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Abstract
Living cells can express different metabolic pathways that support growth. The criteria that determine which pathways are 
selected in which environment remain unclear. One recurrent selection is overflow metabolism: the simultaneous usage of an 
ATP-efficient and -inefficient pathway, shown for example in Escherichia coli, Saccharomyces cerevisiae and cancer cells. 
Many models, based on different assumptions, can reproduce this observation. Therefore, they provide no conclusive evi-
dence which mechanism is causing overflow metabolism. We compare the mathematical structure of these models. Although 
ranging from flux balance analyses to self-fabricating metabolism and expression models, we can rewrite all models into 
one standard form. We conclude that all models predict overflow metabolism when two, model-specific, growth-limiting 
constraints are hit. This is consistent with recent theory. Thus, identifying these two constraints is essential for understand-
ing overflow metabolism. We list all imposed constraints by these models, so that they can hopefully be tested in future 
experiments.

Keywords  Overflow metabolism · Growth rate maximization · Genome-scale modeling · Metabolism and expression · 
Elementary flux modes · Elementary growth modes

Introduction

Many cells show overflow metabolism: the simultaneous 
metabolism of nutrients by an energy-efficient and a less 
energy-efficient pathway. For example, Escherichia coli, 
Saccharomyces cerevisiae and cancer cells fully oxidize 
carbon sources to CO2 when growing slowly. Above a spe-
cies-specific critical growth rate, a partial oxidation pathway 
kicks in, resulting in the production of overflow metabolites: 
acetate, ethanol and lactate, respectively [1–3]. Lactococcus 

lactis shows a similar metabolic shift from mixed-acid fer-
mentation (3 ATP per glucose) to lactic acid fermentation 
(2 ATP per glucose) under anaerobic conditions [4]. Besides 
overflow metabolism that starts at high growth rates, Escher-
ichia coli even produces overflow products at low growth 
rates when growing in ammonium-limited conditions [5].

Overflow metabolism seems wasteful because two meta-
bolic pathways are used that independently support growth, 
and one of them is more efficient (it has a higher ATP yield 
per glucose molecule) than the other. Since cells need energy 
for growth, efficient usage of nutrients is expected to be 
favorable. One would therefore expect that cells using the 
efficient growth strategy exclusively would be selected dur-
ing evolution.

The counterintuitive occurrence of overflow metabolism 
is in many studies explained using constraint-based optimi-
zation approaches. These approaches assume that cellular 
growth is constrained by physical and chemical limits, and 
that cells are driven towards these limits when evolution-
ary fitness is maximized. Accordingly, the behavior of cells 
results from maximizing their growth rate given a set of 
constraints.
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Since many models reproduce the experimental data 
while using different biological assumptions, it is unclear 
what exactly causes overflow metabolism. Therefore, we 
need a way to analyze and compare these different models 
to find the cause of overflow metabolism.

Minimal, growth-supporting metabolic modes are char-
acterized mathematically by identifying the smallest sub-
networks of the entire metabolic network that can support 
growth. Such subnetworks are called elementary flux modes 
(EFMs) in metabolic models [6], and elementary growth 
modes (EGMs) in self-fabrication models [7] (see SI1) for 
a short introduction and comparison of EFMs and EGMs). 
The gradual transition from the usage of one metabolic 
subnetwork to the mixed usage of two subnetworks that is 
observed in overflow metabolism indicates the simultaneous 
usage of two different elementary modes.

In recent theoretical work [7, 8], we derived that cells that 
maximize their growth rate will only use two elementary 
modes if they are confronted with at least two constraints. 
The identification of these constraints is therefore an impor-
tant step towards finding the mechanistic cause of overflow 
metabolism. In this review, we use this theory to compare 
the various models of overflow metabolism by making the 
growth-limiting constraints explicit.

Although the models range from relatively simple flux 
balance analyses to genome-scale self-fabrication models, 
we will show that they can all be written in the same concise 
standard form. Thus, the models are highly similar: (a proxy 
for) the cellular growth rate is maximized subject to two 
constraints. However, the biological assumptions underlying 
the imposed constraints differ between those models. Hence, 
the success of these models is dependent on the existence of 
two constraints and not on the precise biological interpre-
tation of those constraints. Finding the causes of overflow 
metabolism therefore amounts to identifying the two active 
growth-limiting constraints and experimentally testing them. 
We shall conclude that the models each offer a hypothesis 
that needs to be tested in falsification experiments in the 
future.

A standard form for overflow metabolism 
models

We will show that, to our knowledge, all existing models that 
use growth rate maximization to explain overflow metabo-
lism, can be rewritten in a standard form.

We will assume that a cell adapts its state to grow as 
fast as possible whenever it encounters a new environment. 
The cellular state is specified by optimization variables, for 
example the reaction rates ( v ) or the enzyme concentrations 
( e ). We will denote the optimization variables by the vector 

x , the ith entry of which is denoted by xi . The growth rate is 
modeled as a linear function, the objective function:

where wi is the weighting factor of variable i. The growth 
rate maximization of the cell is modeled mathematically by 
searching for the set of optimization variables that maxi-
mizes the objective function, given constraints to be speci-
fied later. Because the objective function is linear, there is 
a certain direction in the space of optimization variables in 
which the objective always increases. The optimal solution 
is the set of optimization variables that is as far in that direc-
tion as possible.

