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SUMMARY
The hepatic venous pressure gradient (HVPG) is the gold standard for cirrhotic portal hypertension (PHT), but
it is invasive and specialized. Alternative non-invasive techniques are needed to assess the hepatic venous
pressure gradient (HVPG). Here, we develop an auto-machine-learning CT radiomics HVPG quantitative
model (aHVPG), and then we validate the model in internal and external test datasets by the area under
the receiver operating characteristic curves (AUCs) for HVPG stages (R10, R12, R16, and R20 mm Hg)
and compare the model with imaging- and serum-based tools. The final aHVPG model achieves AUCs
over 0.80 and outperforms other non-invasive tools for assessing HVPG. The model shows performance
improvement in identifying the severity of PHT, which may help non-invasive HVPG primary prophylaxis
when transjugular HVPG measurements are not available.
INTRODUCTION

Portal hypertension (PHT), the most prominent non-neoplastic

complication of liver cirrhosis, contributes to severe morbidity

and mortality.1 Hepatic venous pressure gradient (HVPG) mea-

surement is the gold standard for the diagnosis of PHT and an

important predictor of cirrhotic complications.2,3 HVPG

R10 mmHg (clinically significant PHT, CSPH) is the most signif-

icant cutoff value in primary prophylaxis, indicating an increased

risk of decompensated events in patients with compensated

cirrhosis, while HVPGR12 mmHg is a high-risk factor for devel-

oping variceal bleeding and HVPG R16 mm Hg suggests an
Cell R
This is an open access article under the CC BY-N
increased risk of death. A higher HVPG R20 mm Hg (high-risk

PHT, high-risk portal hypertension [HRPH]), is associated with

bleeding control failure, rebleeding, and mortality.2–5

Therefore, continuous HVPG monitoring plays a significant

role in the primary prophylaxis and therapeutic management of

patients with PHT. However, transjugular HVPG measurement

is invasive, expensive, and has professional barriers, which limits

its clinical use in PHT management.3,6 Thus, alternate non-inva-

sive techniques are desperately needed to better assess and

monitor HVPG.

Radiological assessments of the liver and spleen, combined

with radiomics and deep learning (DL) technology, have
eports Medicine 3, 100563, March 15, 2022 ª 2022 The Authors. 1
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exhibited importance in CSPH diagnosis, according to our previ-

ous studies.7,8 These studies used only two-dimensional (2D)

computed tomography (CT) andmagnetic resonance (MR) imag-

ing information of the liver and spleen targeting on CSPH, while

studies on liver fibrosis have demonstrated that the radiomics in-

formation for fibrosis staging from the whole liver aremore repre-

sentative than part of the liver.9,10 Thus, we hypothesized that the

CT information from the whole liver and spleen could bemined to

quantify HVPG in patients with PHT using DL and radiomics

methods.

Todevelop anautomatedHVPGquantitative estimation frame-

work, we tried to develop (1) a DL segmentation network of the

liver and spleen on contrast-enhanced CT in PHT patients and

(2) an auto-machine learning (AutoML)CT radiomicsHVPGquan-

titative model (called aHVPG) for HVPG quantitation and multi-

stage assessmentwithHVPGR10,R12,R16, andR20mmHg.

RESULTS

Study design and participant characteristics
From 2016 to 2018, 429 consecutive patients were enrolled in

CHESS1701 and CHESS1802 (ClinicalTrials.gov NCT03138915

and NCT03766880). Transjugular HVPG measurement was per-

formed in all of the enrolled patients. A flowchart of patient enroll-

ment is shown in Figure 1. Finally, 372 patients with CT data

contributed HVPG data to our study. To develop aHVPG, 224

(60%) patients were included in the training dataset, and 148

(40%) patients were included in the internal testing dataset.

According to the sample size calculation (Table S1), we had

enough patients in the training and testing datasets to validate

the model in each HVPG stage. Baseline characteristics of

training and internal test cohorts are summarized in Table 1,

and the baseline characteristics of external test cohort are sum-

marized in Table S2.

A DL model for liver and spleen segmentation in CT
To automate the analysis of aHVPG and reduce the selection

bias due to the handcrafted volume, we developed a DL network

to segment the 3D liver and spleen volume in portal-venous

phase CT from PHT patients. Based on two 3D fully convolu-

tional networks (FCNs, based on the V-Net architecture),11 the

organ segmentation network was divided into two stages (Fig-

ure 2A). In stage one, the input images were downsampled

and fed into the 3D FCN subnetwork (based on the V-Net archi-

tecture, Figure 2A) to obtain the low-resolution segmentation

map. In stage two, the low-resolution feature map was up-

sampled to the original resolution, concatenated with the inputs,

and fed into the higher resolution 3D FCNs to obtain the final seg-

mentation results.

