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ABSTRACT: Fatty acids play an important role in controlling the energy
balance of mammals. De novo lipogenesis also generates a significant
amount of lipids that are endogenously produced in addition to their
ingestion. Fatty acid elongation beyond 16 carbons (palmitic acid), which
can lead to the production of very long chain fatty acids (VLCFA), can be
caused by the rate-limiting condensation process. Seven elongases,
ELOVL1−7, have been identified in mammals and each has a unique
substrate specificity. Researchers have recently developed a keen interest in
the elongation of very long chain fatty acids protein 1 (ELOVL1) enzyme
as a potential treatment for a variety of diseases. A number of neurological
disorders directly or indirectly related to ELOVL1 involve the elongation
of monounsaturated (C20:1 and C22:1) and saturated (C18:0-C26:0)
acyl-CoAs. VLCFAs and ELOVL1 have a direct impact on the neurological
disease. Other neurological symptoms such as ichthyotic keratoderma, spasticity, and hypomyelination have also been linked to the
major enzyme (ELOVL1). Recently, ELOVL1 has also been heavily used to treat a number of diseases. The current review focuses
on in-depth unique insights regarding the role of ELOVL1 as a therapeutic target and associated neurological disorders.

1. INTRODUCTION
Long-chain fatty acids (LCFAs, composed of 12C−20C) and
very long-chain fatty acids (VLCFAs, more than 20C) are the
building blocks of sphingolipids and ceramides as well as
eicosanoid (20-carbon polyunsaturated fatty acid (PUFA))
oxidized derivatives produced by the signaling molecule
cyclooxygenase (COX), lipoxygenase (LOX), and cytochrome
P450 (cytP450).These lipids perform a variety of characteristic
cellular tasks and are structural elements of biological
membranes, where they are vital as permeability barriers of
skin, retina, liver, and myelin sheaths of neurons1,2 Hyper-
lipidemia, obesity, and atherosclerosis are just a few examples
of the numerous metabolic syndromes and disorders that are
the direct result of dysregulation of fatty acid metabolism.3,4 In
addition, abnormalities in lipid production and remodeling are
associated with more than 100 genetic diseases, including
stargardt syndrome and spinocerebellar ataxia.2,5 Different
types of fatty acids are required for normal healthy body
function. Mouse knockout studies show the involvement of
ELOVL protein (very long chain fatty acid elongation) in
insulin resistance and hepatic steatosis,1,6 and ELOVL7 in
particular is associated with cancer, early onset Parkinson’s
disease, and necroptosis.7,8 However, not much is known about
the chemical processes underlying key steps in ELOVL
production of fatty acids and lipids. VLCFAs are further
categorized into monounsaturated (MFAs), polyunsaturated

(PUFAs), and saturated fatty acids (SFAs). There are four
different enzymes that comprise the FA elongase apparatus
namely acyl-CoA synthetase, 3-keto-acyl-CoA synthase
(Elovl), 3-keto-acyl-CoA reductase, and 3-hydroxy acyl-CoA
dehydratase.9 Seven elongases (ELOVL1−7) have been
discovered with characteristic substrate specificity along with
distinctive patterns of expression in mammalian tissues,
although it is still unclear exactly what their roles are in the
pathways of VLCFA elongation.1 Furthermore, two novel fish
elovls were recently identified by Li and colleagues (2020),
named ELOVL8a and ELOVL8b. These ELOVLs were
discerned from herbivorous marine teleost rabbitfish (Siganus
canaliculatus) using genomic surveys and molecular cloning
methods.10 Moreover, ELOVL8 was also identified in zebrafish
liver, suggesting its potential role in fatty acid biosynthesis.11

This knowledge gap is a result of insufficient or imperfect
biochemical analyses, a dearth of substrates, and variation in
applied research techniques resulting in confounding of
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comparisons. Sequence alignment demonstrates that numerous
conserved motifs are necessary for ELOVLs to act as
desaturases.
Several members of the ELOVL family, including ELOVL1,

