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Lung cancer has complex biological characteristics and a high degree of malignancy. It has always been the number one “killer” in
cancer, threatening human life and health. The diagnosis and early treatment of lung cancer still require improvement and further
development. With high morbidity and mortality, there is an urgent need for an accurate diagnosis method. However, the existing
computer-aided detection system has a complicated process and low detection accuracy. To solve this problem, this paper
proposed a two-stage detection method based on the dynamic region-based convolutional neural network (Dynamic R-CNN).
We divide lung cancer into squamous cell carcinoma, adenocarcinoma, and small cell carcinoma. By adding the self-calibrated
convolution module into the feature network, we extracted more abundant lung cancer features and proposed a new regression
loss function to further improve the detection performance of lung cancer. After experimental verification, the mAP (mean
average precision) of the model can reach 88.1% on the lung cancer dataset and it performed particularly well with a high IoU
(intersection over union) threshold. This method has a good performance in the detection of lung cancer and can improve the
efficiency of doctors’ diagnoses. It can avoid false detection and miss detection to a certain extent.

1. Introduction

Cancer is the second leading cause of human death in the
world, and its mortality and morbidity are increasing year
by year. According to the data of the World Health Organi-
zation (WHO), cancer has led to 9.6 million deaths in 2018
and lung cancer ranks first, with 1.76 million deaths [1].
Compared with other cancers, the biological characteristics
of lung cancer are very complex and it has a short onset time
and high malignancy, which makes lung cancer still the
number one “killer” of cancer [2, 3]. The main reason for
the high morbidity and mortality is that the diagnosis and
treatment methods of lung cancer are still at an early stage,
so it is urgent to refine and improve the diagnosis methods
of lung cancer.

At present, histopathological examination is the stan-
dard for pathological diagnosis of tumors, which can only
be performed on tissue specimens such as surgical resection
or needle biopsy. However, the tissue specimens obtained
are invasive and susceptible to specimen sampling. To assist

diagnostic doctors in their work and improve the efficiency of
cancer diagnosis, the computed tomography (CT) [4] has been
widely used in the intelligent diagnosis of medical images,
becoming a powerful tool to comprehensively capture the
characteristics of cancer. Computer-aided detection systems
are mostly machine learning algorithms such as support vec-
tor machines, which are usually used to detect and classify
tumors [5, 6]. However, they are usually limited by the
assumptions made during the definition of elements and still
have drawbacks such as a complex process, parameter setting
based on experience, and strong dependence. For example,
lung cancer detection results depend on the quality of segmen-
tation results and the effectiveness of extracted features.

In recent years, artificial neural networks, especially deep
neural networks, have made remarkable achievements in
many fields of intelligent medicine [7–9]. This learning algo-
rithm is driven by big data, excavates rules from a large
amount of data, and then classifies and judges unknown
phenomena [10–16]. The continuous accumulation of med-
ical data provides powerful materials and tools for intelligent
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screening and diagnosis of cancer. Zhang et al. [17] used a
convolutional neural network to extract deep features and
combine them with shallow features to achieve the classifica-
tion of ovarian cancer. In addition, Wu et al. [18] used the
deep convolutional neural network based on AlexNet to
realize the classification of ovarian cancer pathological
images and the accuracy rate of the model achieved 78.2%.
Tajbakhsh and Suzuki [19] used an artificial neural network
and convolutional neural network to test the benign and
malignant classification of pulmonary nodules in CT images,
and the experiment found that the performance of the con-
volutional neural network was better than the other types of
artificial neural network in the lung lesion and tumor
classification task.