Manual segmentation of the liver and spleen in the portal phase

by radiologists was treated as the ground truth. Themain vessels

around the porta hepatis and splenic hilum were excluded. The

gallbladder was not delineated. The segmentation results were

evaluated using the Dice metric (DM), the Jaccard coefficient,

and positive predictive values (PPVs) in the test dataset.

The organ segmentation network accurately outlined the vol-

umes of the liver and spleen in two independent test cohorts (Fig-

ure 3A), with average DMs of 0.973 (SD 0.015) and 0.978 (0.009),
2 Cell Reports Medicine 3, 100563, March 15, 2022
Jaccard coefficients of 0.948 (0.028) and 0.959 (0.019), and

PPVs of 0.961 (0.024) and 0.960 (0.018) for liver volumetric seg-

mentation; and the corresponding values for the spleen were

average DMs of 0.974 (0.014) and 0.983 (0.015), Jaccard coeffi-

cients of 0.950 (0.026) and 0.966 (0.028), and PPVs of 0.962

(0.021) and 0.975 (0.021).

Development and overall diagnostic performance of
aHVPG
The workflow of aHVPG development is presented in Figure 2B.

Transjugular HVPG measurements were used as the ground

truth and the model output the quantitative results.

Portal-venous phase CT images were used for radiomics anal-

ysis for their better performance in CSPH diagnosis in previous

studies.7 CT images and masks obtained from the DL network

were collated (S.H. and Y.W., board-certified radiologists) and

sent to radiomic feature extraction in Pyradiomics.12 Three

feature groups were computed from the normalized and stan-

dardized CT images: 14 shape features, 252 first-order features,

and 952 textural features. In total, 2,436 features (1,218 features

each for the liver and spleen) were extracted from patients.

AutoML method was used for the aHVPG development. The

tree-based pipeline optimization tool (TPOT)13 was applied to

train a supervised regression model, which could automatically

optimize ML pipelines by using genetic programming (including

feature preprocessing, feature selection, model selection, and

hyperparameter tuning).13 We used the following parameters to

develop the model: 300 generations, a population size of 50,

and 10-fold cross-validation. TPOT output the best-performing

model and the quantitative results. We selected the best regres-

sion model with a Spearman’s rho of 0.832 (95% confidence

interval [CI] 0.772–0.877, p < 0.001, r2 0.735] on the training data-

set (Figure 3B). The top 10 features in the final model included 3

spleen textural features, 6 liver textural features, and 1 liver first-

order feature. The importance of the top 10 features added up to

30.2%. The bestmodel pipeline and selected feature importance

are shown in Figure S1.

In the internal test dataset, the aHVPG results showed a corre-

lationwith theground truth (Spearman’s rho:0.616, 95%CI0.504–

0.711, p < 0.001, r2 0.407; Figure 3B), outperforming the newly

developed tools in Qi et al. (2019) (Spearman’s rho = 0.605) and

Simbrunner et al. (2020) (Spearman’s rho = 0.443).14,15 The diag-

nostic performance in each HVPG stage is shown in Figure 3C.

In the test dataset, the area (AUC) under the receiver operating

characteristic curve (ROC) for CSPH diagnosis (0.833, 95% CI

0.76–0.90) was the highest among all of the HVPG stages, fol-

lowed by the AUC for HRPH (0.814, 95% CI 0.74–0.88). The

AUC, sensitivity, specificity, PPVs, negative predictive values

(NPVs), and positivity HVPG missed/all positivity cases, and F2

score are summarized in Table 2. The details of the AUCs of the

test set in centers C–F, with small samples ranging from 0.71 to

1.00 for HVPG stratification for their different HVPG distributions,

are shown in Table S3 and Figure S2.

Diagnostic performance comparison with conventional
models
In each HVPG stage, we compared the diagnostic power of

aHVPG with the conventional imaging-based and serum-based

http://ClinicalTrials.gov


Figure 1. Flowchart of study enrollment

(A) The segmentation task included 100 patients

from center A to center F; 62 of 100 patients were

enrolled in training the segmentation network, and

38 patients were used for the test.

(B) The aHVPG (radiomics) task included 372 pa-

tients from center A to center F for model training

and internal testing and 27 from center G for

external testing. Segmentation and radiomics

tasks are independent. Another 38 healthy partic-

ipants were enrolled in the healthy control dataset.

