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Abstract

The field of health services research is broad and seeks to answer questions about the

health care system. It is inherently interdisciplinary, and epidemiologists have made cru-

cial contributions. Parametric regression techniques remain standard practice in health

services research with machine learning techniques currently having low penetrance in

comparison. However, studies in several prominent areas, including health care spend-

ing, outcomes and quality, have begun deploying machine learning tools for these appli-

cations. Nevertheless, major advances in epidemiological methods are also as yet

underleveraged in health services research. This article summarizes the current state of

machine learning in key areas of health services research, and discusses important fu-

ture directions at the intersection of machine learning and epidemiological methods for

health services research.
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Introduction

Health services research is a broad area focused on the

health care system, including costs, quality, access to pro-

viders and services, and health outcomes following care.

The field benefits from the interdisciplinary expertise of

health policy scholars, clinicians, health economists, statis-

ticians and public health researchers, as well as engage-

ment from community members, policy makers and other

Key Messages

• Machine learning methods have been used less frequently in health services research, but are growing in health care

spending, outcomes and quality.

• Many applied questions in health services research intersect with the methodological expertise of epidemiologists.

• Machine learning tools have promise for burgeoning areas in health services research, including methodology for dif-

ference-in-differences study designs.
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stakeholders. Work in health services research is

also published across an array of journals. While epidemi-

ology is a distinct discipline studying the distributions,

determinants and control of health events, there is an inter-

section with health services research, and epidemiologists

have conducted key studies in health services research.

Data sources in health services research are not typically

classical epidemiological cohorts, and often use health care

billing claims, registry data, surveys or electronic health

records. The latter three data sources are increasingly used

in epidemiology, but health care billing claims, a staple of

health services research, are less common in epidemiology.

Each of these data sources has well-known advantages and

disadvantages,1–3 which will vary in importance depending

on the research question.

For analysis, parametric regression techniques, rather

than machine learning, are the standard in health services

research. Machine learning methods aim to ‘smooth’ over

the data, as traditional approaches also do, but they are of-

ten more flexible and may make fewer assumptions, typi-

cally operating in nonparametric or semiparametric

models. Popular machine learning tools, such as tree-based

techniques, neural networks and penalized regressions,

have been used for classification questions and to identify

high-risk individuals for health care interventions, but they

have not been extensively integrated in health services re-

search, especially not causal inference. The ‘promise and

perils’ of these newer statistical learning tools for health

services research have been discussed, with particular focus

on the size of data repositories and sparsity of informa-

tion.4,5 This article highlights several areas where machine

learning has begun to advance the field of health services

research, and the role of epidemiological methods at this

intersection.

Predicting health care spending

The financing of the health care system has many implica-

tions, including how health services for enrollees are pro-

vided and incentivized. Financing changes can also lead to

improved health outcomes and access to care. For exam-

ple, in Better But Not Well, authors Richard Frank and

Sherry Glied discuss advances in mental health care over

five decades that came not from new treatments but rather

payment reforms and increased competition across pro-

viders, among other organizational changes.6,7 Health care

spending is studied from many perspectives, including

spending levels or overall growth and by health condition.8

The evaluation of new health payment policies is a central

question in health services research and will be discussed in

a later section on causality. Another impactful area is the

risk adjustment of health plan payment formulas.

Plan payment risk adjustment aims to predict individual

health spending Y using demographic and health condition

variables X in order to reallocate funding according to the

expected costs of a health plan’s enrollees. This is an at-

tempt to disincentivize avoiding high-cost enrollees, so that

market competition is geared toward efficiency and qual-

ity.2,9 Risk adjustment is used in many international health

systems including in Belgium, Germany, The Netherlands,

the USA and Israel. Epidemiologists will recognize this

parametric regression problem:

E YjX½ � ¼ bX ;

where Y is a bounded continuous outcome. This outcome

Y might be transformed before the estimation procedure

using the natural log or so-called ‘top-coding’ where all

high-cost enrollees above a threshold dollar amount (e.g.

$250,000) are set to that threshold to improve perfor-

mance with respect to specific metrics.2 Prediction methods

for health plan payment typically focus on parametric re-

gression, with newer economics articles developing con-

strained regressions where the loss function is subject to

certain restrictions.

