemodynamic effect of automatic simultaneous sternothoracic cardiopulmonary resuscitation device
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Results

General characteristics and baseline measurements

Thirteen pigs were randomly assigned to each group, and 25 pigs were used in the final analy-

sis because one pig from the LUCAS group died during preparation. The pig had pneumonia

and bullous changes on both lungs on autopsy. No significant differences in baseline charac-

teristics and hemodynamic parameters were found between the two groups (Table 1).

Comparison of hemodynamic effects between the X-CPR and LUCAS

groups

We found no significant differences in hemodynamic parameters, including SAP, DAP,

RADP, CPP, CBF, and ETCO2, between the groups (Table 2). SAP, CBF, and ETCO2 tended

to be higher in the X-CPR group than in the LUCAS group. However, no statistical signifi-

cance was observed (Fig 2).

Comparisons of resuscitation outcomes and complications between the

X-CPR and LUCAS groups

Resuscitation outcomes were also not significantly different between the groups. The rate of

ROSC was 31% in the X-CPR group and 25% in the LUCAS group (p = 1.000). The 24-hour

survival rate was 31% in the X-CPR group and 17% in the LUCAS group (p = 0.645). The

24-hour survival rate with good neurological outcome with a CPC�2 was 31% in the X-CPR

group and 17% in LUCAS group (p = 0.645; Table 3). A higher incidence of rib fracture with

no statistical significance was observed in the X-CPR group as compared with the LUCAS

group (69% vs. 33%, p = 0.115). Overall complications detected in postmortem autopsy were

also not significantly different between the groups (Table 4).

Discussion

High-quality chest compression and minimal interruption are key components for maintain-

ing high-quality CPR during cardiac arrest. Good-quality CPR is difficult to maintain because

the quality of chest compression declines during CPR.[17] Mechanical automatic CPR devices

can perform CPR without weariness or quality change over time; therefore, they are a good

Table 1. Baseline characteristics and measurements.

Parameters X-CPR group

(n = 13)

LUCAS group

(n = 12)

P-value

Body weight (kg) 42±5 46±7 0.087

SAP (mmHg) 90±15 93±31 0.784

DAP (mmHg) 65±15 65±26 0.943

MAP (mmHg) 78±16 74±27 0.642

RAP (mmHg) 5.9±3.7 4.2±2.2 0.156

CBF (ml/min) 358±231 475±305 0.289

CPP (mmHg) 88±14 90±30 0.853

ETCO2 (mmHg) 37±6 33±7 0.406

Variables are presented as mean ± standard deviation. X-CPR: sterno-thoracic cardiopulmonary resuscitation device,

LUCAS: Lund University Cardiac Arrest System, SAP: systolic arterial pressure, DAP: diastolic arterial pressure,

MAP: mean arterial pressure, RAP: right atrial pressure, CBF: carotid blood flow; CPP: coronary perfusion pressure,

ETCO2: end-tidal carbon dioxide

https://doi.org/10.1371/journal.pone.0221965.t001
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alternative to replace manual chest compressions. They provide high-quality CPR and are bet-

ter than the standard manual CPR in terms of hemodynamic effects.[18, 19]

We evaluated the hemodynamic effects and resuscitation outcomes of the new X-CPR in

comparison with those of the LUCAS, whose hemodynamic and clinical effects have been

proven. Mechanical CPR devices use a different mechanism to produce an augmented hemo-

dynamic effect. Therefore, the two different mechanical CPR devices were predicted to have

different hemodynamic consequences because X-CPR causes thoracic straining and the

LUCAS produces active chest decompressions in addition to chest compressions. The LUCAS

Table 2. Comparison of hemodynamic parameters during cardiopulmonary resuscitation.

Parameters 2 min 4 min 6 min 8 min 10 min 12 min 14 min 16 min 18 min 20 min p-value