HVPG, hepatic venous pressure gradient.
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models, including liver stiffness, CT-based portal pressure score

(HVPGCTscore),
16CSPH riskscore,17King’s score,18 Lok score,19

aspartate transaminase (AST) to platelet ratio index (APRI),20

Fibrosis-4 (FIB-4) Index,21 and AST/alanine transaminase (ALT)

ratio (AAR).22 The calculation methods are shown in Table S4.

In training and testing, aHVPG outperformed the HVPGCT

score and serum-based models in each HVPG stage (DeLong

test, p < 0.05). Figure 4 shows the ROC curves of aHVPG as

well as the top three AUCs within the HVPGCT score and

serum-based models (the number of patients and all of the

AUCs are shown in Table S5).

Liver stiffness was measured in 84 of 372 enrolled patients.

Due to the limited number of patients with liver stiffness, aHVPG

showed a moderate diagnostic power similar to liver stiffness

(DeLong test, p > 0.05; Figure S3; Table S6). aHVPG achieved

better performance for the diagnosis of HVPG R16 and

R20 mm Hg than liver stiffness in the test dataset (AUC 0.827

versus 0.727, 0.858 versus 0.563), but without significant differ-

ence (DeLong test, p > 0.05).

For CSPH, according to Baveno VI criteria (liver stiffness

R20 kPa), 29 of 84 patients were identified as CSPH accurately
Cell Rep
and 37 of 66 CSPH patients were missed.

aHVPG identified 58 of 84 CSPH patients

accurately and missed 8 of 66. All of the

patients with liver stiffness R20 kPa had

platelets <150 3 109/L.

We included aHVPG, serum albumin

(ALB), international normalized ratio

(INR), AST, ALT, and platelet count (PLT)

into a multiple linear regression using the

patients with shared indexes in the

training dataset. Although the model was

statistically significant (F-statistic 87.45),

none of the serum markers were associ-

ated with HVPG (p > 0.05; Table S7).

External test of aHVPG
In the external test dataset, the aHVPG re-

sults showed acorrelationwith the ground

truth (Spearman’s rho 0.751, 95% CI

0.434–0.915, p < 0.001; Figure S4), and

the overall accuracy of classification was

89%. NoCSPHwasmissed. The F2 score

forR10,R12,R16, andR20mmHgwas
100%, 91.35%, 96.15%, and 64.52%, respectively, which are

consistent with training and internal test sets.

Diagnostic robustness and negative control test
For the robustness assessment of aHVPG, three different

training and internal testing datasets were randomly constructed

from all of the patients at a ratio of 6:4 to retrain the model, which

were tested and compared with the original model. After re-

training and testing, there was no significant variation in the

AUCs after different training datasets were applied in all of the

HVPG stages (DeLong test, p > 0.05; Figure 5; Table S8).

To further investigate whether the model may identify a normal

CT scan as CSPH, 38 healthy participants were enrolled as the

healthy control dataset, and the accuracy of classification as a

non-CSPH patient is 84% (2 of 38). The model may not identify

a normal CT scan as CSPH patients.

DISCUSSION

In this post hoc study, we proposed a fully automated HVPG

quantitative estimation framework based on CT, including a DL
orts Medicine 3, 100563, March 15, 2022 3



Table 1. Baseline characteristics of the patients in training and internal test dataset

Characteristics

Median (interquartile ranges), or n/total (%)

All (N = 372) Training set (n = 224) Internal test set (n = 148) P

Age, y 50 (41–57.00) 50 (41–56) 49 (41–57) 0.850

Sex 0.052

Female 118/372 (32) 62/224 (28) 56/148 (38)

Male 254/372 (68) 162/224 (72) 92/148 (62)

BMI, kg/m2 23.39 (21.10–25.60) 23.52 (21.27–25.78) 23.14 (20.72–25.35) 0.301

Child-Pugh class 0.748

A 212/325 (65) 129/194 (66) 83/131 (63)

B 85/325 (26) 50/194 (26) 35/131 (27)

C 28/325 (9) 15/194 (8) 13/131 (10)

Etiology 0.402

Hepatitis B 205/372 (55) 126/224 (56) 79/148 (53)

Hepatitis C 17/372 (5) 13/224 (6) 4/148 (3)

Alcoholic liver disease 28/372 (8) 15/224 (7) 13/148 (9)

Othera 122/372 (33) 70/224 (31) 52/148 (35)

Ascites 0.055

No 219/342 (64) 142/208 (68) 77/134 (57)

Yes 123/342 (36) 66/208 (32) 57/134 (43)