Machine learning has thus far been applied only spar-

ingly in the plan payment risk adjustment literature, and is

often published in health services journals. The regression

problem for machine learning is given as:

E YjX½ � ¼ f ðXÞ;

where f ðXÞ is a flexible function of X, which could include

discovered features in X. Three early papers in this space

all considered regression trees, with one predicting pay-

ments for Medicare inpatient care,10 another on Medicare

psychiatric payments11 and the last studying the addition

of more complex interaction terms to predict total pay-

ments among commercially insured enrollees.12 Tree-based

methods create sequential splits of the data based on the

provided covariates (or a subset of them) to yield group-

ings of observations that are highly homogeneous with re-

spect to their outcome value. These techniques have

become popular due to their ability to detect interactions

and other non-linear relationships among the covariates.

However, tree-based methods, including aggregation meth-

ods like random forests, may overfit to the training data

even when using cross-validation. I refer interested readers

to an accessible introductory machine learning book for

further details on tree-based methods and other statistical

learning techniques.13

Recent plan payment risk adjustment papers imple-

mented ensembles of various learners to predict total pay-

ments14,15 and mental health spending16 among
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commercially insured enrollees, in addition to new work

using regression trees to discover interaction terms, this

time in the Dutch risk equalization formula.17 Ensembles

are a broad class of estimators that consider multiple algo-

rithms to select either the single best algorithm (with re-

spect to a particular criterion) or a weighted average of the

algorithms. Tutorials on ensembles geared toward epide-

miological audiences are available.18,19

Machine learning has also been deployed in the past 3

years in other health care spending application areas outside

risk adjustment formulas. This includes demonstrating that

health insurers can identify unprofitable enrollees in the

unregulated United States Marketplace drug formularies,

despite protections for pre-existing conditions.20 Other stud-

ies predicted high-cost enrollees,21 estimated cost-related

health disparities22 and predicted late-life spending.23

Whether the machine learning approaches for health

spending discussed in this section appreciably improved on

standard methods varied by study, and not all compared

with a traditional approach. The practical utility of machine

learning versus parametric regression is context-specific and

may involve assessing the prediction functions along addi-

tional metrics not included in each article (e.g. if only R2 was

reported), as well as in external validation datasets.

Evaluating algorithms using cross-validated metrics is good

practice, but does not tell us how the prediction function will

perform in data from subsequent years or if a prediction

function created in Medicare fee-for-service enrollees is ap-

plicable to enrollees in private managed care Medicare plans.

Many ongoing practical estimation discussions sur-

rounding health spending are centred on which variables

should enter the algorithms, including the unintended con-

sequences of incorporating social determinants of health,2

using more comprehensive classification systems for cate-

gorizing health conditions12,16 and the feasibility of inte-

grating self-reported survey data at scale.2,24 Other

concerns focus on how to evaluate algorithms with respect

to both statistical fit and fairness to marginalized

groups,22,25,26 and this is a major topic for future work.

These considerations remain critical whether using para-

metric regression or machine learning. Epidemiologists’ ex-

perience with prediction methods for continuous

outcomes, evaluating prediction function performance

along multiple dimensions, and the social contexts of using

additional demographic information would augment the

interdisciplinary teams building plan payment risk adjust-

ment formulas and health care spending algorithms.

Predicting health outcomes and quality

Compared with health spending, there are many more

examples of machine learning in health services research

for the prediction of health outcomes and quality meas-

ures. A large portion, although not all, of these

prediction functions consider binary outcomes, which can

be written as:

logitðP Y ¼ 1jX½ �Þ ¼ f ðXÞ;

with Y 2 f0;1g. Mortality is assessed as a quality metric

in some health services contexts, rather than exclusively

as a health outcome. A number of recent papers have

implemented machine learning to predict mortality, often

among other outcomes, with respect to hospital perfor-

mance.27–30 One paper on the increasingly popular deep

neural networks looked at mortality, readmission and

length of stay, but these techniques had similar classifica-

tion performance to regression methods when using a

similar number of covariates.31 Deep neural networks

aim to define the strength of the associations between

nodes across multiple constructed layers that form the

‘network’. Like tree-based methods, deep neutral net-

works may find non-linear relationships in the data and

are prone to overfitting, but may additionally discover

novel features. Prediction of adverse events, adherence

and rates of screening, testing and visits have also been

explored as quality outcomes using machine learn-

ing.30,32–35 Health outcomes studies have included pre-

dicting diabetes in claims data,36 stroke risk,37 obesity,38

postoperative pain,39 disease progression40,41 and graft

failure.42 These health outcomes and quality studies were

published across a spectrum of journals, most frequently

in clinical journals.