Not all combinations of optimization variables can be 
chosen due to constraints, for example a limited uptake 
rate, or a limited available area for membrane proteins. 
These constraints are formalized by inequalities acting on 
a weighted sum of the variables:

where aj determines the ‘cost’ of increasing the jth variable. 
In the special case that aj = 0 , xj is not bounded by this con-
straint. In general, we could have several, say m, constraints. 
These constraints can be collected in an m × n matrix A, 
where the ith row captures the ith constraint. All constraints 
can then be written together as:

The constraints can be viewed as planes bounding the fea-
sible combinations of variables (see Fig. 1). After all con-
straints have been implemented, we are left with an angular 
space called the solution space. Solving the optimization 
problem amounts to selecting the point in this space that 
maximizes the objective function. It can be shown that there 
is always a corner point of the solution space (called vertex) 
in which this optimum is attained.

In this review, we will use these concepts to extract the 
mathematical cores of all overflow metabolism models (that 
we could find) and rewrite them in the following standard 
form1:

objective (x) =

n∑
i=1

wixi,

n∑
j=1

ajxj ≤ b,

A ⋅ x ≤ b.

1  We use a different standard form than the standard form that is used 
in Linear Programming. We found that our form better serves our 
purposes, but in SI2 we show that the two forms are equivalent.
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The constraints in A can be homogeneous and inhomogene-
ous; see Fig. 1 and its caption. A constraint is called homo-
geneous when the corresponding weighted sum of the vari-
ables equals zero, i.e., b = 0 , and inhomogeneous otherwise. 
Examples of homogeneous constraints that we will define 
later in this review are the steady-state constraint and irre-
versibility constraints. When all constraints of A are homo-
geneous, the solution space is unbounded; it can be visual-
ized as an infinitely stretched angular cone. The optimization 
problem will in this case not have a finite maximum. Inho-
mogeneous constraints can make the cone bounded; this will 
be especially important in modeling overflow metabolism. 
We will therefore highlight them by presenting them sepa-
rate from the rest of the constraints.

(1)

maximize
x

n∑
i=1

wixi

subject to A ⋅ x ≤ b

xi ≥ 0.

Current explanations of mixed behavior 
and their mathematical background

Next, we will discuss published models made to explain 
overflow metabolism that use growth rate maximization. We 
will start with the modeling approaches that are the easiest to 
understand, and gradually build up complexity, ending with 
self-fabrication models.

Flux balance analysis models

Flux balance analysis studies the sets of reaction rates 
(fluxes) through a metabolic network (say with m metabo-
lites and r reactions) that can reach a steady state. A steady 
state is attained when the net rate of production of each 
metabolite is equal to the net rate of its consumption. The 
stoichiometry of all reactions is described by the stoichio-
metric matrix, N, which has m rows and r columns. Each 

Fig. 1   A general view on overflow metabolism and how it is mod-
eled. In general, overflow metabolism is the simultaneous usage 
of two independent growth-supporting subnetworks with differ-
ent substrate yields. In the top left subfigure, the blue pathway pro-
duces more energy equivalents per gram nutrient than the red path-
way. Together with the non-depicted rest of the metabolic network, 
the blue and red pathway can separately lead to steady-state growth. 
In the top right subfigure, we illustrate that imposing homogeneous 
constraints, in this case a steady-state assumption, gives rise to rela-
tions between optimization variables. The optimization variables can 

for example be reaction rates or enzyme concentrations, but for sim-
plicity, we only show one variable here. The model objective is here 
visualized along the y-axis, so that the combination of variables that 
gives the highest y-coordinate is optimal. In the bottom figures, we 
add inhomogeneous constraints on the optimization variables. These 
affect which combination of variables is optimal. Under one con-
straint, exclusive usage of the high-yield pathway is optimal. Adding 
the second constraint leads to the optimality of a combination of the 
two pathways
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row corresponds to the mass balance of a metabolite and 
contains the stoichiometric coefficients of this metabolite 
in all reactions. When N is multiplied by the rate vector, 
we get the ‘mass-balance constraints’:

In this review, we will consider all reactions to be irrevers-
ible; we can always split up a reversible reaction into one 
forward and one backward reaction, resulting in:

These steady-state and irreversibility constraints are the 
homogeneous constraints. As mentioned before, the space 
of flux vectors that satisfy these constraints is unbounded.

In addition, flux bounds can be imposed. Upper bounds, 
denoted ubi , are for example imposed to model a limited 
capacity of the cell for the corresponding reaction. Lower 
bounds, denoted lbi , are for instance used to model the pro-
duction of ATP for non-growth associated maintenance. 
This gives

In FBA, we are mostly interested in those flux vectors, v , 
that maximize some proxy for the growth rate. For this, the 
so-called biomass reaction, vBM [9], is added to the model: a 
phenomenological reaction that produces all cellular com-
pounds in the right proportions, and thereby approximates 
the demands for cell synthesis.

The full problem can now be written as:

which is equivalent to the standard form that we introduced 
in Eq. (1) (see the Supporting Information for the appropri-
ate choice of w,A, x, b).

FBA models have been used to explain overflow 
metabolism, mathematically capturing the reasoning of 
Andersen and von Meyenburg [10] in 1980: “If, however, 
respiration is limited, by-product formation can lead to 
extra ATP production and to faster growth, provided the 
by-product can be generated with a net gain of ATP.” The 
imposed flux bounds differ between the models, although 
all models consider a limited uptake rate for the carbon 
source. For example, Majewski and Domach [11] further 
propose that E. coli might have a limited electron transfer 
capacity, while Varma and Palsson [12] assume that oxy-
gen uptake is limited, and that a certain amount of ATP 

N ⋅ v = 0.

vi ≥ 0.

lbi ≤ vi ≤ ubi.