-3, -4, -5, and -6, are produced in cells of the central nervous
system (CNS), but the extent of this expression varies
according to the location of the brain.12,13 While ELOVL2 is
highly expressed in nonmammal brains, ELOVL2 and
ELOVL7 are very weakly expressed in mammalian brains.14

ELOVL4 and ELOVL5 are the most investigated of the
ELOVL family members in the human and animal brain.15

Mutations in human ELOVL4 or ELOVL5 genes result in
neurological illness.16 It is interesting to note that in zebrafish,
ELOVL4b is highly expressed in the retina,17 and ELOVL4a
expression is reported to occur in the brain,16,18 where it
exclusively catalyzes the production of very long chain
saturated fatty acids. Similar patterns of production of both
saturated and polyunsaturated very long chain fatty acid in the
brain and the retina of teleost fish and mammals have been
reported for ELOVL4 isoforms.19 ELOVL5 is likewise highly
expressed in the fish brain, as it is in the mammalian brain.20

The importance of ELOVL1 in a variety of neurological
illnesses has intrigued researchers of all fatty acid elongases.
ELOVL enzymatic protein are widely expressed in every tissue,
including the testis, brain, and adrenal gland. Diseases
including X-linked adrenoleukodystrophy (X-ALD), neuro-
ichthyotic conditions, ichthyotic keratoderma, spasticity,
hypomyelination, and others are associated with mutations in
the genes encoding elongases particularly ELOVL1.21−23

Therefore, the present review mainly focuses upon the special
function of that one particular fatty acid elongase, ELOVL1,
plays in mammals and nonmammals. We also present the latest
information about its structure, distribution, and its impor-

tance in various neurological disorders along with some of its
therapeutic targets.

2. EXPRESSION AND FUNCTION OF ELOVL1
The human body possesses seven elongases (ELOVL1−7)
with various tissue expression patterns and specificity toward
substrates. Saturated (C20-CoA) and monounsaturated fatty
acids (C22-CoA) are necessary for the synthesis of C-24
sphingolipids, and ELOVL1 exhibits high substrate specificity
toward these fatty acids.24 Sphingolipids and ceramide
synthase (CERS2) are required for C24 sphingolipid
production, which further aids in the regulation of ELOVL1
function. It was suggested in a recent report that ELOVL1 may
also be able to use fatty acids with C18 to convert them into
fatty acids of C26 chain length. Among the organs that
naturally generate ELOVL1 are the lungs, skin, stomach,
kidneys, and highly myelinated parts of the CNS (Table 1).
The rate-limiting step in the synthesis of VLCFAs is catalyzed
by elongase ELOVL1. Ohno et al. successfully cloned mouse
ELOVL1 and demonstrated its involvement in the synthesis of
sphingolipids and C26 FAs.24 According to certain theories,
ELOVL1 is the foremost elongase enzyme producing C26:0 in
humans. In one study, ELOVL1 knockdown in fibroblasts
obtained from X-ALD affected patients showed diminished
C22:0-to-C26:0 elongation with dramatically reduced C26:0
levels. Furthermore, the results of pharmacologically inhibiting
ELOVL1 showed the importance of this gene for the formation
of C24:0 and C26:0.25,26 Mutations in ATP binding cassette
subfamily D member 1 (ABCD1), which encodes the
peroxisomal ABC half-transporter (ALDP) protein, cause X-
ALD disease, characterized by plasma and tissue accumulation
of VLCFAs. The ATP-binding cassette (ABC) transporter

Figure 1. Role of ELOVL1 in X-ALD and other neurological diseases.
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ALDP, which is encoded by the ABCD1 gene and is a
component of the peroxisomal membrane protein, is affected
by mutations in the ABCD1 gene. Furthermore, this mutation
leads to the impairment of β-oxidation of VLCFA and
increases the further elongation of VLCFA by ELOVL1 and
accumulation in plasma and tissues. This accumulation results
in to X-ALD and other neurological disorders27.28 Plasma
membrane composition, stability, and functionality are known
to suffer as a result of VLCFA accumulation in X-ALD (Figure
1).
Additionally, VLCFA has a toxic effect on adrenocortical