Whereas health care quality is not a standard research

question in epidemiology, health outcomes are commonly

studied. Mortality prediction in particular is a frequent

goal in epidemiological research, and epidemiologists’ ex-

tensive knowledge, in developing risk scores and employ-

ing calibration and discrimination measures for binary

outcomes, can enhance health outcomes and quality pre-

diction work in health services research. Notably, machine

learning for time-to-event outcomes in health services

work is currently scarce. Most studies discretize mortality,

length of stay and other outcomes such that they are bi-

nary. For a time-to-event outcome we have T the time to

outcome Y, a censoring time C, ~T ¼ minðT;CÞ the vari-

able that defines which of T or C was observed earlier, and

D ¼ IðT ¼ ~TÞ an indicator for whether T was observed.

The parameter of interest might be the conditional survival

function E T > hjX½ � (where h is a time point threshold) or

other choice. Machine learning applications for survival

are understudied in both health services research and epi-

demiology. Survival research questions in health services

research would benefit from collaborations with

International Journal of Epidemiology, 2020, Vol. 49, No. 6 1765



epidemiologists as both fields further integrate machine

learning, given the penetrance of time-to-event epidemio-

logical methods.

I close this section by highlighting that interpretability

is a frequently raised query in considering machine learn-

ing for predicting health outcomes or quality. Performance

metrics such as accuracy and calibration do not capture

enough information to explain how the algorithm assigned

outcomes. Because applications in health services research

can have significant consequences, interpretability should

be a priority.43 Similarly, biases found in the underlying

health data, including structural racism, can have massive

implications if algorithms are deployed in practice.44

Explainability and fairness are two features found in pro-

posed social impact statements for algorithms.45

Causality, effect estimation and policy
evaluation

Machine learning for causal inference is a newer area for

most fields and has rarely been explored in health services

research. Notable epidemiological methods development

has occurred in this space, although infrequently applied.

There are many causal contrasts that may be of interest, in-

cluding the familiar average difference between the inter-

vention and non-intervention groups:

w ¼ EX E YjA ¼ 1;X½ � � E YjA ¼ 0;X½ �½ �;

where A 2 f0; 1g is the intervention, which could be a

treatment, exposure or policy. As is well known to epi-

demiologists, the validity of key causal assumptions in

these studies is critical. In order to define our parameters

causally, we must make a series of untestable assumptions:

no unmeasured confounding, consistency and no interfer-

ence between subjects, (as defined under the Neyman-

Rubin causal framework), among other important assump-

tions. We can then write:

w ¼ EX E YjA ¼ 1;X½ � � E YjA ¼ 0;X½ �½ � ¼ E½Y1 � Y0�;

where Y1 and Y0 are the counterfactual outcomes had ev-

eryone been set to receive the intervention and not receive

the intervention, respectively. The use of machine learning

in causal inference estimators does not obviate the need for

thoughtful construction of an underlying causal model or

magically remove data quality problems.46

A recent health services study (published in an epide-

miology journal) estimated cancer mortality risk differen-

ces by emergency department presentation with double

robust machine learning.47 Double robust estimators will

produce unbiased estimates for w if either the outcome

regression, E YjA;X½ �; or the probability of being in the in-

tervention group given covariates, P A ¼ 1jX½ �; is esti-

mated consistently. By incorporating machine learning

into double robust methods, E YjA;X½ � and P A ¼ 1jX½ � are

estimated more flexibly and, especially when ensembles

are used, minimal bias for w may be achieved in practice.