(2)

maximize
v

vBM

subject to N ⋅ v = 0

vi ≥ 0

lbi ≤ vi ≤ ubi,

should be produced even if the cell is not growing. This 
leads to the following FBA problem:

Carlson and Srienc [13, 14] also model growth rate maxi-
mization under glucose- and oxygen-limitation, but take a 
different approach. Instead of finding only the optimal solu-
tion, they characterize the whole steady-state solution space 
by enumerating the EFMs of a coarse-grained E. coli net-
work (see SI1) for an explanation about EFMs). Using their 
acquired knowledge of all possible solutions, the authors 
select four Elementary Flux Modes. Under any level of 
glucose and oxygen limitation, two of these EFMs together 
form the optimal solution. The simultaneous usage of these 
EFMs leads to overflow metabolism.

FBA models with thermodynamic constraints

FBA models can be refined by adding thermodynamic 
constraints [15, 16]. The laws of thermodynamics dictate 
that a chemical reaction can only have a positive rate if 
the summed Gibbs free energy of the reaction substrates 
is higher than of the reaction products, i.e., if the free 
energy change due to the reaction is negative, denoted by: 
𝛥rG

′ < 0 . By using this, one for example excludes cycles 
like A → B → C → A from carrying a positive flux, since 
such a cycle has zero thermodynamic driving force [17]. The 
free energy change due to a reaction depends on the con-
centrations of the involved metabolites, but these are usu-
ally not modeled in FBA approaches. Most thermodynamic 
FBA approaches thus need some way to estimate either these 
metabolite concentrations, or the �rG

′-values directly. There 
are also some methods where this estimation step can be 
avoided, at the expense of the thermodynamic constraints 
becoming less restrictive (see [16] for an overview of ther-
modynamic FBA methods).

Recently, Niebel et al. combined growth rate maximiza-
tion and a thermodynamic constraint to describe overflow 
metabolism [18]. In their approach, the metabolite concen-
trations and the reaction rates are free variables, although 
the metabolite concentrations are provided with an upper 
and lower bound based on experimental measurements. The 
authors search for the optimal concentrations and rates so 
that the biomass production rate is maximized. This search 
is constrained by the second law of thermodynamics, imply-
ing that the free energy change induced by an active reaction 

(3)

maximize
v

vBM

subject to N ⋅ v = 0

vi ≥ 0

vO2,uptake
≤ 15

vGlc,uptake ≤ 10.5

vATP,maintenance ≥ 7.6.
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should be negative: 𝛥rG
�
j
(c) < 0 for reactions with vj > 0 . 

These homogeneous constraints take the place of the irre-
versibility constraints that were used in FBA models, where 
the directionality is now based on the sign of the Gibbs free 
energy change.

If we add up all these free energy changes induced by the 
chemical reactions, we get the total dissipated Gibbs energy 
per unit time: gdiss = −

∑
j �rG

�
j
(c)vj . The authors observed 

in experiments that this dissipation function appears to have 
a maximum at the onset of overflow metabolism. Therefore, 
they propose that the dissipated energy might be limited by 
an upper bound,

In addition, another constraint is imposed ensuring that the 
free energy dissipated by internal reactions equals the free 
energy that is extracted from external nutrients. However, 
after a careful examination of the mathematics used in [18] 
(see SI4), we believe that this constraint should be equiva-
lent to the steady-state assumption, so that we could ignore 
it here. If it turns out that we are wrong, the constraint can 
be added to the problem below, without affecting the conclu-
sions of this review.

This modeling approach is no longer linear in the varia-
bles because the �rG

�
j
(c)-values can depend nonlinearly on 

the metabolite concentrations. However, for any fixed set of 
metabolite concentrations, c = c0 , the model reduces to a 
Linear Program that can be written in our standard form (see 
SI3.2 for the appropriate choice of the variables w,A, x, b 
used in (1)).

Resource‑allocation models

Reaction rates can almost always be increased by increas-
ing the concentration of the catalyzing enzyme [19]. A 
constraint on a reaction rate can therefore not reflect the 
mechanistic cause of metabolic phenomena: if a cell would 
be confronted with such a constraint, the concentration of 

(4)gdiss ≤ gdiss
lim

.

(5)

maximize
v

vBM

subject to N ⋅ v = 0

vj ≥ 0

𝛥rG
�

j
(c) < 0 for reactions vj ≠ 0 vGlc,uptake ≤ bGlc

−
∑
j

𝛥rG
�

j
(c)vj ≤ gdiss

lim
.

the corresponding enzyme could be increased, unless the 
enzyme concentration itself is constrained. In that case how-
ever, it is the constraint on enzyme concentrations that is the 
mechanistic cause.

In the past decade, many researchers shifted perspec-
tive by taking enzyme concentrations as the optimization 
variables instead of the reaction rates. These models are 
called resource allocation models [20–31].

Resource allocation models also maximize the biomass 
reaction rate, vBM , while metabolism is at steady state: 
N ⋅ v = 0 . The rate of the objective reaction can thus only 
be increased if the rates of all reactions in a complete 
growth-supporting subnetwork are increased. Unlike in 
FBA models however, each reaction rate is now coupled 
to the concentration of a catalyzing enzyme,

where vi is the ith reaction rate and ei is the concentration 
of the corresponding enzyme. The activity of an enzyme is 
determined by its catalytic rate kcat,i , and the ’saturation’ of 
the enzyme fi(x) with its substrates x . This saturation term 
is in reality a nonlinear function of the metabolite concentra-
tions x , that also includes product inhibition. However, we 
split reversible reactions, product inhibition is almost always 
ignored, and fi(x) is often simplified to be constant, such that 
vi = eikcat,i, where kcat,i is now an effective rate constant. The 
only way to increase the reaction rates is then to increase 
the enzyme concentrations. However, resources are limited: 
various limits on enzyme concentrations exist, which take 
the form of (weighted) sums that are bounded:

where ci is a weighting factor, and should not be confused 
with the metabolite concentrations that were used earlier. 
All enzymes for which the weighting factor is nonzero, 
ci > 0 , contribute to the sum. These weighting factors can 
be adjusted to capture various constraints. For example, if 
the membrane area is constrained, the weight ci would reflect 
the area taken up by one unit of protein i, and ci would thus 
be zero for all non-membrane proteins. Since the sum is 
bounded, an increase in the concentration of protein i must 
be compensated by a decrease in the concentration of others. 
The available resources should thus be carefully allocated 
in order to maximize the biomass production rate. These 
approaches can be written in a form equivalent to our stand-
ard form (see SI3.3 for the appropriate choice of w,A, x, b 
in (1)):

(6)vi = eikcat,ifi(x),

(7)
∑
i

ciei ≤ ub,
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With the help of Eq. (6) this problem can be solved with 
the reaction rates or with the enzyme concentrations as the 
optimization variables, as we show in SI3.3.