SAP (mmHg) 0.466

X-CPR 72±20 89±32 87±40 84±42 75±34 84±49 92±38 77±33 83±34 75±34

LUCAS 88±37 85±46 81±48 77±41 61±24 56±24 66±35 59±35 61±34 56±31

DAP (mmHg) 0.951

X-CPR 21±10 15±11 13±15 12±14 10±13 14±17 23±23 17±20 16±18 12±13

LUCAS 24±39 22±35 21±30 19±25 17±20 15±12 21±13 12±10 14±9 14±13

RADP (mmHg) 0.918

X-CPR 6.9±4.3 9.2±3.8 8.3±3.8 7.7±3.9 7.4±3.3 7.8±3.3 9.3±4.7 9.3±5.5 11.3±10.6 10.2±9.2

LUCAS 0.8±8.5 -0.8±8.3 -1.4±7.5 -0.8±7.0 -0.9±7.0 -1.2±7.8 -0.5±7.7 -1.8±7.5 -1.8±7.6 -1.8±7.6

CBF (mL/min) 0.980

X-CPR 515±519 613±698 524±530 550±578 574±582 345±404 412±487 386±481 429±579 269±241

LUCAS 480±327 463±333 447±376 417±365 274±271 136±118 170±139 143±100 105±81 79±79

CPP (mmHg) 0.994

X-CPR 26±15 26±15 31±31 31±52 43±69 26±25 36±57 36±51 26±43 33±61

LUCAS 37±30 36±28 27±24 29±19 35±30 31±18 35±35 35±33 24±16 37±46

ETCO2 (mmHg) 0.970

X-CPR 24±5 26±6 30±7 30±8 28±10 29±12 25±8 25±9 23±10 25±12

LUCAS 24±8 26±7 28±7 28±13 25±8 26±11 20±10 21±3 21±14 20±15

Data are expressed as mean ± standard deviation. X-CPR, simultaneous sterno-thoracic cardiopulmonary resuscitation; LUCAS, Lund University Cardiac Arrest

System; SAP, systolic arterial pressure; DAP, diastolic arterial pressure; RADP, right atrial diastolic pressure; CBF, carotid blood flow; CPP, coronary perfusion pressure;

ETCO2, end-tidal carbon dioxide

https://doi.org/10.1371/journal.pone.0221965.t002

Fig 2. Comparison of hemodynamic effects between the X-CPR and LUCAS groups. SAP: systolic arterial pressure, CBF: carotid blood flow, CPP: coronary

perfusion pressure.

https://doi.org/10.1371/journal.pone.0221965.g002
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is a device commonly used in clinical practice along with AutoPulse (Zoll, Chelmsford, Massa-

chusetts, USA).[20] It compresses and actively decompresses the chest with a suction cup,

which improves cardiac output, aortic pressure, cerebral blood flow, and ETCO2 by augment-

ing negative intrathoracic pressure and increasing venous return.[21] The hemodynamic supe-

riority of the LUCAS over the manual CPR has been shown in clinical studies and would be an

important reason for the worldwide use of the LUCAS.[22, 23] X-CPR is designed to augment

systolic blood flow by straining the chest wall, in addition to the piston-derived chest compres-

sion.[13] It generates higher mean aortic pressure, CPP, and ETCO2, and improves short-term

survival as compared with the standard manual CPR in animal studies; augmented CPP with

X-CPR was also reported in a clinical study.[13–15] The first version of X-CPR was operated

with a pneumatic actuator, hence requiring pressurized oxygen or air. Owing to the need for

pressurized oxygen, emergency medical personnel should bring an oxygen tank when they use

X-CPR in prehospital settings. The second version of X-CPR, which is a motor-driven, bat-

tery-powered automatic CPR device, does not require an oxygen tank. The study results

showed that CPR using X-CPR tended to maintain higher SBP, ETCO2, and CBF, which is an

indicator of systemic and cerebral perfusions, than CPR with the LUCAS, although the differ-

ence did not reach statistical significance. These findings would be the result of the synchro-

nous compression effect of the central piston and circumferential strap, and the augmented

thoracic filling from the negative right atrial pressure during the early relaxation phase, which

were reported in a previous study.[13] The results of this study demonstrated that X-CPR and

the LUCAS have at least a similar hemodynamic effects and resuscitation outcomes.

Better resuscitation outcomes, including 24-hour survival and favorable neurological out-

come, were observed in the X-CPR group, although the differences were not statistically signif-

icant. The hemodynamic-directed CPR targeting SBPs > 90 mmHg was introduced recently

and showed better survival and neurological outcome than the conventional CPR method tar-

geting the designated compression depth and rate.[24, 25] These findings imply that the hemo-

dynamics during CPR would be more important than keeping a constant compression depth

Table 3. Comparison of resuscitation outcomes between the groups.

Parameters X-CPR (n = 13) LUCAS (n = 12) p -value

ROSC, n (%) 4 (31) 3 (25) 1.000

24-hr survival, n (%) 4 (31) 2 (17) 0.645

CPC 1 or 2, n (%) 4 (31) 2 (17) 0.645

Variables are presented as frequency and proportion. X-CPR: Sterno-thoracic cardiopulmonary resuscitation device,

LUCAS: Lund University Cardiac Arrest System, ROSC: return of spontaneous circulation, CPC: swine cerebral

performance category

https://doi.org/10.1371/journal.pone.0221965.t003

Table 4. Comparison of complications between the groups.