A recent tutorial on these methods was published aimed

at epidemiologists.48 Although not yet frequently applied,

causal inference incorporating machine learning has in-

creased in the epidemiology literature,49–55 with a number

of studies using health care claims or electronic health re-

cord data. Issues particularly persistent in health services

research with electronic health data that hinder causal in-

ference, include missingness, misclassification and con-

founder selection. Variables may be collected irregularly,

coding can vary by provider and facility and key con-

founders might be buried among hundreds of non-rele-

vant variables. Variable selection techniques found in

machine learning may aid in this last situation, but it is

not guaranteed.

Comparative effectiveness research asks causal questions

that consider the benefits and harms of health interventions

and features substantial contributions from both health serv-

ices scholars and epidemiologists.56,57 Frequently, compara-

tive effectiveness involves more than two treatments with

more than one parameter or contrast of interest. For exam-

ple, consider a treatment that has three binary levels repre-

senting different aortic valves: A ¼ A1;A2;A3ð Þ. Our

parameters might be the three treatment-specific means:

w1 ¼ EX E YjA1 ¼ 1;X½ �½ � ¼ E½Y1
1 �;

w2 ¼ EX E YjA2 ¼ 1;X½ �½ � ¼ E½Y1
2 �;

w3 ¼ EX E YjA3 ¼ 1;X½ �½ � ¼ E Y1
3

� �
;

where Y1
1 ;Y

1
2 and Y1

3 are the counterfactual outcomes for

having received each of the three valves, respectively.

Machine learning has been examined in health services re-

search for the comparative effectiveness of therapy, using

tree-based methods in propensity score functions58 and a

continuous treatment on traumatic brain injury with

ensembles,59 as well as hip prosthesis on quality of life,60

feeding interventions in the intensive care unit61 and drug-

eluting coronary artery stents,62 all using double robust

machine learning. In this last study, it was demonstrated

empirically that the combination of double robust estima-

tion and machine learning likely led to the isolation of indi-

vidual stent effects. Comparative effectiveness parameters

have parallels to variable importance studies where we cre-

ate a ranked list of effect or association parameters, and
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are often found in genetic epidemiology (e.g. Winham

et al.63), although typically without causal assumptions.

Contemporary studies for variable importance of health

conditions on health care spending8 and ranking hospital

quality based on excess mortality64 both used double ro-

bust machine learning.

Policy evaluation is a major facet of health services re-

search. One prevalent design to estimate the impact of new

policies is a difference-in-differences approach. The policy

intervention may be implemented at a particular level of ge-

ography with several other ‘units’ at the same geographical

level selected to form a comparison group. Data from before

the intervention and after intervention are required to esti-

mate the parameter of interest. This parameter is often the

difference between the intervention group in the post-

intervention and pre-intervention periods minus the differ-

ence between the comparison group in both time periods,

hence the name ‘difference-in-differences’. The difference-

in-differences parameter can be written causally and recog-

nized as an average treatment effect among the treated:

w ¼ E Y1
POST � Y0

POSTA ¼ 1�;
�

where the subscript POST represents the post-intervention

time period. It is important to stress that causal interpreta-

tion of this parameter requires thoughtful consideration of

the required causal assumptions.65 Machine learning re-

search for difference-in-differences studies is extremely lim-

ited.66 However, recent work in the creation of so-called

synthetic comparison groups (i.e. weighted averages among

units) has incorporated machine learning (e.g. Amjad et

al.67). Both parameter estimation and the construction of

suitable comparison groups are vital areas for future ma-

chine learning work in policy evaluation.

Looking forward

Health services research as a field is less flashy than many

domains publicizing dramatic advances using ‘artificial in-

telligence’ methods, but this is not to say that careful, rea-

soned machine-learning work will not lead to progress in

improving health care costs, quality, access, outcomes and

additional areas not discussed in this piece. A focus on the

external validation, generalizability and reproducibility of

research results is crucial for health services findings to

lead to actual successes in practice. Additionally, any time

we are using data not collected for research purposes—

common in health services research—we must pay extra

attention to identifying the underlying processes that

generated the data, which is aided by working with a di-

verse interdisciplinary research team.