With the development of the field of intelligent medical
treatment, the types of diseases are increasing and the com-
plexity of the pathological relationship between diseases is
also increasing, so the requirements of a deep neural net-
work are more and more strict. At present, mainstream
object detection algorithms in deep learning are mainly
based on two types: the first is a one-stage detection algo-
rithm, which includes Yolo [20] and RetinaNet [21]; the per-
formances of those methods are fast yet not accurate. As a
representative of the one-stage algorithm, the Yolo series
runs fast. It divides an image into multiple cells of the same
size, predicts the category of each cell, and gives the category
confidence of the bounding box. The other is a two-stage
object detection algorithm, such as Fast R-CNN [22], Faster
R-CNN [23], and Mask R-CNN [24]. The first stage of this
algorithm takes the CT image as the input and generates
the region of interest through the algorithm. The second
stage is to use the output of the first stage to further classify
and regress the bounding box. Although the detection accu-
racy of the two-stage object detection algorithm is better
than the one-stage object detection algorithm, high-quality
samples contribute significantly less to the network during
the training process. Zhao et al. [25, 26] proposed a Cascade
R-CNN network based on Faster R-CNN to solve the prob-
lem that high-quality samples contribute less to training in
object detection. Through the Cascaded R-CNN network,
each R-CNN network is set with different IoU thresholds.
In this way, the accuracy of each network output has been
improved to a certain extent and the output of the previous
R-CNN network can be used as the input of the next high-
precision network. Finally, the accuracy of the network will
gradually improve. In addition, in order to solve the imbal-
ance of object detection in the training process, Pang et al.
[27] proposed a Libra R-CNN network, which paid attention
to the problems of the sample layer, feature layer, and target
layer, and balanced the imbalance through the overall bal-
anced design. Zhang et al. [28] drew lessons from the idea
of Cascade R-CNN and proposed Dynamic R-CNN, which
further solved the problem of inconsistencies between train-
ing processes.

In addition to the network’s architecture, the quality of
feature map extraction also greatly affects the accuracy
of object detection. In most computer vision tasks, it is help-
ful to establish a long-distance dependency mechanism for
feature map extraction. One way to model

remote dependencies is to use a spatial pool or convolution
operator with a large kernel window. Some typical examples,
such as PSPNet [29], employ multiple spatial pool operators
of different sizes to capture multiscale contexts. There is a lot
of work [30–32] using a large convolution kernel or
extended convolution for long-term context aggregation.
By introducing an adaptive response calibration operation,
SCNet [33] constructs multiscale feature representation in
the building block and greatly improves the prediction
accuracy.

In this study, the histologic types of lung cancers that we
are looking at are adenocarcinoma, squamous cell carci-
noma, and small cell carcinoma. The first two types are the
major types of lung cancer of non-small cell lung cancer
(NSCLC) which takes 85% to 90% of all lung cancer cases.
Small cell carcinoma constitutes 10% to 15% of lung cancers
[34]. The percentage of different lung cancer types objec-
tively causes the imbalance of the image data collected. Some
data preprocessing procedure is conducted to resolve its
impact on our SC-Dynamic R-CNN development. The types
of lung cancers studied in this research bear high-level sig-
nificance and real-life value in medical practices.

To improve the detection accuracy of lung cancer, a new
lung cancer detection algorithm based on Dynamic R-CNN
[28] is proposed in this paper. We divide the collected data-
sets into three categories: adenocarcinoma, squamous cell
carcinoma, and small cell carcinoma, and amplified the data
of squamous cell carcinoma and small cell carcinoma by an
oversampling method. Next, we implement the SCNet [33]
module into the Dynamic R-CNN network, which can fully
extract lesion features. In addition, we propose a new loss
function, DBS L1 loss, which further improves the contribu-
tion of high-quality samples to training. After experimental
verification, we found that our algorithm has a great
improvement in the detection of lung cancer compared with
other advanced algorithms.

2. Materials and Methods

2.1. Materials. This paper’s dataset was taken from the Shan-
dong Provincial Hospital and Shandong Provincial Third
Hospital in Shandong, China. The datasets include 34056
pathological images on 261 patients, and the lesion location
was marked by professional radiologists. According to the
radiologist’s annotation, we selected 3442 images of lung
cancer with lesions.

