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Abstract: Keratohyalin granules were discovered in the mid-19th century in cells that terminally dif-
ferentiate to form the outer, cornified layer of the epidermis. The first indications of the composition
of these structures emerged in the 1960s from a histochemical stain for histidine, followed by radioau-
tographic evidence of a high incidence of histidine incorporation into newly synthesized proteins
in cells containing the granules. Research during the next three decades revealed the structure and
function of a major protein in these granules, which was initially called the ‘histidine-rich protein’.
Steinert and Dale named the protein ‘filaggrin’ in 1981 because of its ability to aggregate keratin
intermediate filaments. The human gene for the precursor, ‘profilaggrin,’ was reported in 1991 to
encode 10, 11 or 12 nearly identical repeats. Remarkably, the mouse and rat genes encode up to
20 repeats. The lifetime of filaggrin is the time required for keratinocytes in the granular layer to move
into the inner cornified layer. During this transition, filaggrin facilitates the collapse of corneocytes
into ‘building blocks’ that become an impermeable surface barrier. The subsequent degradation
of filaggrin is as remarkable as its synthesis, and the end-products aid in maintaining moisture in
the cornified layer. It was apparent that ichthyosis vulgaris and atopic dermatitis were associated
with the absence of this protein. McLean’s team in 2006 identified the cause of these diseases by
discovering loss-of-function mutations in the profilaggrin gene, which led to dysfunction of the
surface barrier. This story illustrates the complexity in maintaining a healthy, functional epidermis.

Keywords: keratohyalin granules; histidine-rich protein; filaggrin; profilaggrin; loss-of-function
mutations; ichthyosis vulgaris; atopic dermatitis; eczema; corneodesmosomes; transglutaminase

1. Keratohyalin Granules and Histidine

Karen Holbrook [1] commented that “morphology is often the starting point of an
investigation”. Developments in microscopy during the 19th century opened morphology
of the cellular world to full view. The ability to thin-section fixed tissues and innovations in
selectively staining cellular components provided biologists with opportunities to study
structures of tissues and the organelles within cells. This brief historical review starts with
several striking observations made by histochemical and radioautographic analyses of the
epidermis, which, as the story is told, led to the discovery of filaggrin and its short-lived
but essential functions in the assembly of a healthy surface barrier.

A fascinating morphological feature forms under the cornified layer of the epidermis
(Figure 1) as keratinocytes move outward from the proliferative basal layer and terminally
differentiate into corneocytes that form the surface barrier of the skin. Stephen Rothman [2],
recounting the early history of studies on these ‘keratohyalin granules’, remarked that
during those slower years of “wax candles and horse carriages”, there was time for “detailed
and precise observations that revealed the existence of granules in the granular layer, [which
were] first observed and recorded by Auffhammer (1869)”. The granules were further
studied by Langerhans (1873) and designated ‘keratohyalin’ in 1882 by Waldeyer. Although
very active in research on the skin throughout his career, Rothman commented shortly
before he died in 1963 that not much more had been learned since those early days [3]. He
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did not live to see the dramatic developments that emerged from the investigations of these
unusual structures that were already underway in several laboratories.
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Figure 1. A sketch of the epidermis of the newborn rat [4].