Basan et al. [27] made a core model that shows over-
flow metabolism in E. coli by dividing the proteome 
into three fractions: �f ,�r and �BM , that thus sum up to 
one. These denote the fractions of the proteome catalyz-
ing a fermentation, respiration and cell synthesis reac-
tion, respectively, according to the relations: vf = �f�f  , 
vr = �r�r , and vBM =

1

b

(
�BM − �0

)
 . We will not define all 

unknown symbols in these and the following relations, 
since their interpretation is not relevant for this review. 
Note that the relation between the biomass reaction and 
the associated proteome fraction is non-standard, to 
include a non-growth associated maintenance term. Fur-
ther, reactions for the uptake of a carbon source and the 
excretion of acetate2 are included, but these do not have 
an associated proteome fraction. This gives the following 
steady-state assumption:

In addition, the authors set the uptake rate of nutrient: 
vuptake = cuptake . Together, this yields a set of equations with 
only one solution; the variables ( v and � ) can be directly 
calculated, and no optimization is required. The uniqueness 
of the solution is due to the small size of the model and 
because the constraints on uptake rate and the total proteome 
are modeled as equalities instead of inequalities. We show 
in SI3.4 that, for the appropriate choice of w,A, x, b , this is 
equivalent to our standard form (1) in which the biomass 

(8)

maximize
v,e

vBM

subject to N ⋅ v = 0

vi = eikcat,i

ei ≥ 0∑
i

c1
i
ei ≤ ub1

⋮∑
i

cn
i
ei ≤ ubn.

N ⋅ v =

carbon

energy

acetate

⎡⎢⎢⎣

1 − 1 − 1 0 − �

0 nr nf 0 − �

0 0 Sac − 1 0

⎤⎥⎥⎦
⋅

⎡
⎢⎢⎢⎢⎢⎣

vuptake
vr
vf

vexcretion
vBM

⎤
⎥⎥⎥⎥⎥⎦

= 0.

production rate is maximized and the constraints are treated 
as inequalities:

The authors assume that the yield of energy per carbon mol-
ecule is higher for respiration than for fermentation: nr > nf ,
3but that fermentation is more proteome-efficient: 𝜖f > 𝜖r . 
The enzyme cost of a certain reaction is the protein fraction 
necessary to attain one unit flux. We thus see that the 
enzyme costs of respiration are higher than fermentation: 
1

𝜖f
<

1

𝜖r
 . Because of this trade-off between yield and enzyme 

costs, it becomes optimal from a certain critical rate of car-
bon uptake to use the respiration and fermentation reactions 
simultaneously, so that the model shows overf low 
metabolism.

Vazquez et al. [24] responded to the explanation of Basan 
et al. by adding to the model that there is a maximum to 
the macromolecular density of a cell. They argue that the 
enzyme costs, as defined in the previous paragraph, should 
be proportional to the enzyme mass divided by its catalytic 
rate. The model that is used to explain overflow metabolism 
is thus the same, but with a different mechanistic underpin-
ning of the �-parameters. This reasoning was implemented 
earlier by the same authors in a genome-scale formalism 
called FBA with macromolecular crowding (FBAwMC), 
with which they already explained overflow metabolism in 
E. coli [23]. This formalism was later also used to model S. 
cerevisiae [29].

Another hypothesis is offered by Zhuang et al. [28] in 
which overflow metabolism is explained using a mem-
brane occupancy constraint. The authors introduce param-
eters, mi , that capture the membrane area that is occupied 
per mol/l of enzyme i. Assuming that there is only a lim-
ited plasma membrane budget, Bcyt , this introduces the 
constraint 

∑
i miei ≤ Bcyt . Together with the steady-state 

assumption, and a limited glucose uptake rate, this gives:

(9)

maximize
v,�

vBM

subject to N ⋅ v = 0

vf = �f�f , vr = �r�r, vBM =
1

b

(
�BM − �0

)

vi ≥ 0

vuptake ≤ cuptake

�f + �r + �BM ≤ 1.

2  The acetate excretion reaction was not explicitly mentioned in [27], 
but must have been included. We have made it explicit to be able to 
write a consistent stoichiometry matrix.

3  The authors originally used er, ef  to denote these stoichiometric 
fractions, but we have renamed them to avoid confusion with enzyme 
concentrations.
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This hypothesis is supported by some quantitative evidence 
collected by Szenk et al. [22].

Note that the above resource allocation approaches dif-
fer in the mechanistic nature of the last constraint that is 
added, but that the optimization function, the steady-state 
assumption and the limited substrate uptake are all similar. 
Shlomi et al. used a similar approach with a total proteome 
constraint to describe the Warburg effect in cancer cells [31].