HVPG, mm Hg 16.54 (11.95–21.01) 16.54 (11.95–21.08) 16.54 (11.94–21.01) 0.898

HVPG stage, mm Hg

<10 59/372 (16) 35/224 (16) 24/148 (16) 0.886

R10 313/372 (84) 189/224 (84) 124/148 (84) 0.886

R12 278/372 (75) 167/224 (75) 111/148 (75) >0.99

R16 209/372 (56) 126/224 (56) 83/148 (56) >0.99

R20 115/372 (31) 70/224 (31) 45/148 (30) 0.954

TBIL, mmol/L 18.50 (12.85–25.50) 18.55 (12.62–25.92) 18.50 (13.60–24.60) >0.99

ALB, g/L 35.41 (32.05–39.00) 35.00 (32.00–38.10) 36.00 (32.38–39.48) 0.297

INR, U/L 1.17 (1.08–1.31) 1.19 (1.09–1.33) 1.15 (1.08–1.28) 0.193

AST, U/L 31.00 (23.00–42.00) 31.00 (22.00–42.00) 32.00 (23.50–42.50) 0.282

ALT, U/L 22.00 (16.00–31.00) 21.00 (15.00–31.75) 23.00 (17.00–31.00) 0.131

Platelets, 109/L 65.00 (46.00–93.00) 64.00 (43.25–91.75) 67.00 (48.50–94.00) 0.433

Liver stiffness, kPa 17.05 (12.38–27.70) 17.10 (12.60–27.25) 16.50 (12.00–27.70) 0.907

HVPGCT score 17.37 (15.74–19.86) 17.37 (15.55–19.41) 17.75 (16.34–20.65) 0.025

AAR 1.41 (1.15–1.73) 1.45 (1.16–1.76) 1.38 (1.10–1.71) 0.211

APRI 1.22 (0.74–1.85) 1.22 (0.71–1.88) 1.22 (0.76–1.84) 0.953

CSPH risk score 6.02 (3.54–8.84) 6.27 (4.12–9.10) 5.41 (3.05–8.35) 0.082

FIB-4 4.95 (3.02–7.56) 5.09 (3.06–7.75) 4.93 (3.02–7.19) 0.493

King’s score 28.47 (16.37–46.41) 28.20 (15.86–47.38) 28.83 (18.36–43.54) 0.849

Lok score 1.87 (1.17–2.76) 1.92 (1.27–2.82) 1.68 (1.12–2.57) 0.130

Center 0.350

A 237/372 (64) 147/224 (66) 90/148 (61)

B 66/372 (18) 41/224 (18) 25/148 (17)

C 18/372 (5) 12/224 (5) 6/148 (4)

D 17/372 (5) 8/224 (4) 9/148 (6)

E 16/372 (4) 6/224 (3) 10/148 (7)

F 18/372 (5) 10/224 (4) 8/148 (5)

AAR, AST to ALT ratio; ALB: albumin; ALT, alanine transaminase; APRI, AST to platelet ratio index; AST, aspartate transaminase; BMI, body mass

index; CSPH, clinically significant portal hypertension; HVPG, hepatic venous pressure gradient; TBIL, total bilirubin.
aOther etiologies included hepatic sinusoidal obstruction syndrome, autoimmune liver disease, primary biliary cirrhosis, non-alcoholic steatohepatitis

(NASH), and unknown.
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Figure 2. Deep learning segmentation

framework and radiomics development

workflow

(A) The organ segmentation framework included

two 3D fully convolutional networks (3D FCNs). In

stage 1, the first 3D FCN generated the low-reso-

lution segmentation map. In stage 2, the low-res-

olution feature map was upsampled to the original

resolution, concatenated with the inputs, and fed

into the higher resolution 3D FCNs to obtain the

final segmentation results.

(B) Radiomics analysis workflow of aHVPG. CT

images and masks obtained from the deep

learning network were pre-processed, and 1,218

features each for the liver and spleen were ex-

tracted. The tree-based pipeline optimization tool

was applied to train a supervised regression

model, and the hepatic venous pressure gradient

was used as the ground truth. Finally, the model

output the quantitative results and would be vali-

dated in internal and external test cohorts.
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organ volumetric segmentation model and aHVPG, which is an

AutoML radiomics model. The segmentation model exhibited

excellent performance in liver and spleen segmentation. The pro-

posedmodel showed diagnostic power better than the traditional

imaging- and serum-based models for assessing HVPG stages.

Compared with our previous studies on CSPH diagnosis,7,8,15

we can rationalize the radiological workflow in HVPG assess-

ment using DL and Auto-ML methods. This study realized an

automated model for HVPG estimation and multistage assess-

ment, which expanded the clinical role of radiological methods

from CSPH to multi-HVPG severity, while previous studies

need manual intervention and only focused on CSPH.