Seminal observations were published in the years following 1960. Reaven and Cox [5,6]
traced the accumulation of zinc in the granular layer to chelation by the high density of
histidine in the keratohyalin granules [7]. The granules stained an intense red color with
diazotized sulfanilic acid under alkaline conditions, a coupling reaction developed by
Pauly [8] for histidine (Figure 2A). Kimie Fukuyama, while a visiting scientist in I. A.
Bernstein’s laboratory at the University of Michigan, began investigations of the epider-
mis by the incorporation of radiolabeled nucleotides into DNA and then into RNA by
radioautography. She observed that, whereas DNA was synthesized only in the basal layer,
incorporation of precursors into RNA occurred throughout the layers below the stratum
corneum [9,10], which suggested that proteins were also synthesized in the outer layers.
The surprise came when she turned to the incorporation of [3H] amino acids. As expected,
labeled phenylalanine, leucine and methionine were extensively incorporated into the
dividing cells of the basal layer but minimally in the outer layers. Conversely, [3H]histidine
and [3H]glycine were preferentially incorporated into the granular layer (Figure 2B) [11–13].
The possibility of synthesis of a unique protein exclusively in the granular layer while the
cells are undergoing terminal differentiation was proposed by Bernstein, who had become
interested in the epidermis as a tissue to study the process of differentiation [14]. This
hypothesis called for a deeper analysis, which could only be resolved by purification of a
protein enriched in histidine and glycine.
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Figure 2. (A) Human skin stained with the Pauly reagent for histidine [5]. (B) Light microscopic
radioautograph of newborn rat epidermis 15 min after intraperitoneal injection of [3H]histidine [12].

2. Discovery of the ‘Histidine-Rich’ Protein

This goal was accomplished in Bernstein’s laboratory by one of the authors (JKH)
while a graduate student. A protein fraction was extracted from isolated epidermis of
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newborn rats that contained several-fold more histidine, and a five- to six-fold greater
specific radioactivity from injected [3H]histidine or [3H]glycine, than the remaining bulk
protein [15,16]. Subsequent graduate students and postdoctoral fellows continued to refine
the study of this protein fraction, which became known as the ‘histidine-rich protein (HRP)’
and was definitively localized to the granular layer by dissociation of the lower layers of the
epidermis with tetraphenylboron [17]. Extraction of the granular and cornified layers with
8 M urea, dialysis, lyophilization and extraction of the dried material with 0.1 N perchloric
acid followed by precipitation at pH 4.5 (the protocol developed by Hoober [4]) yielded
a basic protein fraction that contained 7% histidine, 12% arginine, 16% serine and 14%
glycine [16–18]. The puzzling observation that 8 M urea was required for extraction of a
protein inherently water soluble because of the high content of polar amino acids would
become clear many years later. Ball et al. [19] prepared a high molecular weight HRP
from the granular layer that was converted to a smaller form in the stratum corneum, with
kinetics of an apparent precursor/product relationship. Ugel [20,21] extracted proteins
from bovine hoof epidermis with 1 M potassium phosphate, pH 7.0, which when dialyzed
formed aggregates similar to keratohyalin granules. Application of this technique to
newborn rat epidermis generated keratohyalin granule-like structures that contained HRP,
thereby providing definite evidence for localization of this protein in the granules [22].
Electrophoresis of proteins in the granules revealed a main fraction with a mass of 46.5 kDa.
In a study of mouse epidermis, Balmain et al. [23] found that histidine-rich proteins with a
range of 70 kDa to 120 kDa were rapidly synthesized in vitro, whereas a 27 kDa protein
appeared simultaneously with the production of mature keratohyalin granules in fetal
epidermis [24]. Interestingly, the high concentration of histidine detected by the Pauly
reaction did not persist as the cells moved into the cornified layer [5,6,17]. Likewise,
[3H]histidine that was incorporated into proteins that were synthesized in the granular
layer was lost as the cells moved outward [12,19], which suggested that the protein was
degraded to soluble products.

The biochemical work on keratohyalin granules that began in Bernstein’s laboratory
had revealed the unusual composition of HRP, and, combined with the unconventional
protocol for purification of the protein, initiated a path of research that led to characteri-
zation of a “remarkable” protein, as described by Brown and McLean [25]. Beverly Dale
introduced purification of epidermal proteins by ion-exchange chromatography in 4 M urea,
with which she obtained a ‘basic protein’ with properties similar to HRP [26]. Steinert, Dale
and their colleagues [27] succeeded in further purifying the protein to homogeneity in 8 M
urea, with final steps in dilute formic acid, from newborn mouse and rat epidermis. The
mouse and rat proteins were estimated by gel electrophoresis to have masses of 30 kDa and
48 kDa, respectively. However, equilibrium sedimentation in 6 M guanidine hydrochloride
yielded masses of 25.8 kDa and 38.4 kDa, respectively. The purified basic proteins, with a
pI greater than pH 9.5 [26–28], contained about 8% histidine and 12 or 14% arginine, but
little, if any, lysine, valine, leucine, tyrosine, phenylalanine or tryptophan and no cysteine
or methionine.