A modeling approach that should be set slightly apart is 
Constrained Allocation FBA (CAFBA) [30]. The authors 
use only a total proteome constraint, and no direct limit on 
substrate uptake. Instead, substrate limitation is modeled by 
increasing a parameter wC that captures the protein fraction 
needed for carbon catabolism to sustain one unit of carbon 
influx: �C = �C,0 + wCvC . If the concentration of external 
nutrient decreases, wC increases, and a larger fraction of 
the proteome is thus needed in the carbon catabolic sector. 
Because the sum of the proteome fractions needs to be one, 
this reduces the available proteome fraction for other sec-
tors. As such, a change in nutrient concentration leads to 
a re-allocation of the proteome. The genome-scale model 
of E. coli can reproduce a switch from pure respiration to 
acetate secretion, but it does so with small discrete jumps. 
The gradual switch that is usually associated with overflow 
metabolism can only be found when the results are aver-
aged over many different models created by choosing ran-
dom parameters.

Self‑fabrication models

In the previously described modeling approaches, the 
demand for cell components was approximated using a vir-
tual biomass reaction. However, this approximation ignores 
an important nonlinear aspect of self-fabrication. A self-
fabricating cell should produce two daughters identical to 
itself. The proportions in which the cell should produce cel-
lular components thus depend on its own interior. If the cell 
reallocates resources to meet this demand for cellular com-
ponents, its interior changes and therefore also the demand. 
The allocation of resources thus both depends on, and deter-
mines, the demand reaction.

Another inherent nonlinearity of cellular growth 
arises because cellular components dilute by growth: if 

(10)

maximize
v,e

vBM

subject to N ⋅ v = 0

vi = eikcat,i

ei ≥ 0

vuptake ≤ cuptake∑
i

miei ≤ Bcyt.

a compound is not produced while the volume grows, 
its concentration drops. This dilution rate is equal to the 
growth rate of the cellular volume, so in steady state the 
net synthesis rate of all molecules should be equal to the 
growth rate. In turn, the same synthesis rates of all mol-
ecules determine how much volume is produced per unit 
time, and thus how fast the cell grows. The synthesis rate 
thus both depends on, and determines, the growth rate.

A small number of modeling approaches incorporate 
these two nonlinearities [7, 32–37]. The demand for cell 
synthesis components is calculated by the models instead 
of imposed on the models, and the growth rate can only be 
found after solving a nonlinear problem – or by solving a 
large number of linear problems in which the growth rate is 
treated as a parameter, as we will see. To keep our treatment 
of these complex models as accessible as possible, we will 
first describe the essential ingredients only. Then we will, 
referring to SI6 for most of the mathematical derivations, 
derive a set of relations that enables us to compare these 
self-fabrication models to the previously described models. 
After that, we will shortly discuss the various extensions that 
describe overflow metabolism.

The cell is modeled as consisting of three types of com-
pounds: metabolites (with concentrations x4 and possibly 
including macromolecules such as lipids or polynucleo-
tides), enzymes (with concentrations e ), and the ribosome 
(with concentration r). The enzymes catalyze the conver-
sion of metabolites into other metabolites. The ribosomes 
catalyze the synthesis of enzymes and ribosomes from 
metabolites. As before, it is assumed that the rates of the 
conversions scale proportionally with the concentrations 
of the catalysts, and kinetic saturation functions are again 
assumed constant:

Here vi is a usual metabolic reaction rate, and vsynth,j denotes 
the synthesis rate of enzyme j. The factor �j is the fraction 
of the ribosome that is allocated to the synthesis of enzyme 
j, and since these are fractions we must have 

∑
j �j = 1 . It is 

further assumed that the concentrations of macromolecules 
add up to a fixed density5:

(11)vi =eikcat,i,

(12)vsynth,j =rkcat,rib�j,

(13)vsynth,rib =rkcat,rib�rib.

4  The usage of x here is not related to its usage in our standard form, 
Eq. (1)
5  In some modeling methods this density is modeled as an upper 
bound [32, 33, 37]. In SI7 we explain the advantages and disadvan-
tages of doing this.
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where the �j are volumetric parameters.6 In a cell that is 
growing exponentially with rate � , concentrations dilute 
with this same rate, see SI5 for a derivation. For the metabo-
lites, this changes the steady-state assumption from N ⋅ v = 0 
in FBA approaches to N ⋅ v = �x . Moreover, if we explicitly 
model enzyme synthesis, we should also account for the 
metabolites that are consumed during this synthesis. Let M 
be the matrix that denotes how many metabolites are needed 
to make a specific enzyme, then we get a first set of con-
straints on the fluxes:

Equations (11)–(17) define the core ingredients of the self-
fabrication models. In Supporting Information 6 we show 
how this system can be rewritten. In short: Eqs. (11), (12) 
and (13) are used to get expressions for the concentrations e 
and r in terms of the fluxes, and these expressions are used 
in Eqs. (14), (16) and (17) to get four relations between the 
fluxes v, vsynth and � . These relations are linear in the reaction 
rates, so that the system can be written in a form that looks 
like a familiar Linear Program:

Although this looks like a Linear Program, it is more dif-
ficult since the constraint matrix is not constant: it depends 
on the metabolite concentrations, x , and on the growth rate, 
� . The x-dependence is often “solved” by ignoring the dilu-
tion of small metabolites and fixing the concentrations of 
macromolecules based on experimental data [33, 36].7 The 
�-dependence that makes the problem nonlinear is overcome 
by fixing the growth rate in the constraint matrix to a certain 

(14)
∑
j

�jej + �ribr = 1,

(15)
[
N −M

]
⋅

[
v

vsynth

]
=�x,

(16)vsynth,j =�ej,

(17)vsynth,rib =�r.

