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Immunosuppressive drugs can partially control Antibody (Ab)-dependent pathology.
However, these therapeutic regimens must be maintained for the patient’s lifetime, which
is often associated with severe side effects. As research advances, our understanding of the
cellular and molecular mechanisms underlying the development and maintenance of auto-
reactive B cell responses has significantly advanced. As a result, novel immunotherapies
aimed to restore immune tolerance and prevent disease progression in autoimmune
patients are underway. In this regard, encouraging results from clinical and preclinical
studies demonstrate that subcutaneous administration of low-doses of recombinant
Interleukin-2 (r-IL2) has potent immunosuppressive effects in patients with autoimmune
pathologies. Although the exact mechanism by which IL-2 induces immunosuppression
remains unclear, the clinical benefits of the current IL-2-based immunotherapies are
attributed to its effect on bolstering T regulatory (Treg) cells, which are known to
suppress overactive immune responses. In addition to Tregs, however, rIL-2 also directly
prevent the T follicular helper cells (Tfh), T helper 17 cells (Th17), and Double Negative (DN) T
cell responses, which play critical roles in the development of autoimmune disorders and
have the ability to help pathogenic B cells. Here we discuss the broader effects of rIL-2
immunotherapy and the potential of combining rIL-2 with other cytokine-based therapies to
more efficiently target Tfh cells, Th17, and DN T cells and subsequently inhibit auto-antibody
(ab) production in autoimmune patients.
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INTRODUCTION

Self-reactive auto-antibodies (auto-Abs) against nuclear and cytoplasmic antigens play critical roles in
autoimmune disease development and severity (1, 2). Auto-Abs contribute to disease pathogenesis by
direct and indirect mechanisms. On the one hand, immune complexes (IC) formed by Auto-Abs and
self-antigens activate antigens presenting cells and innate cells through the activation of Fc receptors
(FCRs), thereby initiating a feedback loop of immune activation that ultimately leads to unwarranted
inflammation and tolerance breakdown (3–5). Auto-Abs also engage the complement system, which
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mediates tissue damage and further contributes to triggering
systemic inflammation. Deposition of IC in the blood vessels,
kidney, joints, and lungs amplifies the local inflammatory response
and enhance tissue damage. In agreement with their pathogenic
roles, the serum levels of auto-Abs strongly correlate with disease
activity and severity in multiple forms of autoimmune disease,
including systemic lupus erythematosus (SLE), type 1 diabetes
(T1D), or rheumatoid arthritis (RA), among others. Furthermore,
Auto-Abs can be detected years before the onset of clinical
manifestations (6), thus suggesting that loss of B cell tolerance
and production of Auto-Abs is a critical step that precedes the
development of the autoimmune disease. While Ab-dependent
pathology can be partially controlled by immunosuppression,
there is currently no cure for systemic autoimmune disorders.

Auto-Abs are produced by autoreactive-plasma cells (PCs), a
subset of terminally differentiated B cells that secrete large
amounts of Abs (7). PCs can be originated in the germinal
centers (GCs), the site of B cell maturation, where B cells
undergo rapid rounds of proliferation, somatic hypermutation,
and affinity maturation leading to the generation of high-affinity
antibodies (8–10). Autoreactive PCs can also be generated
outside the GCs via the extrafollicular pathway (11–13). Recent
studies demonstrate a critical role for the extrafollicular PCs in
the development of pathogenic Ab responses (11, 13, 14).

In the last decade, B cell depleting therapies were designed
based on the rationale that depletion of self-reactive B cells would
reduce the production of auto-Ab and subsequent Auto-Ab-
mediated immunopathology (15, 16). However, the clinical
Frontiers in Immunology | www.frontiersin.org 2
efficacy of these therapies is lower than initially anticipated
(17–19). The inability of B cell depleting agents to eliminate
self-reactive PCs efficiently has been suggested as a plausible
explanation for the relatively low effectiveness of these
approaches (17). The life-threatening side effects of sustained
immunosuppression and the failure of new therapies, such as B
cell depletion, vindicate looking for new therapeutic alternatives
to treat Ab-mediated pathologies. In this manuscript, we review
the potential of low-dose IL-2-based immunotherapies to target
T cell populations with B cell helper activity, mainly T follicular
helper cells (Tfh), T helper 17 (Th17) cells, and Double-negative
(DN) CD3+CD4-CD8- T cells (Figure 1). While IL-2 also induces
immunosuppression by Treg-dependent mechanisms, more
extensive reviews on this topic are available elsewhere. Hence,
the role of IL-2 in promoting Treg-mediated immunosuppression
will be only briefly discussed in this review.
PATHOGENIC B CELL HELPER
T CELL SUBSETS