Peter Steinert and colleagues had extensively studied the intermediate filaments of
keratin [29]. When these filaments were prepared from subunits purified from mouse,
bovine and hamster tissues and mixed with HRP purified from mouse stratum corneum,
a rapid increase in turbidity occurred with formation of macrofibrils. Analysis of these
complexes revealed 2 mol of HRP per 3 mol of keratin intermediate filament subunits.
Control experiments showed that the basic protein did not interact specifically with F-actin
or tubulin. These findings were the first demonstration of the function of HRP, and Steinert,
Dale, and their colleagues bestowed upon the protein the name ‘filaggrin’ (fil-ăg’-grin) for
its ability to aggregate keratin intermediate filaments [27]. In contrast to filaggrin, keratin
is synthesized in cells of the basal and spinous layers and becomes the bulk of the protein
content in corneocytes [30].
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3. Discovery of the Precursor, Profilaggrin

Incorporation of labeled histidine into an immunologically cross-reactive,
high-molecular-mass protein (>300 kDa) revealed that filaggrin was synthesized as a
large precursor and processed to smaller units [19,31]. In 1980, Lonsdale-Eccles et al. [32]
reported purification of a partially processed, basic protein from the stratum corneum of
newborn rats that had a pI as low as pH 6.9. The low pI resulted from 15 to 20 mol of
covalently bound phosphate per mol of the protein. A precursor/product relationship
between the high-molecular-weight protein and the smaller, monomeric HRP was shown
by incorporation of [3H]histidine and [32P]orthophosphate into newly synthesized proteins
in punch biopsies of human skin. At the end of a 1-h labeling period, a high-molecular-mass
(>200 kDa) protein was labeled with both isotopes. After a 15-h chase, the 37 kDa monomer
contained nearly all the [3H]histidine but none of the [32P]orthophosphate [33]. Thus,
the precursor was extensively phosphorylated after synthesis in the granular layer of the
epidermis, presumably to prevent premature association with, and aggregation of, keratin
filaments, but as the cells differentiated into corneocytes, the protein was dephosphorylated
and processed to monomers. The unique function of filaggrin in the specific aggregation
of intermediate filaments led in 1985 to naming the high-molecular-mass precursor ‘pro-
filaggrin’ [33]. The hypothesis that the gene for profilaggrin consists of tandem repeats
separated by short linker sequences was demonstrated in 1986 by Haydock et al. [34] and
in 1987 by Rothnagel et al. [35] from sequence analysis of cDNA clones for mouse and
rat profilaggrin.

In 1989, Steinert’s research team at the National Institutes of Health, in collaboration
with Bernstein at the University of Michigan, Croce at Temple University, Parry at Massey
University and Lessin at the University of Pennsylvania, published the partial structure of
the human profilaggrin gene, which contained 12 repeating units [36]. The nucleotide and
deduced amino acid sequences showed that each repeat contains 324 amino acids, with
considerable sequence variation among the repeats. Each repeat of the human protein is
separated by a conserved linker of seven amino acids with the sequence FLYQVST [36],
whereas the rat and mouse profilaggrins have linkers that contain the sequence VYYY [37].
Cleavage of the protein and trimming of the linker provide filaggrin monomers with 317
amino acids and a mass of 37 kDa. Gan et al. [38] showed that the gene encoding this
polyprotein in humans contains 10, 11 or 12 repeats and that different individuals may
contain one or two of these three genes, among the two copies each person carries, because
of allelic differences. As deduced from the cDNA sequence, the human protein contains
12% histidine, 10% arginine, 15% glycine and 25% serine [36]. The high content of serine
provides ample sites for phosphorylation. In situ hybridization with antisense RNA probes
exclusively decorated cells in the granular layer, which confirmed that profilaggrin mRNA
is transcribed only as keratinocytes differentiate into corneocytes [35,36]. Completion of
the structure of the gene was accomplished by analysis of the 5′- and 3′-regions [39,40],
which revealed an S-100-like N-terminal domain that contains two EF-hand sequences
that bind Ca2+. The full-length protein described in the National Center for Biotechnology
Information contains 4061 amino acids, with a mass of 435,170 Da, which accommodates
10 filaggrin units. Figure 3 illustrates the structure of the human profilaggrin gene.