cells, which lessens their responsiveness to adrenocorticotropic
hormone stimulation. Patients with X-ALD may have oxidative
stress and brain and adrenal cortical damage as a result of
VLCFA accumulation.29 Lorenzo’s oil, a mixture of glyceryl
trierucate and glyceryl trioleate, was developed to decrease the
amount of saturated VLCFAs in the plasma of X-ALD patients
and found to suppress ELOVL1 activity.30 In addition,
ELOVL1 knockout was found to reduce VLCFAs (C26:0) in
X-ALD fibroblasts.26 The phenotype seen in elovl1 knockout
mice, however, illustrates the more fundamental necessity of
ELOVL1. Mice lacking the 1 gene die soon after birth due to
impaired epidermal permeability barriers.31 In these 1
knockout mice, both C26 and C24 sphingomyelins had
reduced, equal, or greater levels of fatty acid ceramide, while
ceramide levels were increased. This finding shows that
VLCFAs may, to some extent, be necessary for maintenance
and continued functioning of the epidermal permeability
barrier.31 The results of recent studies using goat fetal
fibroblasts and bovine mammary epithelial cells indicate that
a cellular sensor, rapamycin complex 1, which is a well-known
cellular energy sensor that controls protein synthesis, can be
targeted in mammals via the regulation of ELOVL1
expression.32

3. NEUROLOGICAL DEFICITS LINKED TO ELOVL1
ALTERATION

A neurological condition with ichthyotic keratoderma,
hypomyelination, spasticity, and dysmorphic characteristics is
brought on by a dominant ELOVL1 mutation.33 Only a small
group of Mendelian diseases, which include neurological
factors and ichthyosis, can be caused by mutations in genes
important for both epidermal and brain functions. The myelin
sphingolipids of mice lacking fatty acid elongase ELOVL1 were
observed to have minimized chain length24 and diminished
motor management. Myelin sphingolipids were shown to be
more prevalent in VLCFAs with a chain length of >C20.
3.1. Hypomyelination, High-Frequency Deafness,

and Spastic Paraplegia. Recently, neurocutaneous con-
ditions such as skin ichthyosis and mutations in the ELOVL1
gene, which generates fatty acid elongase, were found to be
related to a number of neurological disorders, such as spastic
paraplegia, hypomyelination, and high-frequency deafness.34

How ELOVL1 deficiency impacts the lipid composition and
specific pathological disorders in the brain remains unknown.
As a model for human ELOVL1 gene insufficiency, researchers
also worked on ELOVL1 mutant mice. The postnatal survival
rate of mice was lower than average, and several died from
startle epilepsy. Sphingolipids, for example, galactosylcera-
mides, sphingomyelins, sulfatides, and ceramides, exhibited
noticeably shorter acyl chains in the brains of these animals.
Galactosylceramide levels, which are essential for the growth
and stability of myelin, were also lower in mice. According to

electron microscopy studies, the corpus callosum of ELOVL1
mutant mice showed mild hypomyelination, especially in large-
diameter axons. Additionally, an examination of the mice’s
behavior found that they had poor motor coordination and a
diminished ability to be audibly startled in response to strong
stimuli.35 Suggestions regarding the molecular causes of the
neurological symptoms experienced by ELOVL1 mutant
patients were made based on results in these studies.
3.2. Neuro-Ichthyotic Syndrome. A broad group of skin

disorders known as ichthyoses are characterized by localized or
generalized (or both) scaling. Hypohidrosis (diminished
sweating), erythroderma, recurrent infections, palmoplantar
keratoderma, and erythroderma are other common symptoms.
A distinctive feature of ichthyoses is aberrant barrier function,
which develops into trans-epidermal water loss and compensa-
tory hyperproliferation. Mutations in more than 50 genes are
found to be linked with both syndromic and nonsyndromic
ichthyoses; these genes affect keratinocyte proteins (the
“bricks”), lipid metabolism, transport (the “mortar”), cell-to-
cell junctions, and the transcription and repair of DNA.36