Tfh Cells
T follicular helper (Tfh) cells are a subset of CD4+ T cells that
provide co-stimulatory signals and cytokines that are required
for the development and maintenance of GCs (20–22) and
extrafollicular PC differentiation (23, 24) (Figure 2). In the
absence of pathogen-specific Tfh cells, GCs do not develop, and
FIGURE 1 | The different effects of low dose rIL-2 therapy in autoimmunity. Low dose rIL-2 stabilizes FoxP3 program in Treg cells which increases both the size of
the population and enhances immunosuppression. Low dose rIL-2 therapy can both inhibit the generation of new self-reactive Tfh cells and decrease already present
self-reactive Tfh cells by blocking Bcl6. IL-6 blockade will make Tfh cells more suspectable to IL-2 signaling. Low dose rIL-2 can inhibit Th17 cells by diminishing
expression of RORgt and inhibiting IL17a expression. Low dose rIL2 can also inhibit IL-17 production by DN T cells by directly inhibiting IL17a.
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pathogen-specific PC responses are impaired. Phenotypically, Tfh
cells are characterized by the expression of CXCR5, PD1, ICOS,
and Bcl6, among other markers (25). CXCR5 is a chemokine
receptor that allows Tfh cells to localize in the proximity of the B/T
cell border in response to CXCL13. The inhibitory receptor PD-1
and the co-stimulatory receptor ICOS ultimately direct Tfh cells
into the B cell follicles (26–28), where they provide CD40L (22, 29)
and IL-21 (30–32) to the responding B cells. Bcl6 is a transcription
factor that promotes the expression of genes required for Tfh cell
development and function while preventing the up-regulation of
transcription factors implicated in T effector (Teff) cell
differentiation (33–35). Bcl6 is critical for the differentiation of
Tfh cells (33–35). Thus, it is considered themaster regulator of Tfh
differentiation. While Bcl6 promotes Tfh formation, the
transcription factor Blimp-1 represses it (33–35). Importantly,
Blimp-1 and Bcl6 are mutually antagonistic transcription factors
that directly repress one another in CD4+ T cells. Thus, the
balance between the relative expression of Bcl6 and Blimp-1,
rather than the expression of Bcl6 alone, fine-tunes the
commitment into the Tfh cell pathway (20).

Under homeostatic conditions, Tfh cells help germinal center
B cells to facilitate somatic hypermutation and class switch to
generate long-term Ab protection to pathogens (25). However,
when there is a break in intolerance, self-reactive Tfh cells are not
Frontiers in Immunology | www.frontiersin.org 3
depleted from the repertoire and provide co-stimulatory signals
and cytokines to self-reactive B cells, leading to pathogenic auto-
Ab responses (36, 37). In agreement, the presence of Tfh cells
correlates with elevated levels of Auto-Ab and disease activity in
preclinical animal models and autoimmune patients (37–41).
When Tfh cells are depleted or decreased, autoimmune disease
pathogenesis and auto-Ab responses are reduced (40, 42, 43).
Based on these findings, Tfh cells are considered a potential
target for autoimmune disorders (44). However, to date, there
are no therapeutic agents approved to selectively deplete Tfh cells
in vivo.

Th17 Cells
Th17 cells are a specialized subset of CD4+ T cells that play an
essential role in aiding host defense by recruiting neutrophils and
macrophages. Th17 cells differentiate in response to TGFb and
IL-6, and their development is driven by the transcription factor
RORgt (45). Excessive Th17 cell responses are implicated in the
pathogenesis of multiple forms of autoimmune diseases. As such,
the expansion of self-reactive Th17 cells correlates with disease
activity in common autoimmune diseases, including RA,
psoriasis, asthma, and lupus (46–48). Due to its characteristic
pro-inflammatory properties, it is generally believed that Th17
cells contribute to autoimmune disease pathogenesis by inducing
FIGURE 2 | Both follicular and extra-follicular pathways contribute to auto-antibody production. Within the B cell follicles, Tfh cells maintain auto-reactive germinal
center reactions which generate self-reactive plasma cells. Tfh cells can also provide help in to extra-follicular PCs in the B cell border. Reports have demonstrated
that IL-21 produced by Th17 cells can also contribute to the production of self-reactive plasma cells in the follicle. Besides, in the extra-follicular space, IL-17
produced by Th17 recruits BAFF producing neutrophils. The combination of IL-17, BAFF, and Tfh cells promotes the generation of self-reactive plasma cells.
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tissue inflammation. However, recent studies demonstrate that
Th17 cells can also help the development of auto-reactive GC B
cells (48–51) and extrafollicular PCs (52). In agreement with this
idea, IL-17 deficiency prevents auto-Ab production and disease
progression in lupus-prone mice (53–55). In addition, the self-
reactive GC responses were reduced by IL-17 deficiency in
autoimmune Roquinsan/san mice, thereby suggesting a cause-
effect relationship between IL-17 and pathogenic GC B cell
responses. Collectively, these studies suggest an important role
for IL-17 producing cells in promoting pathogenic-B cell
responses in the context of autoimmune disorders.

The capacity of Th17 cells to help B cell responses is not entirely
surprising since, like Tfh cells, Th17 characteristically produce large
amounts of IL-21 (56), a cytokine that promotes GC and PC
differentiation. Furthermore, IL-17 synergizes with the B cell-
activating factor belonging to the TNF family, BAFF, to protect
responding cells from BCR-induced apoptosis (57), demonstrating
an intrinsic effect of IL-17 in promoting B cell survival. Besides, IL-
17 promotes the recruitment of neutrophils (58, 59), which secrete
both BAFF and APRIL and can facilitate the survival and
devolvement of extrafollicular PCs (60, 61). Collectively, these
studies suggest that IL-17-producing cells can, directly and
indirectly, help auto-reactive B cells responses, thereby
contributing to Ab-mediated pathology in autoimmune patients
(Figure 2). However, whether IL-17-producing cells promote rather
than merely correlate with self-reactive B cell responses in
autoimmune patients has not yet been formally demonstrated.