The data selected are firstly divided into three categories,
namely, adenocarcinoma, squamous cell carcinoma, and
small cell carcinoma. In this paper, we use “Adenocarci-
noma,” “Squamous carcinoma,” and “small cell carcinoma”
to represent these three categories. Among the pathological
types of lung cancer, adenocarcinoma is the most common
and there is little data on other types of cancer, which leads
to the imbalance towards the number of samples of different
types of lung cancer. The dataset of lung cancer is distrib-
uted as follows:

Figure 1 shows that there are 2273 samples of adenocar-
cinoma, 845 samples of squamous carcinoma, and 324 sam-
ples of small cell carcinoma. To more objectively train the
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method, we would like to have the datasets of different can-
cer types in a similar size; hence, for the small size of cancer-
type datasets, we expanded the size of the dataset by over-
sampling methods. It is noticeable that the number of ade-
nocarcinoma data samples is about three times of
squamous carcinoma and eight times of small cell carci-
noma, and therefore, the latter two minority class datasets
were oversampled 3 times and 8 times of their original size
to match the majority class, i.e., adenocarcinoma.

Different from conventional oversampling approaches,
e.g., random oversampling and synthetic minority oversam-
pling technique (SMOT), for image data, we can synthesize
samples using image processing techniques, e.g., spatial
transformation including flipping, shearing, and rotating
[35], gamma transformation, histogram equalization, and
other methods to enhance the dataset [36]. An example of
an image enhancement result is shown in Figure 2.

2.2. Methods. We present the next new method for robust
lung cancer lesion detection in CT studies that uses Dynamic
R-CNN trained on our dataset. To achieve accurate detec-
tion of lung cancer lesions, we use Dynamic R-CNN as the
baseline network and use the self-calibrated convolutions
to replace the traditional convolution. Besides that, we pro-
posed a new regression loss function which is better than
the loss function in Dynamic R-CNN.

We first present an overview of the method and then
describe in detail its components. To make the paper self-
contained, we describe all steps of the extended method.

2.2.1. Model. Figure 3 shows the flow diagram of our
method. The structure of the SC-Dynamic R-CNN network
is similar to Faster R-CNN [23]. It is composed of two mod-
ules. The first module is a deep fully convolutional network
that proposes regions, which is called the region proposal
network (RPN) module. The RPN module is aimed at
detecting multiple objects in a single image. The second
module is the detector that uses the proposed regions,
namely, Box_Head. After the Box_Head, there are two loss

functions: classification loss function and regression loss
function. But unlike Faster R-CNN [23], SC-Dynamic R-
CNN can adjust the label assignment criteria and the shape
of regression loss function automatically during training that
makes better use of the training samples. In order to enhance
the ability of feature representation of lung cancer, SC-
Dynamic R-CNN adds SCNet [33] to the RPN module.
Except that, the loss function of Dynamic R-CNN has been
optimized for getting a better detection result of lung cancer.

As shown in Figure 3, initially, the lung cancer images
are resized to 512 × 512 pixels for the training phase. The
resize images are subsequently fed to the region proposal
network (RPN) to get the proposed region. Next, the pro-
posed regions are classified and regressed by the Box_Head
module. Eventually, the classification and regression results
are fed into the corresponding loss function and as the
parameter update of the network. We use softmax loss as
the classification loss, and regression loss uses our newly
proposed loss function, the details of which will be described
in the next section.

To better exploit the dynamic property in the training
stage, SC-Dynamic R-CNN uses a lower IoU threshold to
better accommodate these imperfect proposals in the
second-stage training (Figure 3(a)). As the training goes,
the quality of proposals is continuously improved. There-
fore, we can increase the threshold to better use them to
train a high-quality detector, so the network can be more
discriminative at higher IoU. Dynamic label assignment
can be formulated as follows:

Label =
1, if max IoU b,Gð Þ ≥ Tnow,
0, if max IoU b,Gð Þ < Tnow,

(
ð1Þ

where Tnow stands for the current IoU threshold. In order to
realize the dynamic property that the distribution of pro-
posals changes over time during the training process, the
dynamic label assignment will automatically update based
on the proposal’s statistics. Specifically, SC-Dynamic R-
CNN first calculates the IoUs I between the proposals and
its target ground truth and then selects the maximum value
of KI from I as the threshold Tnow . As the training goes, the
IoUs I between the proposal and its target ground truths will
increase gradually and so does the updated threshold Tnow .

In addition, according to the conclusion of Dynamic R-
CNN [28], with the improvement of IoU threshold, the
quality of positive samples will be further improved. As a
result, the contribution of high-quality samples will be fur-
ther decreased, which will greatly limit the overall perfor-
mance. Based on the method of Dynamic R-CNN, we have
improved its regression loss function and obtained more
accurate results which are described in the next section.