(18)

maximize
v,vsynth,�

�

subject to A(x,�) ⋅

⎡⎢⎢⎣

v

vsynth

�

⎤⎥⎥⎦
= 0

vi, vsynth,i ≥ 0.

value: A(x,�) → A(x,�0) , and then add the constraint that 
the � in the optimization variables should equal �0 . Note 
that, since it is fixed, we can no longer maximize the growth 
rate. However, we can check if there is a solution that solves 
the system. If there is no solution, then 𝜇0 > 𝜇max ; if there 
is a solution, we can increase �0 . The maximal growth solu-
tion is found by repeating this procedure until the problem is 
still feasible for �0 = �max , but infeasible for all 𝜇0 > 𝜇max . 
So we get

Using the described mathematical core, Goelzer et al. pro-
posed a formalism that was named resource balance analysis 
(RBA), with which they modeled overflow metabolism in 
Bacillus subtilis [38]. In addition to the density constraint 
of Eq. (14), the authors used a constraint on the maximal 
concentration of macromolecules in the membrane; in our 
notation: 

∑
j �jej ≤ Dmem.

In parallel, Thiele et al.  [35] for E. coli, and Lerman 
et al. [34] for Thermotoga maritima presented the so-called 
Metabolism and Expression (ME) models. The mathemati-
cal basis of ME-models is equal to the basis of RBA-mod-
els (Equations (11) to (17)), but ME-models are even more 
comprehensive: for example, the synthesis rates of mRNA, 
tRNA, and RNA-polymerases are explicitly modeled. More-
over, some catalytic rates, of the ribosome for example, are 
no longer assumed to be independent of the growth rate; 
their dependence is estimated from experimental data. These 
extensions add many variables and constraints to the model, 
but we show in SI8 that these additions can still be written 
as relations that are linear in the reaction rates and nonlinear 
in the growth rate. In short, although the A-matrix of Equa-
tion (19) gets larger, ME-models can still be written in this 
form. O’Brien et al. used an ME-model to model overflow 
metabolism in E. coli [36]. The cytosolic density constraint 
was here supplemented with an upper bound on the substrate 
uptake flux.

Molenaar et al. [32] were the first to present a mechanistic 
model of cellular self-fabrication, a core model with 5 reac-
tions and 3 metabolites. Because their model is so small, 
they could use enzyme kinetics and non-linear optimization 
to directly maximize the growth rate. The optimal solutions 
show a discrete switch from an efficient pathway to an inef-
ficient pathway. This is different from the gradual switch 
that is observed in overflow metabolism, even though, just 
as in [33], the authors model an upper bound on the mem-
brane density. However, this does not effectively constrain 

(19)

maximize
v,vsynth,�0

�0

such that

�
A(x,�0)

0 0 1

�
⋅

⎡
⎢⎢⎣

v

vsynth

�

⎤
⎥⎥⎦
=

�
0

�0

�

vi, vsynth,i ≥ 0.

7  One could also solve the problem for fixed metabolite concentra-
tions  [7, 37], and then scan over all possible sets of concentrations, 
but this becomes computationally infeasible in large quantitative 
models.

6  Dependent on the biochemical interpretation of the �-parameters, 
some models include contributions of the metabolite concentrations 
�ixi [7, 37].
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the concentrations of membrane proteins, since the surface-
to-volume ratio can be freely adjusted in the model. There-
fore, only the density constraint of Equation (14) is effective. 
In personal correspondence, the authors confirmed that, in 
hindsight, it might have been more realistic to set a lower 
bound to the size of the cell. In this case, an additional con-
straint would have become active.

Discussion

Commonalities and differences

We reviewed many constrained optimization approaches 
that describe overflow metabolism, ranging from relatively 
simple linear flux balance analysis models to complicated 
nonlinear Metabolism and Expression models. Some 
approaches use small core models, others use genome-scale 
networks comprising thousands of reactions. The imposed 
constraints are either limits on reaction rates, Gibbs dissipa-
tion limits or limits on enzyme concentrations. Despite all 
these differences, we managed to write all these models in 
a concise standard form by focusing on their mathematical 
essence. We conclude from this that these models must share 
a feature, one that must be essential for describing overflow 
metabolism. In the following, we will compare the models 
in their standard form using our recent theoretical work [7, 
8] to analyze and explain this feature, using an extremum 
principle that governs the solutions of all the reviewed 
approaches.

A general extremum principle: overflow metabolism 
is caused by two growth‑limiting constraints

All reviewed approaches model a growing cell by imposing 
a set of homogeneous constraints: a first set that ensures a 
steady state, and a second set that determines the feasible 
direction for irreversible reactions. There are some differ-
ences in how the first set is imposed. FBA and resource allo-
cation approaches model a system that produces cell com-
ponents in the proportions captured by a constant demand 
reaction, the biomass reaction. The steady-state assumption 
ensures that no intermediate metabolite accumulates. The 
self-fabrication models implement this assumption with a 
balanced growth assumption: all cellular compounds should 
be produced to match the rate of consumption and dilution 
by growth. The demand reaction is therefore dependent 
on the growth rate, which gives rise to nonlinear relations 
between the optimization variables and the growth rate. 
These differences are illustrated in Fig. 2.

Despite these seemingly different setups, we can define 
elementary modes in both cases: growth-supporting sub-
networks that form the minimal building blocks of the 

solution space. These are called Elementary Flux Modes 
in the linear models [6], and Elementary Growth Modes 
in the self-fabricator models [7], see SI1 for a short intro-
duction. The defining property of these modes is that all 
possible solutions of the growth models can be written as 
a combination of these modes. In other words, EFMs are 
non-decomposable metabolic subnetworks, and EGMs are 
non-decomposable self-fabrication subnetworks. Overflow 
metabolism is decomposable in an energy-efficient subnet-
work, and a less energy-efficient subnetwork, and is thus a 
combination of two elementary modes.