Hybrid IL-17+Tfh Cells?
An additional important question remaining is how the putative
“IL-17+ helper” cells gain access to the B cell follicles to provide B
cell help. One exciting possibility is that pathogenic “IL-17+ helper”
cells are indeed Tfh cells that secrete IL-17. In agreement with this
possibility, studies suggest the presence of hybrid IL-17-producing
cells with “Tfh-like” characteristics in autoimmune prone BXD2
mice (48) and human tonsils (45). Furthermore, the culture of
human CD4+ T cells with a combination of TGFb and IL-23,
which is frequently used for the in vitro differentiation of Th17
cells (45), triggers the acquisition of a Tfh-like transcriptional
signature characterized by the up-regulation of Bcl6, c-Maf, and
CXCR5, and the down-regulation of Blimp-1, thereby resulting in
the acquisition of a hybrid Bcl6+RORgt+ Tfh/Th17 signature (62).
Whether hybrid Tfh/Th17 cells are Tfh cells that secondary
acquire the capacity of secrete IL-17 or represent a separate
lineage of Tfh cells is still unclear. Further investigations are
needed in order to clarify the potential relationship between
these two lineages.

Interestingly, the ‘pro-Tfh” effect of TGF-b is restricted to
humans, as TGF-b does not significantly affect Tfh cell
differentiation in mice (62, 63). Nevertheless, the commonality
between the Tfh and Th17 differentiation requirements extends
beyond TGF-b. For example, ICOS, which is required for the
survival and the migration of Tfh cells into the B cell follicles (26,
28, 64), is also critical for the differentiation and maintenance of
Th17 cells (65, 66). Besides, similar to Tfh cells, the IL-6/STAT3
pathway is also a key positive regulator of Th17 differentiation
(67). Thus, critical signaling pathways implicated in Tfh cell
Frontiers in Immunology | www.frontiersin.org 4
differentiation also critically regulate the Th17 program.
Therefore, it is reasonable to speculate that the same
inflammatory conditions that promote Tfh differentiation in
autoimmune patients also favor the development of Th17 cells
and/or the generation of hybrid IL-17-producing Tfh cells.

The concept of a highly pathogenic hybrid Tfh/IL-17
population with superior helper activity is, however, at odds
with early studies suggesting that Bcl6 functions as a direct
transcriptional repressor that prevents the acquisition of Teff
programs, including the Th17 program (33–35). Indeed,
Bcl6hiCXCR5hiPD-1hi Tfh cells present in the B cell follicles
(we will refer to these cells as GC-Tfh cells) do not normally
produce IL-17, which is consistent with studies showing that
high-expression of Bcl6 in GC-Tfh cells directly represses RORgt
and Th17 differentiation (33, 34). Nevertheless, the role of Bcl6 in
controlling alternative differentiation programs in Tfh cells is
puzzling. As such, while studies suggest that Bcl6 binds to the
Rorc promoter and inhibits its expression (33), other studies
show no evidence of Bcl6 binding (34, 68). Furthermore, while
Bcl6-expressing cells do not normally express Teff cytokines,
some studies indicate that Tfh cells can produce effector
cytokines in the context of high inflammatory conditions, such
as viral infections (69–72) or autoimmune diseases (48). In
addition, extrafollicular-Tfh cells (which express medium levels
of Bcl6) have a more heterogeneous transcriptional signature
than Bcl6hi GC-Tfh cells (which express high levels of Bcl6) (73–
75). These results suggest that the ability of Bcl6 to inhibit the
initiation of secondary Teff differentiation programs in
developing Tfh cells is dose-dependent and can be partially
overcome in highly reactive environments, such as in
autoimmune diseases, thereby leading to the acquisition of
hybrid Tfh/Teff phenotypes, such as IL-17+ Tfh cells, with
enhanced pathogenic functions.

Double-Negative T Cells
Double-negative (DN) CD3+CD4-CD8- T cells are a rare
population of TCR-ab+ T cells that lack CD4 and CD8
expression and express high levels of B220 (76, 77). While DN
T cells are relatively scarce in healthy individuals, they
abnormally expand in lupus patients and children with
autoimmune diseases, such as mixed connective tissue disease
or juvenile idiopathic arthritis (78). Aberrant accumulation of
DN T cells is also a clinical hallmark of the Autoimmune
Lymphoproliferative Syndrome (ALPS, also known as Canale-
Smith syndrome), a genetic disorder caused by defective FAS-
mediated apoptosis that is characterized by the development of
autoimmune disease, splenomegaly, lymphadenopathy, and an
increased risk of secondary lymphomas during childhood (79,
80). In aged MRL/lpr mice, DN T cells represent nearly 70% of
the total cells in the enlarged lymph nodes, accounting for the
characteristic lymphadenopathy observed in these mice.