2.2.2. DBS L1 Loss. According to the conclusion of Dynamic
R-CNN [28], with the improvement of the sample quality,
its contribution will gradually decrease. As a result, Dynamic
R-CNN adds a factor α based on the Smooth L1 loss func-
tion. The network adjusts the loss function by adjusting
the value of the factor α. With the increase of factor α, the
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Figure 1: The distribution of lung cancer CT image data of
different types.
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gradient of high-quality sample training will increase gradually,
so the contribution to the network will be increased. The regres-
sion loss function of Dynamic R-CNN is shown as follows:

DSL x, αnowð Þ =
0:5 xj j2
αnow

, if xj j < αnow,

xj j − 0:5αnow, otherwise,

8><
>: ð2Þ

where the αnow will decrease with the training, as shown in
Figure 2.

But the loss function can be further improved. Taking
Libra R-CNN [27] as a reference, we improve the Dynamic
R-CNN loss function and further improve the contribution
of high-quality samples to training. The improved DBS L1
loss can be formulated as follows:

DBSL x, αnowð Þ =
αnow
b

b xj j + 1ð Þ ln b xj j + 1ð Þ − αnow xj j, if xj j < αnow,

xj j + C, otherwise:

8<
:

ð3Þ

Figure 2: The transaxial view of the enhanced lung cancer image data.
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Figure 3: The overall structure of the proposed SC-Dynamic R-CNN.
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where b and C are constants and their values are constrained
by the factor α.

Similar to the dynamic label assignment process in
Dynamic R-CNN [28], DBS L1 loss first obtains the regres-
sion label E between proposals and their target ground
truths. Then, we select the Kα minimum value from E to
update the factor α in the equation.

As shown in Figure 4, with the continuous reduction of
factors in DBS L1 loss, the contribution of high-quality sam-
ples to training increases gradually. Clearly, the DBS L1 loss
is superior to DS L1 loss, which greatly improves the recog-
nition accuracy of lung cancer lesions.

2.2.3. Self-Calibration. Conventional 2D convolution is still
used to calculate the convolution in Dynamic R-CNN [28].
But in conventional 2D convolution, each output feature

map is generated by the same formula, which results in the
convolutional filters learning similar patterns. In addition,
the fields of view for each spatial location in the convolution
feature transformation can only be controlled by the size of
the predefined convolution kernel. As a result, the discrimi-
nation of the lung cancer feature map will be decreased. In
order to enhance the ability of feature representation of lung
cancer lesions and identify lung cancer lesions more accu-
rately, SCNet [33] is used in SC-Dynamic R-CNN instead
of traditional 2D convolution.

As shown in Figure 5, the shape of the given group of the
filter is ðC, C, kh, kwÞ, where C is the number of channels and
kh and kh are the spatial height and width, respectively.
SCNet first separates it into four portions, each of which is
responsible for different functionality. The separated filter
is expressed by fKig4i=1, and the size of each filter is
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Figure 4: The curves for (a) loss and (b) gradient of our regression loss with different α. α is set to default as 1.0.
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(C/2, C/2, kh, kw). The input X will be divided into two parts
before entering the self-calibrated convolutional network,
which represents by X1 and X2, where X1 will conduct
self-calibration through fK2, K3, K4g to produce Y1. At the
same time, X2 will be manipulated by K1 and produce Y2.
Finally, Y2 will be connected to Y1 to generate the final out-
put Y .