In 2018, Kutkowska-Kamierczak et al. reported the first case
of a dominant missense mutation in ELOVL1 that results in
ichthyotic keratoderma, dysmorphic, spasticity, and mild
hypomyelination features in two kindreds.33 The formation
of saturated and monounsaturated VLCFAs is catalyzed by
ELOVL1, which also participates in the elongation of fatty
acids. Previously, mice from a strain lacking ELOVL1 exhibited
skin that was wrinkled, shiny, and red, and electron imaging
illustrated that the lipid lamellae of the stratum corneum were
unprogressive.37 Thin-layer chromatography showed that the
content of C26 fatty acid ceramides was decreased.
Kutkowska-Kamierczak et al. hypothesized that the disease
may be due to a lack of VLCFAs caused by inactive mutant
enzymes. They further stated that the mutation could affect
VLCFA levels in the brain and skin significantly more than in
fibroblasts or plasma.33

VLCFAs are necessary for the proper functioning of cellular
membranes. ELOVL1 is a protein that catalyzes the elongation
of monounsaturated and saturated C22−C26 VLCFAs. In a
previous work, two study participants were chosen for the
investigation based on having the dominant ELOVL1
mutation. The same patients were separately checked by
Kutkowska-Kamierczak et al. for the identical mutation. By
sequencing the complete exon, this study’s scope expanded to
take more biochemical, functional, and therapeutic factors into
account. Using LC-MS/MS, the concentrations of ceramide
and sphingomyelin were evaluated. ELOVL1 action was
assessed based on stable-isotope-labeled (13C) malonyl-CoA
elongation. Through the use of RT-qPCR, in situ hybrid-
ization, and immunofluorescence, the ELOVL1 expression
patterns were investigated. Increased keratinization and
epidermal hyper proliferation were observed in ichthyosis
patients. Alleviation of peripheral vision and acuity were mostly
due to optic atrophy, while spastic paraplegia and central
nystagmus were caused by central white matter hypomyelina-
tion. The mutation diminished the enzymatic activity of
ELOVL1 and decreased the levels of sphingomyelins and C24
ceramides in patient cells. When fibroblasts were loaded with
C22:0 VLCFAs, the levels of C24:0 ceramides and
sphingomyelin increased.38 Researchers found that saturated
and monounsaturated VLCFAs competitively reduced the
production of ceramide and sphingomyelin. A transcriptome
study revealed the downregulation of genes involved in
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synaptogenesis, myelination, and neurodevelopment and the
upregulation of modules for keratinization and epidermal
development. In the 5′ regions of numerous governed genes,
consensus PPAR (proliferator-activated receptor) and PPAR-
binding motifs were found.38 Therefore, PPAR-modulating
drugs may be used to treat a neuro-ichthyotic disease caused
by the dominant ELOVL1 mutation.
3.3. Hypomyelinating Spastic Dyskinesia and Ich-

thyosis. Next-generation sequencing technology, which can
identify incredibly rare pathogenic gene variants responsible
for diseases, was used to identify an autosomal recessive splice-
site mutation in the ELOVL1 gene as the cause of cerebral
palsy in two siblings.39 Thorough molecular analysis of cryptic
splicing was carried out using RNA and whole-exome
sequencing to study a consanguineous family. Measurements
of ceramide were performed with liquid chromatography−
tandem mass spectrometry (LC-MS/MS) analysis of the
stratum corneum of patient skin. The protein structure of
ELOVL1 was computer-modeled. The findings showed that
the specific homozygous mutation in the affected siblings was
what caused exon skipping.39 Using LC-MS/MS, a thorough
examination of the ceramides in patient stratum corneum
indicated considerable condensing of fatty acid moieties and a
sharp drop in the quantities of acylceramides. ELOVL1
variants are linked to many disease segregates in an autosomal
dominant manner, according to recent studies. Initially,
however, researchers presented a different scenario involving
autosomal recessive inheritance of ELOVL1.40 Therefore, it
was suggested by these researchers that determining the
molecular origins of genetic cerebral palsy and other ultrarare
illnesses may be possible by examining the inheritance
methods of the gene or genes associated with the disease.