The exact origin of DN T cells remains controversial (76, 77).
Early studies suggest they derive from activated CD4 T cells that
fail to undergo apoptosis (81). However, a more detailed
examination of the DN T cell origin in vivo indicates that DN
T cells derive from CD8+ T cells that down-regulate their co-
receptor after continuous stimulation by self-antigens derived
April 2021 | Volume 12 | Article 667342
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from apoptotic cells (82, 83). Thus, it is generally believed that
DN T cells derive from CD8+ T cells.

Expansion of DN T cells correlates with disease activity in
lupus-prone mice (83, 84) and systemic SLE patients (85), leading
to the idea that these cells play an important pathogenic role in
autoimmune disease development. Despite the evidence
supporting a pathogenic role for DN T cells, their exact function
remains largely elusive (76, 77). Interestingly, DN T cells express
high levels of CXCR5, localize in the B cells follicles (86), and
stimulate Ab production in vitro (85, 87). Moreover, similar to Tfh
cells, the presence of DN T cells correlates with disease activity and
autoantibody production in SLE patients and MRL.lpr mice (76,
77, 83–85, 88). Moreover, new studies show that DN T cells
produce large amounts of IL-17 (54, 83, 88). Given the putative
role of IL-17 in helping B cell responses (48–52, 56, 89), it is
tempting to speculate that CXCR5+DN T cells contribute to
autoimmune pathology by promoting auto-reactive B cell
responses in an IL-17-dependent manner. Corresponding with
this idea, a recent study demonstrated that DN T cells are sufficient
to promote autoantibody production and renal immune complex
deposition after adoptive transfer into B6 Rag1−/− mice that also
received B cells from 12-month-old B6.lpr mice (83). These
findings provide evidence that DN T cells can contribute to
pathogenic Ab responses in vivo. Further investigations will be
required to compare the capacity of DN T cells, Tfh cells, and bona
fide Th17 to help self-reactive B cell responses and determine how
each of these subsets relatively contribute to sustaining
pathogenic-Ab responses.
IL-2 AND IMMUNOSUPPRESSION

IL-2 Signaling
IL-2 is a member of the common g-chain family of cytokines that
was initially characterized and as a growth factor for T and NK T
cells (90–92). IL-2 signaling is transmitted through the IL-2
receptor (IL-2R), which can exist in two conformations (93).
The high-affinity receptor is a heterotrimeric receptor that
consists of the a chain (CD25), the b chain (CD122), and the
common g chain (CD132) (94, 95). The high-affinity receptor is
constitutively expressed by FoxP3-expressing CD4+ regulatory
T-cells (Tregs), which require IL-2 signaling for their
differentiation and function (96–99). In contrast, NK T cells,
naïve and memory T cells express the intermediate-affinity
IL-2R, a heterodimer composed of the b and g chain. Following
TCR activation, however, they transiently up-regulate CD25 and
temporarily express the high-affinity IL-2R. The differential
expression of CD25 by regulatory T cells and conventional T
cells has important therapeutic consequences. When administered
at high doses, IL-2 can help conventional T cells and NK T cells,
hence favoring effector responses. In contrast, because Tregs
express high levels of CD25 and better compete for IL-2 than
other cells, low IL-2 regimes preferentially target IL-2 to Tregs,
thus promoting immunosuppression (100).

The binding of IL-2 to the IL-2R triggers the phosphorylation
of the Janus-Activated Kinase 1 (JAK1) and 3 (JAK3), leading to
the activation of the transcription factor STAT5 (101). In addition,
Frontiers in Immunology | www.frontiersin.org 5
phosphorylation of the adaptor Shc in response to IL-2 activates the
Ras-Raf MAP Kinase and PI-3K pathways. The combined effects of
STAT5, Ras-Raf MAP Kinase, and PI-3K signaling pathways results
in the regulation of the transcription of a broad range of IL-2-target
genes, including the forkhead box P3 (FOXP3) (102–104),
eomesodermin (Eomes) (105), the B Lymphocyte Induced
Maturation Protein 1 (BLIMP1) (105), the T-box transcription
factor TBX21 (T-bet) (106, 107), Retinoic acid-related Orphan
Receptor (ROR)g (108–110) and B cell lymphoma (Bcl6) (107,
111–114). Due to its pleiotropic transcriptional effects, IL-2 has been
implicated in regulating multiple, and often contradictory, critical
immunoregulatory pathways. For example, IL-2–STAT5 signaling
positively regulates IL-4R and GATA-3 expression and subsequent
Th2 differentiation (106). On the other hand, IL-2 induces
IL-12Rb2, Blimp-1, and IFN-g up-regulation, which are required
for Th1 cell polarization (106).

Importantly, while IL-2 signaling can help effector responses,
the development of a lethal multiorgan autoimmune syndrome
in the IL-2 and IL-2R deficient mice revealed that the critical
non-redundant function of IL-2 is to promote immunosuppression
(115–118). Rather than immunodeficiency, diminished IL-2
production is associated with autoimmune disease development
in mice and humans (119–123), highlighting the critical role of this
cytokine in maintaining immunological tolerance. Given that Treg
cells fail to normally develop in the absence of IL-2 signaling (98,
124–126) and that they are essential for maintaining immune
tolerance (127–130), it is generally accepted that the principal
mechanism by which IL-2 contributes to preserving immune
tolerance is by supporting the development and function of
Tregs. Supporting this view, early transfer of Tregs into neonatal
CD122 deficient mice prevents autoimmune pathology (96).