The performance of aHVPG for assessing HVPG stages may

be useful to improve risk stratification and clinical decision mak-

ing in patients with cirrhosis and PHT. In the test dataset, the

aHVPG results showed a moderate correlation (Spearman’s

rho = 0.616) with the ground truth, outperforming the newly

developed tools reported in Qi et al. (2019) and Simbrunner

et al. (2020).14,15 Also, we found the diagnostic performance of

aHVPG considerable for detecting different severities of PHT.

Thismay help clinicians preliminarily assess the risk of complica-

tions (e.g., esophageal varices bleeding) or identify patients at

high risk needing proactive treatment measures (e.g., transjugu-

lar intrahepatic portosystemic shunt [TIPS]) when an invasive

procedure is unavailable. Finally, no significant variation was

observed after re-training and testing, suggesting the robust-

ness and reproducibility of our model.

Almost existing non-invasive imaging methods, including our

study, tend to seek external reflections of profound structural

alteration in the liver and spleen. As chronic liver disease pro-
Cell Rep
gresses, damaged liver parenchymal

and non-parenchymal cells cause struc-

tural changes to the liver tissue, including

fibrosis, regenerative nodules, and

destruction of vascular structures, lead-

ing to significant liver structure changes,

intrahepatic vascular resistance increase,
and then PHT. At the same time, another organ of the portal sys-

tem, the spleen, is also involved in the vicious cycle of PHT. This

is based not only on passive congestion of the spleen but also on

structural changes resulting from angiogenesis, fibrogenesis,

and hyperactivation of the splenic lymphatic compartment.1,23

Therefore, significant structural changes in the liver and spleen

may be revealed by imaging methods, and conventional CT

methods should not be limited to morphological changes only,

but deep into areas beyond the reach of the human eye.

Radiomics provides us with the means to extract high-

throughput CT data and uncover possible tissue cell-level alter-

ations hidden in pixels.24 In our study, themain features included

in aHVPG were second-order (9 of the top 10 features selected).

These features were generated from the interrelationship be-

tween neighboring voxels and were insensitive to the absolute

gray value. Furthermore, these features buried information about

the coarseness of the texture and the spatial heterogeneity of the

liver and spleen, which may be an imaging reflection of changes

in the structure, and the pathogenetic mechanisms hiddenwithin

the image textures may be related to liver and spleen stiffness.

Liver stiffness has been considered an alternative diagnostic

method for CSPH in Baveno VI2,25 and showed diagnostic effi-

cacy for severe PHT in our study. The spleen stiffness measure-

ment has also been validated in ruling out high-risk varices in

PHT alone or when combined with Baveno VI criteria.23,26 How-

ever, liver stiffness performed worse than aHVPG in diagnosing

higher HVPG in our study, which may be attributed to extrahe-

patic factors in cirrhosis progression.1

The HVPGCT score, which is calculated by the liver and spleen

volume and ascites, was the third most accurate model in the test
orts Medicine 3, 100563, March 15, 2022 5



Figure 3. Segmentation accuracy and diagnostic performance of the deep learning network and aHVPG

(A) Dice metric, Jaccard coefficient of the deep learning segmentation network for the liver and spleen in the internal test dataset (centers A–E) and external test

dataset (center F).

(B) Correlation between aHVPG and invasive HVPG. Scatterplot shows agreement between the aHVPG and the invasive HVPG in training and internal test

datasets.

(C) Receiver operating characteristic curves of the aHVPG for assessing hepatic venous pressure gradient stages, includingR10,R12,R16, andR20mmHg in

training (red line) and internal test sets (blue line).

AUC, area under the curve.
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dataset, while the shape features showed less importance in

aHVPG. These results indicated that features involving the liver

and spleen volume may be less important in assessing HVPG in

imaging studies,16,27,28which is consistentwith a previous study.7

Furthermore, serum biomarkers showed poor performance in

HVPG assessment, while they were originally designed for liver
Table 2. Diagnostic accuracy of aHVPG for each HVPG stage

HVPG Group AUCa 95% CI

Cutoff

value

Sen

(%)