Remarkably, the mouse [41] and rat [42] profilaggrin genes were found to contain
20 repeats. Nearly equal amounts of two different, randomly arranged repeats, 250 and
255 amino acids in length, occur in the mouse protein, and are separated by short linker
sequences. The mouse and rat proteins have 60% homology between the sequences [39], but
both have less sequence homology with the human protein. Nevertheless, the compositions
of the proteins are similar, with the mouse protein containing 9% histidine, 12% arginine,
17% glycine and 20% serine [35]. The inclusion of an S-100-like domain in the N-terminus
of profilaggrin from all of these species is interesting in light of the requirement for elevated
Ca2+ levels for expression of the profilaggrin gene and keratinocyte differentiation [43–45].
Ca2+ binding by these domains may be largely responsible for the peak of the Ca2+ gradient
in the granular layer [46]. Given the importance of Ca2+ in the process of cornification,
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Aho et al. [47] found that overexpression of the N-terminal domain surprisingly inhibited
expression of profilaggrin and other major proteins required for keratinocyte differentiation.
Complete silencing of the profilaggrin gene resulted in hyperproliferation of keratinocytes,
which suggested that the S-100-like domains are required to maintain the concentration of
free Ca2+ needed for control of these processes.
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4. The Short Life of Filaggrin

Upon synthesis, profilaggrin is heavily phosphorylated and is incorporated into kera-
tohyalin granules. As cells of the granular layer move through the transitional zone into the
inner layers of the cornified layer, the protein is dephosphorylated, and a complex group
of proteases cleaves the precursor into monomeric filaggrin, which binds to keratin inter-
mediate filaments and causes collapse of the cytoplasm into the predominant component
of the flattened corneocytes [25,27,48]. As the cells move outward, only the first few inner
layers of the cornified layer contain filaggrin, whereas the outer layers retain keratin [49].
The absence of histidine by histochemical analysis and [3H] from labeled histidine in the
outer cornified layers revealed that filaggrin is degraded as corneocytes proceed through
the inner layers of the stratum corneum.