Low-Dose IL-2 Therapy
Work done over the last fifteen years demonstrate the potential of
leveraging the immunosuppressive properties of IL-2 to treat
autoimmune disorders. Early studies show that exogenous IL-2
supplementation prevents disease progression and contributes to
inducing immunosuppression in mice with established
autoimmune diseases, including Type I diabetes, EA, experimental
myasthenia, and lupus (131–138). More recently, a novel
immunotherapy based on subcutaneous administration of low-
dose recombinant human IL-2 (r-IL2, (Aldesleukin/Proleukin) has
shown potent immunosuppressive effects in patients with
autoimmune pathologies (139), including Type I diabetes (140),
hepatitis C-associated vasculitis (141), SLE (142–145), and chronic
graft-versus-host disease (146–148). The recent TRANSREG
clinical trial further demonstrated that the same dose of rIL-2
selectively expands Tregs and clinical benefits across eleven
selected autoimmune diseases (149). Collectively these studies
demonstrate that low-dose rIL-2 regimes have therapeutic effects
across a broad range of heterogonous autoimmune disorders.

Current low-dose rIL-2 treatment schemes consist of 3-4
cycles of 7-10 million IU of rIL-2 per cycle administered over
1-2 weeks separated by resting periods of 9-16 days. Importantly,
low-dose rIL-2 can be safely administered to humans. Thus
numerous clinical trials to further explore the potential benefits
of low-dose IL-2 in SLE are now underway.
April 2021 | Volume 12 | Article 667342
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Based on the critical functional relationship between IL-2 and
Treg-mediated immunosuppression, the current paradigm
suggests that low-dose rIL-2 regimes contribute to restoring
immune homeostasis in autoimmune patients by a Treg-
dependent mechanism (139, 150). In agreement with this view,
low-dose rIL-2 supplementation induces Treg cell expansion in
vivo (139). Hence considerable effort has been invested in
developing new therapeutic approaches to selectively target
IL-2 to Tregs.

Intriguingly, though the frequency of Tregs increases after low-
dose rIL-2 administration, the changes in Treg cell numbers are
transient and drop to placebo control levels quickly after the last
rIL-2 cycle (142, 143). Nevertheless, despite a nearly normal
frequency of Tregs, the improved clinical outcomes persist for
weeks after the last cycle of rIL-2 (142, 143). Thus, while it is clear
that Treg-mediated immunosuppression is critical for achieving
the clinical benefits observed after rIL-2 treatment, additional
underlying mechanisms might synergize with Treg-mediated
effects to provide long-lasting immunosuppression after low-
dose rIL-2 immunotherapy. In this regard, recent studies
demonstrate that prolonged IL-2 signaling prevents the
expression of (RORgt) (110) and Bcl6 (107, 111–114), thereby
repressing Th17 and Tfh cell development, respectively.
Correspondingly, low-dose rIL-2 treatment significantly reduced
the frequency of Tfh and Th17 in humans and preclinical animal
models (71, 114, 138, 143, 151, 152). Similarly, CD3+CD4-CD8-

DN T cells are depleted after rIL-2 administration (138). Based on
the inhibitory role of IL-2 in Tfh, Th17, and DN T cells and their
putative roles in promoting self-reactive B cell responses, targeting
IL-2 to these T cell populations could represent a good therapeutic
strategy to prevented Ab-mediated pathology in autoimmune
patients without inducing profound immunosuppression.
TARGETING B CELL HELPERS WITH IL-2

IL-2 and Tfh Cells
Studies by us and others demonstrate that IL-2 signaling inhibits
Tfh cell differentiation (107, 111, 113, 114, 152). Mechanistically,
IL-2 indirectly inhibits Tfh cells by inducing BLIMP, which in
turn represses Bcl6 expression and Tfh cell differentiation (111,
113). Besides, STAT5 in response to IL-2 binds to the Bcl6
promoter and directly prevents Bcl6 transcription (107, 112),
thereby inhibiting the initiation of the Tfh cell program. In
support of these findings, the lack of IL-2/STAT5 signaling
during T cell differentiation skews the CD4+ T cell response
towards the Tfh cell differentiation pathway (111, 113, 114). Data
from the Weinmann’s laboratory also suggest that, in addition to
directly repressing Bcl6 expression, IL-2 signaling favors the
formation of T-bet/Bcl6 complexes that block Bcl6 activity (107).

Corresponding with the inhibitory role of IL-2 in Tfh cell
development, Tfh cell differentiation can be fine-tuned in vivo by
altering the environmental levels of IL-2. As such, limiting IL-2
signaling in vivo results in enhanced Tfh cell responses (111, 113,
114, 151–153). Contrariwise, treatment with rIL-2 prevents Tfh
cell differentiation and ensuing GC responses in mice infected with
Frontiers in Immunology | www.frontiersin.org 6
influenza virus (71, 114, 151). Importantly, in these studies, the
ability of IL-2 to suppress Tfh cell responses is independent of the
presence of Tregs (114, 152). Hence, these studies demonstrate
that lL-2 intrinsically inhibits Tfh cell development by repressing
Bcl6 expression and activity in a Treg-independent manner.