In order to collect the context information of each spatial
location effectively, SCNet conducts convolution feature
transformation in two different scale spaces. Firstly, input
X1 will be performed with average pooling operation:

T1 = AvgPool X1ð Þ: ð4Þ

Then, the obtained T1 maps the intermediate references
from the small-scale space to the original feature space by a
bilinear interpolation operator. The specific formula is as
follows:

X1′ = Up F2 T1ð Þð Þ = Up T1 ∗ K2ð Þ, ð5Þ

where “∗” denotes convolution and Up ð·Þ is a bilinear inter-
polation operator. The calibration operation can be formu-
lated as follows:

Y1′ = F3 X1ð Þ · σ X1 + X1′
� �

, ð6Þ

where F3ðX1Þ = X1 ∗ K3, “·” denotes element-wise multi-
plication, and σ is the sigmoid function. After the calibration
operation, Y ′1 needs to be operated by the following formula
to get the final output:

Y1 = F4 Y1′
� �

= Y1′ ∗ K4: ð7Þ

In our model, SCNet is used to replace the convolutional
2D convolution, which considers the context around each

spatial location, avoids the information irrelevant to the
lesion partly, and also improves the recognition accuracy
of lung cancer lesions.

3. Experiments

3.1. Evaluation Metrics. To evaluate the performance of the
proposed SC-Dynamic R-CNN on the image data that we
have, we utilize a set of prevalent performance metrics for
object detection, which are AP50, AP75, and mAP. AP50
and AP75 are average precision with IoU (intersection over
union) thresholds of 50% and 75%. The mAP is mean aver-
age precision. The reason to choose more than one threshold
is to eliminate possible evaluation biases and provide more
objective evaluation results. We have partitioned our data
into three groups, namely, training set, validation set, and
test-dev set. The proposed Dynamic R-CNN variant is
trained and validated with the training set and validation set.

The final results are reported on the test-dev set. It is
worth noting that our mAP averages AP50 and AP75 for each
category as a whole. Generally speaking, the better the detec-
tion effect of the model, the higher the value of mAP.

3.2. Implementation Details. For truthful comparisons, all
experiments are implemented using PyTorch and mmdetec-
tion [37]. And the experiments are carried out in the operat-
ing environment of Ubuntu 16.04 OS with 6 ×Intel(R)
Core(TM) i7-7700 CPU, using an NVIDIA GeForce RTX
2080 GPU for training. The test experiments use the same
configuration. The input image size of each network is 512
× 512 pixels unless noted. We train detectors with 12 epochs
with an initial learning rate of 0.01. The SGD momentum is
set to be 0.9, and weight decay is with a value of 0.0001. All
other hyperparameters follow the settings in mmdetection
[37] if not specifically noted.

3.3. Main Results. In the experimental results of this paper,
we used “Adenocarcinoma,” “Squamous,” and “small cell,”
to represent adenocarcinoma, squamous cell carcinoma,
and small cell carcinoma, respectively.

The detection results obtained under different models
are shown in the following table:

There are five contemporary methods used to compare
and benchmark the results of our proposed SC-Dynamic
R-CNN. The five methods are ReinaNet [21], SSD [38], Fas-
ter R-CNN [23], Libra R-CNN [27], and Cascade R-CNN
[25]. These methods are among the most popular object

Table 2: Results of each component in SC-Dynamic R-CNN on val
set.

Backbone FPN DBS L1 loss SCNet AP50 AP75 mAP

ResNet-50 √ 90.1% 80.7% 85.4%

ResNet-50 √ √ 90.6% 83.6% 87.1%

ResNet-50 √ √ √ 91.5% 84.7% 88.1%

Table 1: Comparisons with different models on our lung cancer dataset.

Method Backbone
Adenocarcinoma Squamous Small cell

mAP
AP50 AP75 AP50 AP75 AP50 AP75

RetiNanet [21] ResNet-50 87.7% 67.8% 89.7% 79.9% 88.1% 77.8% 81.8%

SSD [38] ResNet-50 80.7% 61.4% 89.2% 78.4% 86.2% 77.3% 78.9%

Faster R-CNN [23] ResNet-50 81.6% 62.5% 90.5% 80.3% 89.7% 79.4% 80.1%

Libra R-CNN [27] ResNet-50 81.9% 71.4% 89.9% 81.5% 89.3% 83.2% 82.9%

Cascade R-CNN [25] ResNet-50 82.7% 73.5% 90.1% 82.9% 90.1% 84.9% 84.0%

SC-Dynamic R-CNN ResNet-50 91.6% 77.3% 91.5% 88.2% 91.4% 88.6% 88.1%
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detection neural network algorithms. The same lung cancer
image data, training set, validation set, and test-dev set are
used for a fair comparison. The performance of our pro-
posed methods against the five popular methods is presented
in Table 1.