A flowchart that illustrates the steps in this process is provided in Figure 4 (see legend
for reference numbers). The N-terminal A domain, which contains the Ca2+-binding
EF-hand sequences, is cleaved from profilaggrin prior to processing of the remainder of
the protein. Skin-specific retrovirus-like aspartic protease (SASPase) cleaves the linker
sequences to yield active monomers that bind to keratin intermediate filaments. Knock-out
of the serine proteases CAP1/Prss8 and matriptase/MT-SP1 caused incomplete processing
of profilaggrin and little, if any, monomeric filaggrin, which suggested that these proteases
are also involved in processing profilaggrin to the monomeric form. Upon completing
its function in facilitating collapse of keratin filaments, filaggrin is further degraded by
calpain 1, caspase 14 and bleomycin hydrolase to free amino acids (Figure 4B). The final
mixture of amino acids, along with urocanic acid (UCA) produced by deamination of
histidine, 2-pyrrolidone carboxylic acid (PCA) produced by cyclization of glutamine and
other metabolic products, have been designated the ‘natural moisturizing factor (NMF)’
and aid in maintaining hydration of the stratum corneum. The activity of most of these
proteases is Ca2+-dependent.
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Figure 4. Flowchart of the processing of profilaggrin to free amino acids. (A). Proflaggrin to filaggrin.
(1) Phospho-profilaggrin is dephosphorylated by phosphatases. (2) The A (yellow) and B (green)
domains are cleaved from profilaggrin by furin, PACE4 (Paired basic Amino acid Cleaving Enzyme 4)
and endoproteinase-1 (PEP1) [50,51]. (3) Linker sequences of human profilaggrin (FLYQVST) are
cleaved by skin-specific retrovirus-like aspartic protease (SASPase) [52], channel-activating serine
protease (CAP1) [53] and matriptase (MT-SP1) [54] to monomeric filaggrin. Aminopeptidases and
carboxypeptidases are likely involved in trimming the new termini [37]. (B). Filaggrin to NMF.
(4) Arginine residues in filaggrin and keratin are converted to citrulline by peptidylarginine deiminase
(PAD1 or 3) [49,55]. Deiminated filaggrin is cleaved by calpain-1 and caspase-14 (at VSQD and
HSED sequences) to filaggrin fragments [55–57]. (5) Filaggrin fragments are digested by neutral
cysteine protease (bleomycin hydrolase) to amino acids [57]. Aminopeptidases and carboxypeptidases
are also likely involved. (6) Histidine is converted by histidine deaminase to trans-urocanic acid
(UCA), which has a UV spectrum similar to that of nucleic acids and proteins [58] and provides
a natural sunscreen [59]. Glutamine is non-enzymatically converted to 2-pyrrolidone carboxylic
acid (PCA). These hydrophilic final products contribute to the moisturizing of the skin [56,57,60,61].
Kezic et al. [62] and de Veer et al. [63] provided excellent reviews of proteolytic processing of filaggrin
and differentiation of corneocytes.

5. Mutations That Cause Loss of Filaggrin

A major discovery published in 2006 revealed the cause of the complete loss of filag-
grin in ichthyosis vulgaris and atopic dermatitis (AD), diseases that result from defective
formation of the surface barrier [64]. The loosened cornified layer of the skin in these cases
allows water to escape and allergens to gain access to internal cells [65]. Irwin McLean’s
team at the University of Dundee identified mutations in the first repeat in exon 3 of the
profilaggrin gene (R501X generates a nonsense stop-codon, and the 2282del4 deletion also
results in a stop-codon), thus revealing the genetic cause of these diseases [25,64–66]. The
null mutations R501X and 2282del4 are prevalent in European and Asian populations and
lead to the complete absence of profilaggrin in homozygous individuals. Within the next
5 years, an extensive mutation map was generated that showed significant differences
between European and Asian populations (Figure 5). A recent analysis of 126 patients
with atopic dermatologic disorders in Saudi Arabia detected 227 variants, including mis-
sense, silent, nonsense, frameshift and noncoding mutations in exon 3 of the profilaggrin
gene [67]. Within the decade following the publication by McLean’s team in 2006, a nearly
a five-fold increase in the number of research articles related to filaggrin appeared in the
literature (Figure 6). Several excellent reviews describe the research productivity during
this decade [25,68–70].
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Figure 5. Filaggrin mutations among populations. Mutations that are recurrent in European and
Asian populations are indicated in red, and rare or family specific mutations are in black. These
mutations are either nonsense mutations or out-of-frame insertions or deletions that are predicted to
cause loss-of-function. Exon 3 of the gene contains the complete sequence for profilaggrin, shown
here with 10 repeats as orange hexagons. The yellow circle is the S-100-like Ca2+-binding domain, the
green rectangle is the B domain, and the blue diamonds are incomplete repeats [65] (with permission
from A. D. Irvine).
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Figure 6. Number of publications that refer to filaggrin as a function of year.