Notably, there are significant differences between human and
mouse Tfh cell developmental requirements (154, 155).
However, recent studies demonstrate that IL-2 is also a potent
inhibitor of human Tfh cell responses. Corresponding with this,
while IL-2 blockade increases human Tfh cell differentiation in
vitro (156), treatment with low-dose rIL-2 reduces the frequency
of Tfh cells in SLE patients (143). These results provide evidence
to support the potential of IL-2-based therapies to deplete Tfh
cells in vivo. Furthermore, these studies offer a new interpretation
for how impaired IL-2 production by T cells (120–123) and
single nucleotide polymorphisms in the IL-2 and IL-2 receptor
genes (122, 157, 158), which are associated with various
autoimmune diseases, affects autoimmune disease development.
In this regard, one would predict that a low IL-2 environment
favors self-reactive Tfh cell differentiation and subsequent Auto-Ab
production in autoimmune patients.

Synergistic Low-Dose rIL-2 Therapies
Recent studies suggest that in addition to secreting a low amount
of IL-2, T cells from SLE patients poorly respond to exogenous
IL-2 (159). Thus, the lack of IL-2 responsiveness could be a
potential limitation when designing low-IL-2-based therapies to
efficiently deplete Tfh cells in vivo. Importantly, data from our
laboratory demonstrate that the IL-6/STAT3 pathway is an
important regulator of the IL-2 responsiveness of Tfh cells.
Briefly, using a combination of in vivo and genetic studies, we
found that STAT3 in response to IL-6 binds to the Il2rb locus
and prevents CD122 up-regulation in Tfh cells, thereby limiting
the capacity of these cells to respond to IL-2 (151). Hence,
blockade of IL-6 signaling renders Tfh cells hyperresponsive to
IL-2, thus lowering the threshold of IL-2 required to deplete Tfh
cells (Figure 3). As a consequence, the frequency of Tfh cells was
dramatically reduced in influenza-infected mice treated with an
anti-IL-6 blockade in combination with rIL-2 compared to mice
treated with rIL-2 alone, even when rIL-2 was administered at
ultra-low doses.

These findings have important therapeutic and conceptual
implications. In this regard, one would predict that Tocilizumab,
a humanized anti-IL-6 receptor monoclonal antibody,
administered together with rIL-2 will synergize to target the
Tfh cell population more efficiently than rIL-2 administered
alone. In this scenario, an IL-6 blockade would increase the
expression of CD122 on the surface of Tfh cells, making them
more susceptible to rIL-2 signaling and subsequent depletion.
This combination therapy will likely achieve the same biological
effect using a lower dose of rIL-2. In addition, IL-2 consumption
by CD25+Tregs limits the amount of available IL-2 (152, 160).
Thus, it is likely that, in the presence of high numbers of
CD25+Tregs, the environmental levels of IL-2 are scarce, and
only cells with a relatively low response threshold will be able to
respond to IL-2. Hence, another significant advantage of this
approach is that, by increasing IL-2 responsiveness, this
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synergistic therapy will allow Tfh cells to react to rIL-2 even in
the presence of IL-2-consuming Tregs, thereby simultaneously
targeting Tregs and Tfh cells.

Importantly, similar to IL-6 (161, 162), the serum levels of the
STAT3-activating cytokines IL-23 and IL-27 are increased in
autoimmune patients (163–167). Thus, IL-6 signaling blockade
alone might not be sufficient to enhance IL-2 responsiveness of
Tfh cells due to the capacity of additional STAT3-activating
cytokines to compensate for the lack of IL-6. Furthermore, IL-6,
IL-23, and IL-27 all induce STAT3 activation via JAK2. In
contrast, JAK2 is not required for IL-2 signaling. Notably, a
recent study shows that the specific JAK2 inhibitor CEP-33779
can be safely administered to MRL.lpr mice, which show
significant improvement in disease pathogenesis and reduced
pSTAT3 levels after treatment (168). Given that JAK2 is required
for STAT3 but not STAT5 activation, it is tempting to speculate
that “non-cytokine specific” STAT3 inhibition after treatment
with a JAK2 inhibitor will lower the threshold of IL-2 required
for suppressing Tfh cells regardless of the presence of redundant
STAT3-activating cytokines. In any case, altogether, these studies
suggest a model in which STAT3 activation in response to
STAT3-activating cytokines counterbalances IL-2-mediated
suppression of Tfh cells by limiting IL-2 responsiveness of Tfh
cells. A better knowledge of how the crosstalk between different
cytokine pathways regulates Tfh cell development will allow us to
design more efficient therapeutic strategies to prevent self-
reactive Tfh cell responses in autoimmune patients, thereby
precluding ensuing pathogenic B cells responses and Ab-
mediated pathology.
Frontiers in Immunology | www.frontiersin.org 7
IL-2 and Th17 Cells
The clinical benefits of targeting Th17 cells to prevent
autoimmune manifestations have been explored in preclinical
and clinical settings, and additional clinical trials are being
conducted. The results, however, are conflicting (169–171).
Independent randomized clinical trials demonstrate the clinical
efficacy of targeting IL-17 to treat moderate to severe psoriasis.
As a result, two monoclonal anti-IL-17A antibodies (secukinumab
and ixekizumab) and one antibody targeting the IL-17 receptor
(brodalumab) are now FDA approved for the treatment of this
disease. However, the studies assessing the clinical benefits of anti-
IL-17 biologics for the treatment of systemic rheumatologic
disorders, such as RA or SLE, have yielded mixed results. While
some preclinical studies and clinical trials show promising results
after IL-17 blockade (169), the therapeutic effect of anti-IL-17 anti-
IL-17A Abs is lower than anticipated.