4. ELOVL: ADDITIONAL FAMILY MEMBERS
It is well-known that the main fatty acid products, such as
VLC-SFAs and VLC-PUFAs, have different functions and
mechanisms of action, which remain unknown despite their
clear importance for CNS health and function. Recent research
has suggested that some lipid species with both of these kinds
of very long acyl chains may play crucial roles, with VLC-SFAs
serving as modulators of synaptic transmission and VLC-
PUFAs acting as precursors of metabolites associated with
homeostatic signaling. A brief description of their location,
function, and associated diseases is found in Table 1.
Through meticulous studies of this fatty acid product (VLC-

PUFAs), the Bazan laboratory uncovered a novel class of
bioactive fatty acids that they termed “elovanoids”.41 They
were shown to be neuroprotective in the retina and to be
produced by a particular kind of lipoxygenase. They are the
hydroxylated forms of compounds 32:6n-3 and 34:6n-3.42 In
addition, it is known that the primary products of ELOVL4 in
the retina are VLC-PUFAs, which are integrated with
phosphatidylcholine and are distributed in the outer segmental
disc membranes of light-sensitive photoreceptors. Every
morning, photoreceptors at the far end of the outer segment
shed discs that are phagocytosed and cleaved by the retinal
pigment epithelium (RPE). VLC-PUFAs, found in isolated
outer segment membranes, act as building blocks for RPE cells
to generate oxidized elovanoid derivatives. Elovanoids further
facilitate a feedback signal for neuroprotection to counteract
excessive oxidative damage, encouraging the photoreceptors to
express more pro-survival proteins.43 Elovanoids have also
been found to exhibit protective effects in neurons that were

starved of glucose and oxygen and also demonstrated
protection against excitotoxicity in in vitro and in vivo
ischemic stroke models. Overall, the results showed existence
of a distinct lipid-signaling route that supports the maintenance
of the health of neuronal cells and is pro-homeostatic and
neuroprotective. A new theory holds that VLC-SFAs are
decisive for healthy and satisfactory synaptic function and that
their absence due to ELOVL4 mutations compromises
synaptic transmission and results in synaptopathy. Current
studies have demonstrated that these VLC-SFAs are para-
mount and unique reformers of presynaptic release kinetics in
mice homozygous for a 5 bp deletion in STDG3 that renders
ELOVL 4 effectively inert.12,44

Since each ELOVL enzyme has a unique substrate specificity
and exhibits a unique pattern of expression in mammalian
tissues, they all serve different roles. As a result, faulty ELOVL
proteins are connected to a number of diseases in humans.
ELOVL2 controls docosahexaenoic acid formation and de
novo lipogenesis independently of sterol regulatory element
binding protein 1c (SREBP-1c), which in turn commands fat
mass growth and lipid storage. The finding that ELOVL2
mutant mice are resistant to diet-induced weight gain and liver
adipose tissue suggests that ELOVL2 is essential for
maintaining lipid homeostasis.45,46

A molecular link between polyunsaturated fatty acid
elongation and visual function was found to be synchronized
by ELOVL2 activity, suggesting potential therapeutic ap-
proaches for the management of age-related eye illnesses.47,48

In a study by Garagnani et al., it was discovered that ELOVL2
methylation could play a role in the aging process through the
regulation of different biological pathways. Age-related hyper-
methylation and ELOVL2 could act as links between early
developmental phases and aging. This involvement of ELOVL2
could be further investigated in future clinical and forensic
research.49,50 A particular form of ELOVL3 is related to the
skin. Studies in mice lacking ELOVL3 demonstrated that
ELOVL3 is necessary for the production of neutral lipids in the
skin,51 wherein these mice had significant water-repelling
abnormalities, increased trans-epidermal thin-hair coats, water
loss, and hyperplastic pilosebaceous systems. Vitamin D was
found to modulate ELOVL3 and the fatty acid composition of
subcutaneous adipose tissue.52 In addition, skin and retina are
the primary tissues where ELOVL4 is expressed. The skin
permeability barrier, newborn survival, and the generation of
VLCFA chains longer than C26 all depend on ELOVL4.53 In
this context, it is intriguing that ELOVL1 and ELOVL4
nonredundantly collaborate in the skin to balance the
permeability barrier.
The lack of VLCFAs with chain lengths of C26, which