Mutations in the gene encoding profilaggrin are the strongest risk factors for skin
diseases. About 50% of AD patients carry loss-of-function mutations in filaggrin [71].
Esparza-Gordillo et al. [72] indicated that 10% to 20% of people in industrialized countries
suffer from AD (eczema), with a strong disposition in children when the mother carries an
FLG mutation. Ichthyosis vulgaris is one of the most common skin diseases, characterized
by dry, flaky skin, with a prevalence of at least 1 case per 250 persons. The complexity of
these diseases was expanded by Butler et al. [73], who identified twelve distinct diseases
within the spectrum of AD. AD is an inflammatory condition, often with open lesions, that
affects 14% of children in the US [74] and up to 25% in the UK and Scandinavia [75]. AD is
the most common chronic skin disease in early childhood and peaks at 2 to 3 years of age,
after which it declines to a few percent in adults [75,76].
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McAleer and colleagues measured the amounts of natural moisturizing factor (NMF)
and other degradation products of filaggrin in the skin of FLG+/+ children as indicators of
filaggrin synthesis [76]. The nearly five-fold increase in NMF and a 15-fold increase in free
histidine on the cheeks of children during the first 3 years of life indicated that the rate of
synthesis of this short-lived protein is quite low after birth, and maturation of the epidermis
develops slowly. The immaturity of the skin during this period reveals vulnerability for
sensitization to food allergens and other life-long allergies.

Interestingly, defects in processing profilaggrin appear to be more severe than a
complete lack of filaggrin. Mice with a deficiency in the protease CAP1 [53] processed
profilaggrin to short oligomers but no further, which resulted in an impaired surface
barrier, rapid dehydration and death shortly after birth. Pleotropic effects of a deficiency
of matriptase/Mt-SP1 also were related to a defect in processing of profilaggrin during
cornification of the epidermis, but the minimal processing in these animals seemed to cause
less severe disease [54].

A deficiency in filaggrin is not the only cause of AD. Multiple mutations in other
genes [71] and also environmental factors [77–79] may cause AD. In fact, the majority
of cases of AD have environmental causative or comorbidity factors. Nevertheless, the
deficiency of filaggrin has been an instructive case study. Thyssen and Kezic [80] provided
an excellent overview of the multifactorial environmental and genetic causes of AD. An
extensive review by Dębińska [81] describes treatments for AD currently approved or in
clinical trials, with specific focus on factors that regulate expression of the filaggrin gene.

Several animal models of AD have been developed [82,83]. Stout et al. [84] developed
an interesting approach to treatment of filaggrin deficiency in the ‘flaky tail’ strain of mice
by linking a recombinant filaggrin monomer to a cell-penetrating peptide derived from
the HIV TAT protein. After topical application, the 50 kDa fusion product was processed
to a 28 kDa protein, which corresponded to the normally processed filaggrin monomer
and restored normal function to mouse skin. Whereas the ‘flaky tail’ strain is deficient in
filaggrin, the protein is not completely absent. Kawasaki et al. [85] generated a homologous
recombination vector that eliminated the promoter sequences for mRNA transcription
and all ATG start codons for synthesis of this protein, which resulted in complete loss
of profilaggrin and a phenotype similar to AD in humans. The condition has also been
simulated experimentally by applying a solution of SDS to the skin [86]. With humans, a
24-h treatment with 1% SDS caused expression of profilaggrin to decrease dramatically but
then increase over controls after 4 days post-treatment [87]. Application of 17% SDS for 7 h
caused the epidermis to become leaky, after which restoration of the surface barrier was
studied by measurement of the transepidermal water loss (TEWL) during treatment with
ceramide mixtures [88].