The relatively low efficacy of these treatments is, to some
extent, surprising, given the abundance of publications showing
reduced pathology and severity after IL-17 blockade in
preclinical animal models (172). One potential explanation for
this discrepancy is patient sample heterogeneity. In this regard,
while most of the studies show that elevated levels of IL-17 and
high frequency of Th17 cells correlate with disease activity in SLE
patients, some found no significant differences between patients
and healthy controls (172). Since anti-IL-17 biological-based
treatments will likely only be effective in patients with a “high
IL-17” profile, the lack of proper patient stratification based on their
IL-17 profile could explain the lack of consistency in the results. An
alternative, but mutually complementary, explanation is the
FIGURE 3 | IL-6 mediates the IL-2 responsiveness of Tfh cells. In the presence of IL-6 signaling, Tfh cells activate STAT3 which directly binds to the Il2rb promoter
preventing expression of CD122. Low expression of CD122 limits IL-2 signaling in Tfh cells. In the absence of IL-6 signaling, there is increased expression of CD122
on the surface of Tfh cells leading to increased responsiveness to IL-2. The increased IL-2 signaling activates STAT5 which binds to the promoter region of Bcl6 and
suppresses the Tfh cell program.
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inability of the current anti-IL-17 biologics to sufficiently block the
aberrantly increased IL-17 pathway in these patients. Besides, IL-17/
IL-17A blockade alone might not be sufficient to effectively disrupt
the inflammatory cycle leading to disease pathogenesis once this has
already been initiated.

As aforementioned, IL-2 signaling inhibits Th17 differentiation
(106, 108, 110). As a consequence of this inhibitory effect, Th17
cells fail to differentiate in relatively high IL-2 environments.
Contrariwise, IL-2 quenching facilitates Th17 cell development
(109). Mechanistically, IL-2 antagonizes IL-17 differentiation via
STAT5, which outcompetes STAT3 binding at the IL-17 locus,
hence preventing binding of STAT3 and its enhancer elements in
response to IL-6 (108). IL-2 signaling also represses IL-6R
expression and recruits the histone deacetylator adaptor protein
NCoR2 to the Il17 locus, thereby contributing to further inhibiting
IL-17 production (108). In agreement with the suppressor role of
IL-2 in Th17 cell differentiation, the regulatory mechanisms that
control IL-2 production also indirectly control IL-17 production.
For example, the cAMP-responsive element modulator alpha
(CREMa) negatively regulates IL-2 transcription by binding to
the Il2 locus (121, 173–175). IL-2 shortage after CREMa
overexpression in T cells contributes to enhancing IL-17
differentiation, a phenomenon that can be reserved after IL-2
supplementation (175). Similarly, by suppressing IL-2 production,
the phosphatase and tensin homologue (PTEN) indirectly favors
Th17 differentiation (176). At a cellular level, IL-2 consumption by
Treg cells favors Th17 development by creating a low IL-2
environment permissive for Th17 differentiation (160).
Collectively, these studies demonstrate that Th17 cells preferably
differentiate in “low-IL-2” environments.

Importantly, works from multiple laboratories demonstrate a
causative relationship between IL-2 deficiency, subsequent
excessive IL-17 responses, and autoimmune pathology
development. For example, elegant work has shown that a lack
of STAT3 activation prevents the accumulation of Th17 cells in
IL-2-deficient mice, resulting in prolonged lifespan and reduced
autoimmunity associated with IL-2 deficiency (108). Additional
studies have shown that MRL/Fas(lpr/lpr) mice treated with rIL-
2 have reduced frequency of IL-17 producing cells, which
correlated with diminished disease manifestations (138).
Moreover, in SLE patients, low-dose rIL-2 treatment resulted
in reduced frequencies of Th17 cells, which correlated with the
induction of remission in a recent open-labeled trial (143).
Collectively, these results provide strong evidence for the
therapeutic potential of rIL-2 to prevent unwanted Th17
responses in vivo. Importantly, current anti-IL-17 biologics target
the product of Th17 cells (i.e., IL-17). In contrast, low-dose rIL-2
precludes the development of these cells, which has the potential to
more effectively prevent IL-17-dependent immunopathology by
preventing the continuous replenishment of Th17 cells from their
precursors, thereby inducing long-lasting effects. Besides, anti-IL-17
biologics are limited in that their effect is restricted to limiting IL-17
responses. In contrast, rIL-2 therapy has broader effects beyond
dampening IL-17, such as bolstering the Treg–mediated
immunosuppression and/or decreasing autoreactive Tfh cells,
which are likely to synergize with Th17 suppression to further
Frontiers in Immunology | www.frontiersin.org 8
prevent immunopathology. In this regard, given that Tfh and Th17
cells are similarly regulated by the IL-2/STA5 and IL-6/STAT3
pathways, the aforementioned combinational therapy with STAT3
blocking agents and rIL-2 is likely to simultaneously target Tfh and
Th17 cells efficiently. In summary, the inhibitory effects of IL-2 in
Th17 cells, and its subsequent effects on Auto-Ab responses and
systemic inflammation, need to be evaluated when considering IL-
2-based therapies for the treatment of autoimmune disorders.