cannot be synthesized by ELOVL4, was reported to cause
problems in ELOVL1 knockout mice.54 While ELOVL4
mutant animals show decreased epidermal permeability, it is
conceivable that ELOVL1 can produce VLCFAs with chains
that are at least as long as C26. However, the levels of VLCFAs
with chains longer than C26 were found to be reduced,
whereas the levels of C26 VLCFAs were found to be increased
in ELOVL4 knockout mice.55,56 This suggests that ELOVL1
and ELOVL4 work together as an essential functional relay to
produce VLCFAs that are longer than C26 and C26-long
VLCFAs, respectively.
The ELOVL family of elongases is highly conserved in

eukaryotes, and homologues of the human ELOVL2, ELOVL4,
and ELOVL5 have been found and functionally characterized
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in a number of species of teleost fish, including zebrafish,
salmon, cobia, and Chu’s croaker. In fish, just one ELOVL2
isoform has been discovered. Some fish species, such as Chu’s
croaker only express ELOVL5 in its single isoform, but other
species express two functionally related isoforms (ELOVL5a
and b). The functions of ELOVL2 and ELOVL5 are identical
to those of their mammalian homologues and are functionally
redundant with one another. ELOVL2 elongates C20 and C22
PUFA to C24 PUFA, while ELOVL5a and 5b elongates C18
and C20 PUFA to C22 PUFA.57 The most broadly distributed
and highly expressed member of the ELOVL family in the
brain is ELOVL4, according to both in situ hybridization and
immunolabeling.9,57 In addition to zebrafish (Danio rerio),
Atlantic salmon (Salmo salar), Nibe croaker (Nibea mitsukurii),
and orange-spotted grouper (Epinephelus coioides), ELOVL4
has also been cloned from a number of fish species. Numerous
investigations have revealed that ELOVL4 is essential for the
synthesis of fatty acids, and it is generally accepted that this
enzyme’s purpose is to extend C20 fatty acids to longer-chain
fatty acids, even up to C36. Scatophagus argus ELOVL4 can,
however, elongate from 18:3n-6 to 20:3n-6, according to some
researchers. It has also been examined that all of the fatty acids
such as 18:2n-6, 18:3n-3, 18:3n-6, 20:4n-6, and 20:5n-3 could
be elongated by the loach (Misgurnus anguillicaudatus)
ELOVL4a and ELOVL4b enzymes.58 According to the
literature, ELOVL4 expression differs depending on the tissue
and type of cell, which is probably connected to the
dysfunctions identified in diseases caused by ELOVL4
mutations. The bulk of the brain expresses ELOVL4 at high
levels, with the cerebellum, cerebral cortex, thalamus, and
olfactory bulb particularly standing out17.57 The basal ganglia
are an exception to this pattern, since they express ELOVL4
only sparingly. ELOVL4 expression is largely neuronal at the
cellular level, despite the fact that a small number of ELOVL4-
positive cells were discovered in the brain white matter,
indicating that they may also be expressed in oligodendro-
cytes.59 Sherry et al. (2017) found that glutamatergic and
GABAergic neurons, as well as neurons that employ distinct
neurotransmitters, express ELOVL4.59

Within an area, ELOVL4 expression is cell specific. Only
photoreceptor cells in the retina express ELOVL4, according
to Agbaga and colleagues (2008), which is congruous with the
observation of ELOVL4 mutations in Stargardt’s-like macular
dystrophy (STGD3) that are implicated in photoreceptor
degeneration.60,61 Granule cells in the cerebellum have
exceptionally high levels of ELOVL4, but Purkinje cells have
low levels, as do basket and stellate cells. These cell-specific
variations in ELOVL4 expression may be related to the signs
and development of spinocerebellar ataxia-34 (SCA34), which
is brought on by ELOVL4 mutations in humans. According to
a previous study,62 the 5 bp deletion in STGD3 and mutant
ELOVL4 allele induce severe, spontaneous epileptiform
bursting and seizure activity in mice. The CA3 (caudate
amygdala) and CA4 regions of the hippocampus exhibit the
highest levels of ELOVL4 expression in neurons, whereas the
lowest levels are in the CA1 region and dentate gyrus. The
seizure activity seen in recessive human ELOVL4 neuro-
ichthyotic disease and this pattern are likewise comparable.63,64