Parameters X-CPR (n = 13) LUCAS (n = 12) p-value

Rib fractures, n (%) 9 (69) 4 (33) 0.115

Lung contusion 11 (85) 12 (100) 0.480

Hemothorax 0 (0) 2 (17) 0.220

Hemopericardium 1 (8) 0 (0) 1.000

Hemoperitoneum 1 (8) 0 (0) 1.000

Variables are presented as frequency and proportion. X-CPR: Sterno-thoracic cardiopulmonary resuscitation device, LUCAS: Lund University Cardiac Arrest System

https://doi.org/10.1371/journal.pone.0221965.t004

Hemodynamic effect of automatic simultaneous sternothoracic cardiopulmonary resuscitation device

PLOS ONE | https://doi.org/10.1371/journal.pone.0221965 August 30, 2019 8 / 12

https://doi.org/10.1371/journal.pone.0221965.t003
https://doi.org/10.1371/journal.pone.0221965.t004
https://doi.org/10.1371/journal.pone.0221965


and rate for improving resuscitation outcomes. Our study showed that higher SAP was main-

tained in the X-CPR group than in the LUCAS group, and would be a major reason for the bet-

ter outcomes in the former group.

In our study, both X-CPR and the LUCAS were associated with high incidence rates of lung

contusions and rib fractures. This result raised a concern on the high rate of complications with

the mechanical CPR devices. The frequency of rib fracture was higher in the X-CPR group than

in the LUCAS group, although the difference was statistically insignificant. In a study to com-

pare safety between the LUCAS, AutoPulse, and manual CPR, the incidence rates of rib and

sternal damages were not statistically different between the CPR methods, although the rates

tended to be higher in AutoPulse than in the LUCAS.[26] This would be a consequence of the

use of a circumferential band such as X-CPR to strain the thorax in AutoPulse. The high inci-

dence of rib fractures in X-CPR may be associated with the use of a thoracic strap as in AutoP-

ulse. The high incidence of rib fractures in both X-CPR and the LUCAS may be partly due to

the difference in the anatomic conformation of the chest between animals and humans.

Mechanical CPR has not shown superiority over manual CPR in terms of survival or favorable

neurological outcomes in large clinical trials.[27, 28] However, generalization of the results from

clinical trials is limited because the extremely high manual CPR performance of EMS systems

included in clinical trials might not reflect the average performance of an EMS system. Mechani-

cal CPR offers undoubtedly a high quality of resuscitation even in special situations, including

ambulance or helicopter transport.[29, 30] Mechanical CPR devices can be used for maintaining

systemic perfusion during percutaneous coronary intervention, pericardiocentesis, or extracorpo-

real membrane oxygenation in patients with circulatory collapse or cardiac arrest.[31, 32] In this

respect, further study of clinical situations where mechanical CPR is effective is needed.

This study has several limitations. First, we used an animal cardiac arrest model; therefore,

the study results would be difficult to extrapolate to human individuals. The thoracic confor-

mation in pigs is more oval than that in humans; thus, the hemodynamic effects produced by

the thoracic strap of X-CPR or the suction cup of the LUCAS may be different from those in

human beings. The accompanying limitations of an experimental animal model include the

mode and cause of cardiac arrest that differ from those in clinical situations, the use of a con-

trolled environment in the experimental setting, and the use of anesthetics. The low numbers

of resuscitated pigs and high incidence of complications that might reflect a conformational

difference of the chest wall from that of humans warrants a need for future studies on X-CPR

to generalize this result. Second, even though the investigators tried to maintain approximately

300 mL of ventilation volume by squeezing one-third of a resuscitation bag with a volume of

1,500 mL, the delivered volume in every ventilation might be different and could influence the

hemodynamic parameters during CPR by affecting the intrathoracic pressure and volume.

Third, histopathological evaluation to determine the brain outcome was not included in this

study because it was designed to compare hemodynamic effects and outcomes between two

CPR devices. Finally, the sample size was too small to determine the difference between the

groups, although it was calculated on the basis of a previous study.

Conclusions

CPR with a motor-driven X-CPR and CPR with the LUCAS produced similar hemodynamic

effects and resuscitation outcomes in a swine model of cardiac arrest.

Supporting information

S1 Fig. Mechanism of simultaneous sternothoracic cardiopulmonary resuscitation with

X-CPR illustrated on an axial image of the chest. X-CPR exploits compression of the
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sternum with a piston (black arrow) and simultaneous constriction of the thorax with a strap

(gray arrow) in a cycle.

(GIF)

S2 Fig. Animated illustration of simultaneous sternothoracic cardiopulmonary resuscita-

tion.

(GIF)
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