IL-2 and DN T Cells
Despite the accumulating evidence supporting a pathogenic role
for DN T cells, the exact mechanisms that regulate DN T cell
homeostasis are unknown, and there are currently no therapies
to selectively deplete DN T cells in vivo. Importantly, however,
work from George Tsokos’s group demonstrates that treatment
with an inducible recombinant adeno-associated virus vector
encoding IL-2 significantly reduced the frequency of IL-17+ DN
T cells in MRL/lpr mice, which was accompanied by reduced
pathology and kidney infiltration (138). The effect of IL-2 on DN
T cells is likely independent of the role of IL-2 in Treg cells, as
treatment with IL-2 is complexed with the anti-IL-2 monoclonal
JES6-1, which selectively target CD25-expressing Tregs did not
affect DN T cells. Nevertheless, because DN T cells express
neglectable levels of CD25 and CD122 and poorly phosphorylate
STAT5 in response to IL-2, the authors suggest that the effect of IL-2
on DN T cells is indirect. In any case, whereas the exact mechanism
by which IL-2 prevents DN T cell accumulation remains elusive,
these studies demonstrate a critical role for IL-2 in preventing DN T
cell expansion in vivo. Given the potential pathological role of these
cells and their contribution to sustaining pathogenic Ab responses,
the effects of low-dose rIL-2 immunotherapies on DNT cells should
be carefully examined in future low-dose rIL-2 clinical trials.
CONCLUDING REMARKS

In conclusion, we present here the rationale for using new
therapeutic regimens based on the combination of low-dose
rIL-2 with other biologics to achieve ideal immunosuppression
and improved disease scores. Since the original observation that
in the absence of IL-2 signaling mice develop catastrophic
autoimmune disease, our knowledge of the complex
intersection of multiple underlining conditions contributing to
autoimmunity has grown to include multiple T cell populations
in addition to Treg cells. Armed with the understanding that Tfh,
Th17, and DN T cells play critical roles in autoimmune disease
progression and that they are efficiently depleted after rIL-2
treatment, it is time to consider how to leverage the broad-
ranging effects of rIL-2 therapy to synergistically induce Treg cell
immunosuppression along with the Tfh/Th17/DN T cells axis to
efficiently prevent inflammation and auto-Ab-mediated
pathology in autoimmune patients without the undesired side
effects associated to systemic immunosuppression.

While some studies suggest that B cells do not express CD25
and STAT5 signaling is dispensable for B cell maturation and
function (177), IL-2 favors B cell survival and PC differentiation
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in vitro (178–180). These potential “positive” effects of IL-2 in
B cells could, to some extent, compensate for the absence of T cell
help and be detrimental in the context of B-cell mediated
pathologies, particularly when administered for short periods of
time. Therefore, though it is clear that low-dose rIL-2 therapies
promote immunosuppression, the potential intrinsic effects of
low-dose rIL-2 treatment in B cells should be carefully
examined. Similarly, IL-2 inhibits the development of T
follicular regulatory (TFR) cells (181–183), a particular subset of
Tregs that express Bcl6 and CXCR5 and localize into the B cell
follicles where they suppress Tfh and GC B cell responses (184–
186). Mechanistically, IL-2 signaling induces Blimp-1 expression
in conventional Tregs cells, thereby preventing them from up-
regulating Bcl6 and becoming TFR cells. Given that TFR cells have
a suppressive function in Tfh and GCs, the lack of these cells after
low-dose rIL-2 could enhance pathogenic B cell responses.
Corresponding with this idea, the absence of TFR cells favors
the outgrowth of self-reactive B cell clones in some models (181,
185). Nevertheless, the role of TFR cells is more complex than
initially expected, as, rather than inhibit, they promote GC and Ab
responses in some models (187, 188). Besides, TFR cells express
low levels of CD25 (181, 182). Thus, it is unlikely that rIL2 therapy
will have a preferential impact on TFR cells. In any case, despite
the putative adverse effects of IL-2, treatment with low-dose rIL-2
and IL-2/anti-IL-2 Ab complexes efficiently decreases anti-DNA
Frontiers in Immunology | www.frontiersin.org 9
Ab titers in NZB/W F1 mice (189) and hinders influenza-specific
B cell responses in influenza-infected mice (114). These data
support the view that, when used in vivo, the dominant effect of
IL-2 in the B cell response is immunosuppression.
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