Healthy skin requires continual loss of the outer layers by corneocyte desquamation;
the outer layers are replaced by dividing cells in the basal layer. However, an excessive loss
of corneocytes causes an extreme type of lesional disease similar to AD, known as Netherton
syndrome (NS), which results in inflammation and allergic reactions [89,90]. NS is a life-
threatening disorder that affects approximately one in 200,000 newborn children [89]. This
disease is mediated by kallikrein-related serine peptidases (KLKs), whose normal function
is to degrade corneodesmosomes and allow detachment of superficial corneocytes. KLK5
and KLK7 are synthesized as zymogens and activated by cleavage of the precursor forms
by mesotrypsin and matriptase [91]. Excessive loss of corneocytes by overactive KLK5 and
KLK7 is controlled by the serine protease inhibitor lymphoepithelial Kazai-type-related
inhibitor (LEKT1) encoded by the SPINK5 gene. LEKT1 is also degraded by mesotrypsin,
which is activated by enteropeptidase in the granular layer [91]. NS is caused by a loss-of-
function mutation in the SPINK5 gene, which allows heightened activity of KLKs. Knock-
out of KLK5 reversed NS symptoms in a SPINK5-deficient mouse model [89–92]. Because
of lethality of the Spink5−/− knock-out, immunological consequences of the mutation were
studied in skin grafts on nude mice. Activation of protease-activated receptor 2 (PAR2), a
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major effector of the inflammatory response, by KLK5 led to recruitment of eosinophilic
and mast cells and formation of lesions [92].

Early histological studies found that keratohyalin granules were not present in the
epidermis in psoriatic lesions [6,18], and HRP was absent in extracts of these lesions.
However, the protein and granules were present in adjacent ‘normal’ skin [18,19]. Although
symptoms of psoriasis are similar to those of AD, mutations in filaggrin are not causative
for psoriasis [93,94].

6. Keratinocyte to Corneocyte Transition

The context in which filaggrin functions is the transition of keratinocytes to corneocytes.
More specifically, this transition involves formation of the cornified envelope and the
conversion of cell cytoplasm to an insoluble matrix. Proteins synthesized in the granular
layer are organized into a structure, referred to as the ‘cornified envelope,’ that lines the
cytoplasmic surface of the cell membrane [95–98]. Transglutaminases catalyze cross-links
between these proteins, which are essential for stabilization of the complex. Three isozymes
of the Ca2+-dependent transglutaminase family, TGM1, TGM3 and TGM5, are expressed
in the epidermis and function within terminally differentiating keratinocytes [98]. An
early step in formation of the cornified envelope is attachment of involucrin to the inner
surface of the cell membrane by cross-links catalyzed by the essential enzyme TGM1 [96,98].
Although involucrin contains 39 repeats of a 10-amino-acid sequence, with each containing
three glutamine (Q) residues, only one in this 585-amino acid protein—within the sequence
ELPEQQVGQP (the reactive Q is underlined and bold)—is a substrate for TGM1 in vitro
unless the protein is proteolytically degraded [99]. Loricrin, an abundant protein that
comprises about 80% of the cornified envelope, is synthesized in cells of the granular
layer and forms oligomers with small, proline-rich proteins [100,101]. These complexes are
stabilized by TGM3 and then fixed onto the involucrin-containing scaffold by formation of
cross-links catalyzed by TGM1 [95]. The keratin filament-filaggrin complex and several
minor proteins, such as elafin, are added sequentially to the inner surface of the cell
membrane. Keratin and a small amount of filaggrin are cross-linked to loricrin but not
to each other [101]. Cross-links, mostly to loricrin, stabilize the cornified envelope and
generate the insoluble matrix of corneocytes. Mutations in the TGM1 gene cause the skin
disorder lamellar ichthyosis, and TGM1−/− knockout mice die within a few hours after
birth [96,102]

Liedén et al. [103] and Su et al. [104] demonstrated a remarkable increase in expression
of these transglutaminases in the epidermis of patients with AD. Whereas TGM1 and
TGM3 are intracellular enzymes, repair of damage to the epidermis appears to also require
extracellular transglutaminase activity. TGM2 is ubiquitously expressed and, unlike other
members of the family, is found in the extracellular space [105–108]. Expression of TGM2 is
induced in inflamed and wounded tissues [105,109–112] and also by dexamethasone [113].
TGM2 normally occurs in an inactive, closed conformation but is rapidly converted to the
open, active form by injury [109,114]. Closure of wounds is significantly impaired in TGM2
knock-out mice [115], and processes required for wound healing and extracellular matrix
remodeling are dramatically reduced when fibroblasts and macrophages are rendered
TGM2-deficient by transfection with anti-sense RNA [109,110].