The result shows that SC-Dynamic R-CNN achieves
88.1% mAP with ResNet-50, which is 8 points higher than
the FPN-based Faster R-CNN baseline. As a one-stage detec-
tion network, RetinaNet and SSD achieved 81.5% and 78.9%
mAP, respectively, whose accuracy is inferior to our method.

Moreover, SC-Dynamic R-CNN is much better than
other networks at AP75. This is because SC-Dynamic R-
CNN can train better results by constantly increasing the
IoU threshold. Although Cascade R-CNN also achieves good
results in detection, our network is higher than Cascade R-
CNN no matter being at AP50 or AP75 and our mAP is 4.1
points higher than that of Cascade R-CNN.

Our proposed method demonstrates a decent level of
effectiveness and robustness. The performance accuracy
of our method is consistent even with different IoU thresh-
olds. The reason why our method surpasses other methods
in term of accuracy is due to the novel enhancement imple-
mented in the previous Dynamic R-CNN algorithm. During
the training phase, the proposed variant is able to automat-
ically adjust the label assignment criteria and the shape of
regression loss function so that the training set is better
utilized. Another distinctive improvement is to integrate
self-calibration mechanism to the RPN of the previous
methods and it helps CNN generate more discriminative
representations and ultimately enhances the overall perfor-
mance of the variant.

3.4. Ablation Experiment. To show the effectiveness of each
proposed component, we report the overall ablation studies
in Table 2.

These results show the effectiveness and robustness of
our method.

(1) DBS L1 loss: compared with Dynamic R-CNN, DBS
L1 loss improves the mAP of lung cancer detection
from 85.4% to 87.1%. This proves that our proposed
module has better performance than the Dynamic R-

CNN loss module. Results in higher IoU metrics like
AP75 are hugely improved, which validates the effec-
tiveness of changing the loss function to compensate
for the high-quality samples during training

(2) SCNet: when we replace the traditional convolution
with SCNet, the mAP of lung cancer detection is
improved from 87.1% to 88.1%. Compared with
Dynamic R-CNN with DBL L1 loss, AP50 and AP75
increased by 0.9 points and 1.1 points, respectively,
after adding SCNet. This also proves the effective-
ness of SCNet for lung cancer detection

The experimental results of SC-Dynamic R-CNN are
shown in the following figure:

As shown in Figure 6, this paper used the SC-Dynamic
R-CNN model to detect lung cancer lesions and achieved
good results. This fully demonstrates that our proposed
model has greatly improved the recognition effect of lung
cancer lesions.

4. Conclusion

To solve the problem that the biological characteristics of
lung cancer were complex and difficult to detect, we pro-
posed the SC-Dynamic R-CNN network. First, we extended
the lung cancer dataset with the oversampling method and
obtained the balanced dataset. Then, we added the self-
calibrated convolution module to the Dynamic R-CNN net-
work and proposed a new regression loss function, DBS L1
loss. This algorithm solves the problem of false detection
and miss detection to a certain extent and greatly improves
the detection accuracy of lung cancer. After experimental
verification, the new algorithm achieves 88.1% mAP on the
lung cancer dataset and it performed particularly well on
high IoU threshold (such as AP75). In the next work, we will
try to further improve the accuracy of the network and verify
the broad applicability of the model in cancer detection.

In future, it is always worthwhile to solve this issue with
some other intelligence algorithms and the bio-inspired
computational methods, such as monarch butterfly optimi-
zation (MBO) [39], earthworm optimization algorithm

Figure 6: SC-Dynamic R-CNN detection effect diagram. Adenocarcinoma test results (left), small cell carcinoma test results (center), and
squamous carcinoma test results (right).
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(EWA) [40], elephant herding optimization (EHO) [41],
moth search (MS) algorithm [42], slime mould algorithm
(SMA) [43], hunger games search (HGS) [44], Runge Kutta
optimizer (RUN) [45], colony predation algorithm (CPA)
[46], Harris hawks optimization (HHO) [47], and Spiking
neural P(SN-P) systems with learning [48].
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