In mice, the levels of ELOVL4 mRNA expression peak around
birth, decline during brain development, and stabilize by
postnatal day 30. ELOVL4 expression in the brain is
developmentally regulated. The dentate gyrus of the hippo-
campus subventricular zone and the internal and external

granular layers of the cerebellum are examples of regions where
ELOVL4 is strongly expressed during periods of neurogenesis,
according to studies using antibodies to label the developing
mouse brain between embryonic day 18 (E18) and postnatal
day 60. It is probable that ELOVL4 and its VLC-FA
byproducts are involved in neurogenesis, because ELOVL4
expression in these areas decreases along with neurogenesis.65

Arachidonic and docosahexaenoic acids activate SREBP-1c
and its target genes, which are associated with the production
of fatty acids and triglycerides. Animals lacking ELOVL5
showed reduced amounts of these fatty acids. ELOVL5
knockout mice exhibit deficiencies in lipid metabolism, as a
result of which they eventually experienced hepatic steato-
sis.65,66 Spinocerebellar ataxia was also shown to be connected
to the ELOVL5 mutation in humans.67,68 ELOVL5 displays a
characteristic expression pattern in the proximal convoluted
tubule (PCT) of the pronephros in zebrafish, indicating that
this gene may be important for human kidney development
and function.69 It was determined that ELOVL6 is the main
earmark of SREBP in the liver.70 ELOVL6, which elongates
C12 to C16, has a considerable impact on both the
thermogenic characteristics of brown adipose tissue and the
emergence of obesity-induced insulin resistance. Additionally,
it is involved in significant regulation of pulmonary fibrosis and
nonalcoholic steatohepatitis.71,72 ELOVL7 was shown to
facilitate the extension of saturated long chain fatty acids.73

Tamura et al. (2009) claimed that SREBP1, which is
overexpressed in prostate cancer cells and encourages cancer
cell growth, is involved in the mechanism through which the
androgen pathway regulates ELOVL7.73,74 As mentioned
above, each elongase has a distinct role, in part due to
variances in substrate selectivity and expression in various
tissues.

5. ELOVL1 AS A POTENT PHARMACOLOGICAL
TARGET
5.1. Lorenzo’s Oil. A peroxisomal condition known as X-

ALD is brought on by mutations in the ABCD1 gene, which is
essential for the entry of VLCFAs into peroxisomes. The
saturated VLCFA level in the plasma of X-ALD patients can be
decreased with the use of Lorenzo’s oil, a 4:1 blend of glyceryl
trioleate and glyceryl trierucate (Figure 2). However, the
specific mechanism by which this occurs remains unknown. An
experiment was conducted to investigate the biochemical

Figure 2. Therapeutic inhibitors of ELOVL1.
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properties of Lorenzo’s oil activity toward ELOVL-1, the
essential enzyme involved in the synthesis of saturated and
monounsaturated VLCFAs. An FA ratio of 4:1 between oleic
and erucic acids in Lorenzo’s oil demonstrated the biggest
impact on ELOVL1. Following investigation, the kinetics of
this inhibition were found to be mixed rather than competitive.
Treatment with the 4:1 mixture increased the amount of
sphingomyelin (SM) with monounsaturated VLCFA while
decreasing the amount of SM with saturated VLCFA in the
cells, most likely as a result of erucic acid being incorporated
into the FA elongation cycle.30,87 These results indicate that
inhibition of ELOVL1 may be one possible mechanism behind
the effects of Lorenzo’s oil.
5.2. Pyrimidine-Ether-Based and Pyrazole Amides as