R10 mm Hg training 0.93 0.88–0.98 12.7 95.2

internal test 0.83 0.76–0.90 95.1

R12 mm Hg training 0.90 0.85–0.94 13.7 94.6

internal test 0.77 0.68–0.85 87.3

R16 mm Hg training 0.90 0.86–0.94 14.7 95.2

internal test 0.81 0.73–0.88 89.1

R20 mm Hg training 0.93 0.90–0.96 16 95.7

internal test 0.81 0.74–0.88 88.8

AUC, area under the receiver operating characteristic curve; CI, confidence

tive value; PPV, positive predictive value.
ap < 0.001.
bPositivity HVPG missed/all positivity cases.
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fibrosis or cirrhosis18,20,21,29 and are consistent with our previous

studies.7,8 Simbrunner et al. (2020) proposed the enhanced liver

fibrosis (ELF) score in CSPH and HRPH assessment, with AUCs

of 0.833 and 0.677, respectively, which presented a strong

CSPH diagnostic ability.14 Un-like CT data, liver stiffness and

the ELF score have not been included in the PHT management
sitivity Specificity

(%)

PPV

(%)

NPV

(%)

Missed

(%)b
F2 score

(%)

4 77.14 95.74 75 4.76 95.34

6 20.83 86.13 45.45 4.84 93.21

1 63.16 88.27 80 5.39 93.27

9 32.43 79.51 46.15 12.61 85.69

4 59.18 75 90.62 4.76 90.36

6 50.77 69.81 78.57 10.84 84.47

1 62.99 54.03 97 4.29 82.92

9 66.02 53.33 93.15 11.11 78.43

interval; HVPG, hepatic venous pressure gradient; NPV, negative predic-



Figure 4. Receiver operating characteristic curves of aHVPG and the top 3 conventional non-invasive tools

(A–D) Top: Receiver operating characteristic curves (ROCs) of aHVPG and the top three conventional non-invasive tools in the training dataset for assessing

hepatic venous pressure gradient (HVPG) stages including R10, R12, R16, and R20 mm Hg. Bottom: ROCs in the internal test dataset for assessing HVPG

stages.

AAR, AST to ALT ratio; APRI, AST to platelet ratio index; CSPH, clinically significant portal hypertension.
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workflow in most hospitals, but it is possible to provide a non-

invasive HVPG staging method by combining CT scan, liver or

spleen stiffness, and the ELF score.

The AutoML method is also an exciting tool for bioinformatics

problems. Balancing complexity and interpretability is a timeless

topic in clinical model building, and AutoML methods may pro-

vide a possible solution to designing a more complex pipeline,

yielding satisfactory outcomes not inferior to those made by hu-

mans, as well as more interpretable results compared with some

DL methods.8,13

In conclusion, we developed an automated and non-invasive

HVPG quantitative estimation method to evaluate HVPG stages

based on CT. Owing to the convenience of CT examinations,

aHVPG, as a non-invasive method, may help non-invasive

HVPG primary prophylaxis when transjugular HVPG measure-

ments are not available.

Limitations of the study
For the multicenter situation, we used a mixed-samples

strategy to make the model conform to real-world distributions.

A trained model that uses images with multiple parameters or

from different scanners may improve its generalizability for

manufacturers.

Selection bias is the most significant limitation of this study.

Because of the concerns of patients with mild symptoms about

the procedure and the price of HVPG measurement, the limited

sample size with a lower HVPG level (i.e., HVPG <5 mm Hg)

caused an imbalanced HVPGdistribution. According to the sam-

ple size calculation, we had enough patients in the training and

testing datasets to validate the model performance, especially

in distinguishing CSPH. The negative control test also demon-
strated enough power to identify healthy people or non-portal

hypertensive patients by aHVPG, but such imbalanced HVPG

distribution has resulted in overestimates. Given the lack of

contrast between the patients with HVPG <5 mm Hg and

>5 mm Hg, we could not obtain a threshold value for the diag-

nosis of PHT. Patients with non-portal hypertensive cirrhosis

need to be included in the future to update themodel. In addition,

the follow-up data of patients in this study were not collected.

Finally, ionizing radiation from CT requires attention, although

CT can provide a rapid examination process and information

added about the whole abdomen.
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Figure 5. Receiver operating characteristic curves of the robustness test

(A–D) Top: Receiver operating characteristic curves (ROCs) of the original model and 3 times-retrained models for assessing HVPG stages, includingR10,R12,

R16, andR20mmHg in the training dataset (DeLong test, p > 0.05). Bottom: ROCs of the robustness test in the test dataset for assessing HVPG stages (DeLong

test, p > 0.05).
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sample size consideration is shown in Table S1. This study retrospectively enrolled patients from six Chinese hospitals (Centre A: The

Fifth Medical Center of PLA General Hospital, Centre B: Beijing Shijitan Hospital, Centre C: The Third Xiangya Hospital of Central

South University, Centre D: Beijing You’an Hospital, Centre E: Xingtai People’s Hospital, Centre G: Southeast university Zhongda

hospital) and a Turkish hospital (Centre F: Ankara University). The study was approved by all local institutional review boards (The

main centre is the FifthMedical Center of PLAGeneral Hospital, IRBNumber: 2015068D, and this study was registered and approved

in other centres following themain centre). Written informed consent was obtained from all HVPGmeasurement participants. All cen-

tres (Centres A-G) are registered as collaborators in clinical trials the Chinese Portal Hypertension Alliance (CHESS) 1701

(ClinicalTrials.gov, NCT03138915) and CHESS1802 (NCT03766880).