Using the concept of elementary modes we derived an 
extremum principle stating that the number of flux-car-
rying elementary modes in the optimal solution will be 
smaller or equal than the number of active (i.e., growth-
limiting) constraints. These growth-limiting constraints 
are the additional constraints that are imposed after the 
steady state and irreversibility constraints (this is illus-
trated and explained in Fig. 1). The extremum principle 
implies that only one Elementary Mode will be selected by 
growth rate maximization under one constraint. For exam-
ple, in a model in which only one nutrient uptake rate is 
constrained, we will never observe a gradual switch from a 
high-yield metabolic mode to the combination with a low-
yield mode. Overflow metabolism must thus be a result of 
two constraints, see Fig. 2 for an illustration of this result.

The extremum principle suggests that the success of 
describing overflow metabolism might not lie in the details 
of the stoichiometric networks, or the exact choices of 
model parameters, but rather in the mere existence of two 
constraints. This implies that finding the mechanistic cause 
of overflow metabolism amounts to finding which two con-
straints are actually limiting growth.

Unfortunately, the extremum principle does not predict 
which constraint causes overflow metabolism. It states 
that there should be two constraints, but does not reveal 
their identity. Moreover, overflow metabolism in different 
species might be due to completely different constraints. 
Thus, to find out which constraints cause overflow metabo-
lism, we must test hypothetical constraints.

Specific experiments: the mechanistic cause of overflow 
metabolism can be found with falsification experiments

Encouraged by the conclusion that the growth-limiting 
constraints must be important in causing overflow metabo-
lism, we have listed all the constraints that are used in the 
reviewed models (Table 1). We see that almost all models 
indeed use two constraints.8 Molenaar et al. [32] and Mori 

8  Only Varma and Palsson use more than two constraints. Their third 
constraint is a lower bound on an ATP-maintenance reaction, which 
we have left out of the table for clarity.
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Fig. 2   FBA models and self-fabrication models lead to a simi-
lar mathematical problem. In the top figures we illustrate two of 
the reviewed approaches. FBA models consider steady-state fluxes 
through networks of metabolic reactions with constraints on the 
reaction rates. A virtual biomass reaction is added as a proxy for the 
growth rate. Self-fabricator models make the synthesis of enzymes 
and the ribosome explicit, and can therefore model the growth rate 
as the volume increase due to the production of components. The 

enzyme concentrations can now be viewed as the optimization vari-
ables, so that protein concentration constraints can also be included. 
In the bottom figures we show a highly simplified illustration of the 
solution space of both approaches. In the linear approaches, FBA 
and proteome-constrained models, all quantities depend linearly on 
the growth rate, while there are nonlinear dependencies in the self-
fabricator models. However, we showed that in both cases, overflow 
metabolism is caused by two growth-limiting constraints

Table 1   An overview of the 
models that try to explain 
overflow metabolism, including 
which constraints were used 
in addition to the steady-state 
assumptions

Paper Type Constraint 1 Constraint 2

Majewski et al. [11] FBA Glucose uptake rate Electron transfer capacity
Varma et al. [12] FBA Glucose uptake rate Oxygen uptake rate
Carlson et al. [14] FBA Glucose uptake rate Oxygen uptake rate
Niebel et al. [18] tFBA Glucose uptake rate Free energy dissipation
Basan et al. [27] Resource Glucose uptake rate Total proteome
Mori et al. [30] Resource Total proteome
Vazquez et al. [23, 24] Resource Glucose uptake rate Macromolecular density
Van Hoek et al. [29] Resource Glucose uptake rate Macromolecular density
Zhuang et al. [28] Resource Glucose uptake rate Membrane occupancy
Szenk et al. [22] Resource Glucose uptake rate Membrane occupancy
Shlomi et al. [31] Resource Glucose uptake rate Total proteome
Molenaar et al. [32] Self-fabr Macromolecular density
Goelzer et al. [38] Self-fabr Membrane density Macromolecular density
O’Brien et al. [36] Self-fabr Glucose uptake rate Macromolecular density
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et al. [30] form exceptions to this rule, using only one 
effective constraint. Our theory thus implies that only one 
EFM will be used in the optimal solutions of these models. 
Indeed, the models show discrete switches between EFMs 
when the growth rate increases. The model from Molenaar 
et al., containing only two EFMs, switches at once from 
respiration to fermentation. The genome-scale model of 
Mori et al. contains many different EFMs that form inter-
mediate steps between full respiration and full fermen-
tation. Their model therefore shows many small discrete 
switches, approximating a gradual switch.9 This gives 
rise to a separate hypothesis that we cannot fully exclude. 
However, we find it more probable that, upon a change 
in the environment, gene expression continuously tunes 
the proportions in which two EFMs are used, than that 
it repeatedly shuts down one EFM to upregulate another.

Among the models that use two constraints, there is 
some variation in the biological underpinnings of these 
constraints. The question is how to find the relevant con-
straints. The genome-scale approach is to make an extensive 
model and try to quantitatively match the experimental data. 
One risk, however, is overfitting, because a large enough 
model could potentially fit any experimental data. Such 
an approach should therefore be backed up by independ-
ent measurements of assumed constraints. Still, it is hard to 
imagine how a model could distinguish the effects caused by 
a ’total proteome constraint’ and a ’macromolecular density 
constraint’. For this, we need perturbation experiments. For 
example, to artificially perturb the proteome allocation of E. 
coli, Basan et al. [27, 39] overexpressed the nonfunctional 
protein LacZ in one experiment and added translation inhibi-
tors in another. We have derived a formalism in which such 
perturbation experiments can be analyzed [8]. Basan et al. 
could provide evidence for their proposed total proteome 
constraint. In our opinion, this makes their proposed con-
straint the best-established mechanistic cause of overflow 
metabolism in E. coli up to this point. However, as we now 
know, there should be a second growth-limiting constraint. 
Basan et al. used a limit on the uptake rate of nutrients, 
which cannot truly be considered as a mechanistic cause of 
overflow metabolism, because, as described by Molenaar 
et al. in 2009: “... using an artificial maximal capacity con-
straint on substrate uptake ignores the possibility of vari-
able investments made in substrate transport systems.” The 
identity of the second constraint in E. coli, even though a 
constraint on transport of glucose is generally used and thus 
apparently accepted, remains to be established.