7. Another Role for Transglutaminase?

Whereas the corneocytes are the “bricks” of the surface barrier, ceramides and other
lipids are extruded into the extracellular space to form the “mortar” [116,117]. Imper-
meability to water is provided by the extracellular lipids, as demonstrated by complete
abrogation of the permeability barrier by the extraction of lipids [118,119]. Points of contact
between corneocytes occur at villus-like structures, which at their tip contain corneodesmo-
somes, a complex consisting of cohesion proteins corneodesmosin, desmoglein 1 and
desmocollin 1 [120,121]. Corneodesmosin is synthesized in the lower granular layer of the
epidermis and is secreted from keratinocytes in vesicles as a glycoprotein [122,123]. In
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healthy skin, corneocytes are tightly stacked in the stratum corneum and express these
villus-like structures mostly on their outermost rims (Figure 7B). Riethmüller et al. [124]
discovered that these structures are approximately five-fold more numerous on homozy-
gous FLG−/− cells than on wild-type cells and cover the entire surface of the loosely packed
mutant corneocytes (Figure 7A). The less tightly stacked stratum corneum of FLG−/− in-
dividuals is also characterized by a nearly two-fold increase in TEWL [124]. Although
important for stability of the stratum corneum, corneodesmosomes do not inhibit water
flow between cells. However, TEWL could possibly be reduced if adherence of corneocytes
in filaggrin-deficient patients was increased.
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Figure 7. Corneodesmosomes. (A) Filaggrin-deficient (FLG−/−) corneocytes from tape-stripped
stratum corneum of patients with AD express corneodesmosin on villus-like projections that cover
the entire cell surface. (B) In contrast, corneocytes from the tightly packed stratum corneum of wild-
type (FLG+/+) patients contain corneodesmosin mostly on lateral rims of the cells. The images were
prepared by incubating corneocytes with anti-corneodesmosin antibodies followed by immunogold
labeling and scanning electron microscopy [124] (with permission from S. Kezic).

The greater abundance of corneodesmosomes in filaggrin-deficient patients may be
an attempt to compensate for the deficiency in filaggrin. Serine/glycine-rich loops in the
N-terminal domain of corneodesmosin are exposed on the surface of the stratum corneum
and are binding sites for colonization by Staphylococcus aureus and other pathogens in
AD lesions [125]. Several lysine residues lie within the sequence near these loops and
could serve as substrates for TGM2. An enzyme-bound thioester with the sidechain
carboxyl group of a glutamate residue, formed in the first step of a cross-linking reaction,
is attacked in the second step by an ε-amino group of a lysine residue in a protein to
form ε(γ-glutamyl)lysine isopeptide bonds. Seemingly any lysine ε-amino group will
enter the second step, but the enzyme is very specific for the glutamine residue, even
when the protein is rich in glutamine. The sequences glutamine-X (any amino acid)-
proline (QXP) and QXXQ are preferred substrates for TGM2, whereas QP or QXXP are
not favorable substrates for the enzyme [126,127]. The paucity of accessible glutamine
residues may minimize the number of cross-links between corneocytes. To overcome this
restriction, a glutamine-containing, multivalent peptide, svL4 [128], which is a substrate for
TGM2 (unpublished data), could provide ‘lysine-peptide-lysine’ cross-links between these
corneocytes and thereby potentially tighten the surface barrier, as proposed in Figure 8.
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epidermal Ca2+ gradient to reform, which is critical for keratinocyte differentiation and
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