METHOD DETAILS

Study design and participants
This study followed the Standards for Reporting of Diagnostic Accuracy (STARD) reporting guidelines.30

aHVPG development and internal test datasets

We formed the training and internal test datasets using prospective patients with cirrhosis undergoing clinically-indicated transjugu-

lar HVPG measurement and contrast-enhanced abdominal CT in five Chinese hospitals (Centres A-E) and a Turkish hospital (Centre

F) from August 2016 to April 2019,7,8 to develop the deep learning network for liver and spleen segmentation and the aHVPG for

HVPG estimation in cirrhosis patients.

The inclusion criteriawere as follows: (1) Confirmed cirrhosis (diagnostic criteria including 1) Laboratory tests, such as livermalfunc-

tion and hepatitis viruses; 2) Imagingmethods, such asCT,MR, andUS,which showed the signs of cirrhosis like liver nodules, ascites,
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or splenomegaly; 3) Physical examination findings, including the history of HBV or other viral hepatitis, jaundice, ascites, or spleno-

megaly; 4) A proportion of patients underwent biopsy to confirm the diagnosis.); (2) Patients who had abdominal contrast-enhanced

CT scan within 14 days before HVPG measurement; (3) Adult patients (age from 18 to 75 years); (4) Written informed consent.

The exclusion criteria were as follows: (1) Patients previously underwent any surgical procedures of liver or spleen (e.g., TIPS, liver

transplantation, splenectomy, and partial splenic embolization); (2) Patients with hepatocellular carcinoma; (3) Acute portal hyperten-

sion in cases of acute-on-chronic liver failure; (4) Technical reasons (e.g., abnormal CT parameters, artifacts).

The segmentation task enrolled 100 patients based on experience, including 82 patients selected randomly from Center A-E for

training and internal test and all 18 patients from Center F for external test).

The radiomics task involved all enrolled patients. By stratified random sampling, 60% of patients in each HVPG level (0-10, 10-12,

12-16, andR20 mmHg) were randomly selected for training, and the rest for internal testing. There was no data overlap between the

training and test datasets, and the segmentation and classification tasks are independent.

External test dataset

We retrospectively enrolled patients with cirrhosis undergoing HVPGmeasurement and CT from the Centre G using the same criteria

from January 2020 to June 2021 for the external test of aHVPG.

Healthy control dataset

To further investigate whether the model might identify a normal CT scan as CSPH, we retrospectively enrolled a cohort of healthy

participants with abdominal contrast-enhanced CT from routine checkup, in Centre G from January 2021 to June 2021. This cohort

would be only used in the negative control test.

CT examinations
CT examinations were performed using standard contrast-enhanced abdominal protocols in each institution (Table S9) within

14 days before the catheterization. All images were extracted from two cohorts and sent to a core laboratory (Southeast University,

centre G). The portal-venous phase from the contrast-enhanced abdominal CT were analysed. All the images were reviewed to

exclude those that were of abnormal quality by radiologists.

Transjugular HVPG measurement
The details of the transjugular HVPGmeasurement processwere reported in our previous study.7,8,15 All transjugular HVPGmeasure-

ments were performed by trained interventional radiologists following the standard operating procedure. We used the balloon cath-

eter with a pressure transducer at the tip. A zero measurement was conducted before the study. The free hepatic venous pressure

was measured as the balloon catheter was placed close to the inferior vena cava (approximately 1–3 cm). At the ostium of the right

hepatic vein, wemeasured the free hepatic venous pressure, and then the wedged hepatic venous pressure wasmeasured while the

balloonwas inflated for total occlusion. Continuous recordingwas performed until the pressure reached a plateau. TheHVPGwas the

difference between the wedged hepatic venous pressure and the free hepatic venous pressure.

In this study, each HVPG measurement was according to 3 times repeated measurements of WHVP and FHVP, and then the

average of at least 2 measurements with difference < 1mmHg was obtained and HVPG was calculated. HVPG measurements

were performed in high-volume liver centers, and in each center, one independent interventional radiologist with more than ten-

year experience leaded the HVPG measurement and was responsible for quality control.