Inhibitors of ELOVL1. The primary goal should be the
identification of ELOVL1 small-molecule inhibitors that might
penetrate the blood−brain barrier and potentially be used to
treat adrenoleukodystrophy (ALD) by reducing the concen-
trations of VLCFAs in the CNS. The impact of ELOVL1
inhibitors on VLCFA levels in ABCD1 KO mice prompted
researchers to look into a number of chemical compounds with
a variety of structural properties that suggested they might
match or even outperform the results observed with pyrazole
amide (Figure 2). The researchers investigated a series of
thiazole amides that eventually led to a highly potent, CNS
penetrant with favorable in vivo pharmacokinetics using a
substrate reduction approach based on the inhibition of
ELOVL1 enzyme. The compound inhibits ELOVL1 in ALD
patient fibroblasts, lymphocytes, and microglia by lowering
C26:0 VLCFA production as well as decreased C26:0 VLCFA
concentrations in mice models of ALD to levels close to wild
type in the blood and up to 65% in the brain. Inhibiting
ELOVL1 and targeting pyrazole amides as inhibitor could be a
successful method for restoring normal VLCFA levels in ALD
models.
In an another experiment, a total of 130 analogues were

synthesized and tested to fully investigate this vector by
conducting a high-throughput radiometric screen, and it was
discovered that piperidine analogue 4 provided a breakthrough
in efficacy. It decreases C26:0 VLCFA production in
fibroblasts and lymphocytes from ALD patients. The
compound’s biochemical and cellular activity was found to
be further elevated when the pyridine core was switched with a
pyrimidine ring using HEK293, an immortalized human
embryonic kidney cell line.88

It was shown that in order to avoid cerebral adrenoleukodys-
trophy, delay the beginning of the disease, or diminish its
severity and development in adrenomyeloneuropathy patients,
a 50−75% reduction in C26:0 VLCFAs may be necessary.89

The researchers reported the identification of powerful, brain-
penetrant pyrazole amides (Figure 2) that block VLCFA
synthesis in vitro in a variety of cell types, including ALD
patient cells, and in vivo in the blood and brain of an ALD-
prone mouse model.90

5.3. Saturated Lipids Assist in Inducing Cell Death (In
Vitro/In Vivo) by Neurotoxic Reactive Astrocytes. In an
in vitro and in vivo model of acute axonal injury, the astrocyte-
specific ablation of the saturated lipid production enzyme
ELOVL1 decreases toxicity caused by astrocytes. Recently, it
was investigated that elongation of longer chain, fully saturated
lipids (C16:0), which are more prevalent in reactive astrocytes
and ACM (conditioned medium from adult reactive astrocyte
cultures), could also be facilitated by the metabolic enzyme

ELOVL1 (the similar enzymes ELOVL3 and ELOVL7 are
expressed at low levels in astrocytes). To create an ELOVL1
conditional knockout (cKO) mouse model that is specific to
astrocytes, mice of an ELOVL1flox/flox line were crossed with
those of a Gfap-Cre line. The lipidomes of latent and active
astrocytes from wild-type and ELOVL1 cKO mice were
examined after cell separation. As expected, the astrocytes
with ELOVL1 knockout had decreased concentration of long
chain saturated free fatty acids.91 In comparison with reactive
ACM from wild-type mice, reactive ACM from ELOVL1 cKO
mice caused significantly less injury to oligodendrocytes in
vitro. This reactive ACM was toxic to oligodendrocytes after
being concentrated 10 times, but wild-type reactive ACM was
substantially more harmful. These findings imply that the
ELOVL1 cKO mutation decreases the generation of these
harmful lipids, which mediates the risky behavior of reactive
astrocytes.

6. CONCLUSION
Recent studies have elucidated novel functional roles for
ELOVL1 and its VLC-FA products throughout the CNS,
including the retina and brain, in both healthy and diseased
contexts. VLC-PUFAs are of vital importance to the CNS as
they cater as the basis for compounds with recently recognized
roles in homeostatic signaling and the regulation of neuronal
survival. Recent research has established that VLC-SFAs are
necessary for synaptic transmission and that disruption of
VLC-SFA synthesis results to seizures and neurodegeneration
in both ELOVL1-deficient humans and ELOVL1 mutant
models. A better understanding of the metabolism of VLC-
SFA and VLC-PUFA and their effects in the CNS could
facilitate the development of new therapeutic strategies for the
treatment of epilepsy and neurodegenerative diseases.
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