The expertise of epidemiologists will be valuable in these

teams as use of machine learning increases in health services

research. This article described several areas where epidemi-

ological methods can contribute, including causal inference,

techniques for time-to-event outcomes and the inclusion of

social determinants of health. However, working across dis-

ciplines is challenging. Epidemiologists may need to learn

new machine learning concepts and jargon in order to com-

municate across these barriers, as well as additional pro-

gramming languages (e.g. R and Python). Knowledge of the

intricacies of the health care system is also paramount to

avoid spurious results—from minutiae like changes in billing

code standards to broad issues such as physician behaviour.

Growth areas for machine learning in health services re-

search will likely encompass study designs and parameters

frequently seen in the economics and policy literature, in-

cluding difference-in-differences approaches discussed ear-

lier, and instrumental variables68 studies. Experimental

studies incorporating machine learning to reduce variance

is another area.69 Unsupervised statistical learning meth-

ods, such as clustering, have been employed to group

observations as stand-alone research questions for some

time. Clustering has also been integrated into evaluations

in order to study impact by groups (e.g. Lee et al.70). One

consequence of the increase in the number of available var-

iables in electronic health data resources is that evaluations

conditional on algorithm-defined groups might become

more common. This may be especially true for precision

medicine applications and studies of treatment effect het-

erogeneity, two additional topics where epidemiologists

have substantial insights. Machine learning also has prom-

ise for contributing to a learning health care system (e.g.

Deeny and Steventon71). Last, data linkages across dispa-

rate sources, including imaging, wearable technology,

streaming public data (e.g. Twitter) and unstructured data

(e.g. text fields in electronic health records), are exciting

but in need of continued, rigorous vetting.

Health services research often examines or seeks to in-

form policy, and machine-learning studies have strong po-

tential to contribute to comprehensive evidence synthesis

for such policy changes. Although far from comprehensive

in its scope, this article has summarized key intersections

between machine learning and epidemiological methods

for health services research. There is great promise for

progress in the future, made even more likely by further

leveraging the expertise of epidemiologists.
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Editorial decision 30 October 2020

Epidemiology, data science and machine
learning

Since first emerging as a discipline in the 1990s, data sci-

ence has become a critical area of workforce skills short-

age.1 Although data science has no agreed definition, it is

centred in multidisciplinary and interdisciplinary

approaches to extracting knowledge or insights from data

for use in a broad range of applications.1 The role of the

epidemiologist in the health and medical domain aligns

strongly with a common definition of a data scientist as

someone who ‘combines domain-specific expertise with

analytic skills to extract knowledge from data to drive ac-

tion’.2 However, most training programmes in epidemiol-

ogy do not teach the primary skills that healthcare

organizations seek in data scientists, which include ma-

chine learning (ML) and the open-source programming

languages R and Python.3 Indeed, a course in data science

was a mandatory component of only 18% of epidemiology

programmes offered by the top 20-ranked public health

schools in the USA in 2019.4

There has been considerable discussion within the sta-

tistical community regarding the relationship between sta-

tistics, data science and ML,5 emphasising the need to

ensure that statisticians have the necessary skills in compu-

tation. Engineering and computer science graduates are

seen as currently better equipped than statisticians to

contribute as data scientists.6 Forging new approaches that

bring together ML and statistical communities and mind-

sets is presented as a solution to addressing challenges in-

herent in the application of ML to big datasets including

selection bias, measurement error, quantifying uncertainty,

and interpretability.7

It is still early days for similar discussions among epi-

demiologists. However, commentators argue that whereas

epidemiologists do not necessarily need to learn coding at

the expense of core epidemiological skills,4,8 or become

experts in ML,4 they do need a foundational knowledge of

data science techniques to equip them to work in the large

interdisciplinary teams that will make big discoveries in

science. The pervasive use of closed-source programming

languages (e.g. SAS, Stata) is cited as being a barrier to the

integration of ML techniques in epidemiology.9

Advancing epidemiologists’ awareness of
machine learning

The burgeoning use of ML across all aspect of health and

medicine creates an imperative for epidemiologists to be at

the very least ‘ML-aware’. Three papers in this issue of the

International Journal of Epidemiology serve to advance

this cause. All three focus on the unique power of ML

methods for prediction.
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