From 2016, patients with cirrhosis were enrolled in CHESS1701 and 1802 projects and underwent clinically-indicated invasive

HVPG measurement to assess the patient’s portal pressure, risk of complications or treatment results. In Center G, from 2020,

HVPG have beenmeasured in some patients hospitalized with cirrhosis and gastrointestinal bleeding or high-risk esophageal varices

and recorded in the medical record system.

Liver stiffness and clinical features
Liver stiffness was measured by FibroScan (Echosens, France) in patients without contraindications. 84 of 372 enrolled patients un-

derwent FibroScan examination.

Clinical and laboratory characteristics on patient admission were collected including ascites, ALB, INR, AST, ALT, and PLT. Liver

and spleen volume were calculated based on DL segmentation.

Deep learning network for liver and spleen segmentation
The 3D FCN is based on V-Net architecture. The coding side in the left with four stages performs feature extraction and resolution

reduction. Each stage consists of one to three 33333 convolution layers, one 23232 convolution layer with stride 2 to reduce res-

olution (2-8 times downsampling) and uses a residual structure. The decoding side in the right also with four stages, performs feature

fusion, segmentation and output a two-channel volumetric segmentation. Each stage consists of one 23232 deconvolution layer

with stride 2 to increase input size (Except for decoding stage 1), three to one 33333 convolution layers, and residual functions.

Fine grained features were forwarded from corresponding stages in the left to the right. PReLu non linearities are applied throughout

the network. The DICE loss is employed in loss calculation.

Python 3.7 and PyTorch 0.4.1 were used to train and test the models with the following predefined parameters: initial learning rate

of 10e-4, 1200 iterations, and a batch size of 1. The layer thickness was adjusted to 3 mm, and the greyscale values were limited to
Cell Reports Medicine 3, 100563, March 15, 2022 e2
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-350 to 350 for all the images. Random rotation and zooming were performed during training. The liver and spleen segmentation

models were trained independently.

The deep learning network was redeveloped. Private patients’ CT images of cirrhosis were used to train the model, and we made

changes in data preparation, training, and test process to enable the model to perform well in patients with cirrhosis. We also added

the inference function to generate segmentation.

Performance analysis of deep learning network
The segmentation results were evaluated using the Dice metric (DM), Jaccard coefficient, and positive predictive values (PPVs) in the

test dataset, which were calculated using the following formulas:

1) Dice metric (DM): measured the overlap between ground truth area and predicted area
DMðCm;CaÞ = 23
CmXCa

Cm +Ca

2) Jaccard coefficient: measured the size of the intersection divided by the size of the union
JðCm;CaÞ = CmXCa

CmWCa

=
CmXCa

Cm +Ca � ðCmXCaÞ
Cm: the region of manual ground truth

Ca: the region of automatic segmentation result

3) Positive predictive values (PPV):
PPVc =
TPc

TPc +FPc

TP：True Positive of class c

FP：False Positive of class c

Diagnostic accuracy assessment of aHVPG
The overall diagnostic performance was assessed in the training and internal test dataset. First, the correlation between aHVPG and

transjugular HVPG was evaluated. Then, the diagnostic performance of aHVPG was evaluated in each HVPG stage, that is,

R10 mmHg (CSPH), R12 mmHg, R16 mmHg, and R20 mmHg (HRPH). The receiver operating characteristic (ROC) curve, area

under the ROC curve (AUC), sensitivity, specificity, PPV, and negative predictive value (NPV), positivity HVPG missed/all positivity

cases, and F2-score were used to assess the diagnostic performance of aHVPG in each HVPG stage.

QUANTIFICATION AND STATISTICAL ANALYSIS

Continuous variables are presented as medians (interquartile ranges [IQRs]). Based on the data distributions, Student’s t-test or

Mann–Whitney U tests, as appropriate, were used to compare differences between groups. Categorical variables are presented

as counts (%s) and were compared using c2 or Fisher’s exact test.

Spearman’s correlation analysiswasperformed to assess the correlation between aHVPGand transjugular HVPG. The cut-off values

foreachHVPGstagewereevaluated in the trainingdatasetby thecut-off at sensitivityR95%.DeLong testswereused tocompareAUCs

in the model performance and robustness assessment phase. A 2-tailed p <0.05 was considered statistically significant.

We performed model development and multiple linear regression in Python 3.7, mainly including TPOT, sklearn, and statsmodels.

MedCalc Statistical Software v19.0.4 (MedCalc Software bvba, Ostend, Belgium) was used for AUC analysis and the DeLong test.

SPSS 22.0 software (SPSS, Inc., Chicago, IL, USA) was used for descriptive analysis and Spearman correlation analysis.
e3 Cell Reports Medicine 3, 100563, March 15, 2022
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