Towards a complete model of cellular self‑fabrication

We observe two directions of development towards a com-
plete model of cellular self-fabrication in the models that 
we have reviewed. Along the first direction the optimization 
variables are moved closer to the actual regulatory space of 
the cell, and thereby closer to the origin of overflow metab-
olism. Along the second direction, more and more of the 
inherent nonlinearity of self-fabrication is incorporated in 
the models.

To explain the first direction of development, we recall 
that FBA models use fluxes as variables, which cannot be 
directly regulated by the cell. Instead, enzyme concentra-
tions are regulated and these will, together with the metabo-
lite concentrations, determine the fluxes. The resource allo-
cation models switch perspective to enzyme concentrations 
as variables with the major advantage that constraints on 
enzyme concentrations can be formulated directly. These 
constraints can be related to physically observable quanti-
ties, such as the available membrane area or cytosolic vol-
ume, whereas flux constraints cannot. Flux constraints can 
only be determined ad hoc using experimental data, which 
limits their predictive power.10 One can move even further 
towards the regulatory space of the cell because the enzyme 
concentrations are in fact dependent on the enzyme synthesis 
rates, and these are regulated by the allocation of the ribo-
somes over the different mRNAs. The reviewed self-fabri-
cator models indeed use as variables the enzyme synthesis 
rates [36, 38], or the ribosome allocation fractions [32]. A 
final step towards the regulatory space of the cell could be 
to model the regulation of mRNA synthesis via gene expres-
sion directly, but we do not know of any models that have 
implemented this.

The second direction of development moves towards 
incorporating three nonlinearities that are related to self-fab-
rication. We already mentioned two of them: (1) the depend-
ence of the biomass composition on the enzyme allocation, 
and (2) the dependence of the demanded enzyme synthesis 
rates on the growth rate. The incorporation of these two 
nonlinearities form the main improvement of self-fabrication 
models with respect to FBA type models. Here we want to 
raise attention for a third nonlinearity: the kinetic depend-
ence of enzyme and ribosome activities on the metabolite 
concentrations. If a cell reallocates resources, metabolite 
concentrations change as well, causing changes in the satu-
ration levels of enzymes. Including the metabolite concen-
trations in the model however, requires information about 
the enzyme kinetics of all the different enzymes in the cell. 

10  In fact, many of the resource allocation models still use a flux 
constraint for the nutrient uptake reaction, so that these are also not 
entirely predictive.

9  The authors also present a figure showing a gradual switch, but 
this is the average behavior for many models with slightly different 
parameters. The discontinuities are then averaged out.
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Moreover, it makes the optimization problem computation-
ally infeasible because the problem is no longer guaranteed 
to have only one local optimum. Therefore, global optimiza-
tion software has to be used and it is difficult to ascertain 
that the found solution is the actual optimum. For these rea-
sons, enzyme kinetics can so far only be included in core 
models [32] and theoretical work [7, 8, 37]. The question is 
if there are constraints, rules and patterns in the changes in 
(optimal) metabolite levels that would allow us to approxi-
mate optimal solutions without global optimization of the 
full kinetic model.

Alternatives for growth rate maximization

We have focused on growth rate maximization models, but 
alternative explanations of overflow metabolism cannot be 
fully excluded. For example, it might be that not absolute 
fitness is maximized, but rather relative fitness compared 
to competitors. For example, cells could produce over-
flow products to intoxicate their neighbors, or cells could 
maximize their uptake rate to claim the largest share of the 
nutrient pool. These explanations have been reviewed else-
where [40, 41].

It might even be that cells are not completely optimized 
for anything. For example, it was shown that the overex-
pression of transcriptional regulator ArcA could increase 
the growth rate of E. coli on glycolytic substrates [42]. This 
shows that metabolism was not optimal in the wild type 
strain within the studied environmental conditions.

The sub-optimality of a population of microorganisms 
might be due to the high regulatory costs that would be 
required to steer each individual cell to the optimum. De 
Martino et al. [43] calculated a possible probability distribu-
tion for the metabolic states of single cells by maximizing 
the entropy of this distribution while the average growth 
rate was fixed to the measured value. This approach leads 
to a model of single-cell behavior in which the least addi-
tional assumptions were made: ‘the probability distribution 
is as general as possible’. Their predicted distribution cap-
tured the measured fluxes better than a flux balance analysis 
approach. Subsequently, they quantified the amount of regu-
lation that would be needed to get a higher average growth 
rates, showing that attaining a maximal average growth rate 
would bring infinite regulatory costs.

Conclusion

We reviewed 15 different models of overflow metabolism, 
ranging from flux balance analyses, to nonlinear self-fabri-
cator models such as Metabolism and Expression models. 

Despite the many differences between the models, we could 
rewrite the mathematical cores of each of them into a con-
cise standard form. This standard form could be analyzed 
using an extremum principle, stating that the number of 
elementary modes at maximal growth is less or equal than 
the number of growth-limiting constraints. The extremum 
principle implies that overflow metabolism is caused by at 
least two growth-limiting constraints. We therefore listed all 
reviewed models with their proposed constraints. We hope 
that this list will serve as a source of hypotheses that can 
now be tested using falsification experiments.
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