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Single-cell analysis highlights differences in
druggable pathways underlying adaptive or fibrotic
kidney regeneration

Michael S. Balzer® "2, Tomohito Doke® 2, Ya-Wen Yangm, Daniel L. Aldridge 3 Hailong Hu 12
Hung Mai"2, Dhanunjay Mukhi?, Ziyuan Ma® "2, Rojesh Shrestha4, Matthew B. Palmer?,
Christopher A. Hunter® 3 & Katalin Susztak® 2>

The kidney has tremendous capacity to repair after acute injury, however, pathways guiding
adaptive and fibrotic repair are poorly understood. We developed a model of adaptive and
fibrotic kidney regeneration by titrating ischemic injury dose. We performed detailed bio-
chemical and histological analysis and profiled transcriptomic changes at bulk and single-cell
level (> 110,000 cells) over time. Our analysis highlights kidney proximal tubule cells as key
susceptible cells to injury. Adaptive proximal tubule repair correlated with fatty acid oxidation
and oxidative phosphorylation. We identify a specific maladaptive/profibrotic proximal tubule
cluster after long ischemia, which expresses proinflammatory and profibrotic cytokines and
myeloid cell chemotactic factors. Druggability analysis highlights pyroptosis/ferroptosis as
vulnerable pathways in these profibrotic cells. Pharmacological targeting of pyroptosis/fer-
roptosis in vivo pushed cells towards adaptive repair and ameliorates fibrosis. In summary,
our single-cell analysis defines key differences in adaptive and fibrotic repair and identifies
druggable pathways for pharmacological intervention to prevent kidney fibrosis.
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ARTICLE

very year, more than 13 million people suffer from acute

kidney injury (AKI). The kidney tubules have tremendous

capacity to regenerate following AKI and most cases resolve
via adaptive regeneration, however, in some patients AKI leads to
long-term fibrosis and chronic kidney disease (CKD). CKD is the
fourth fastest growing cause of death, affecting more than 850
million people worldwide!. Although hard to estimate, AKI is one
of the top contributors to CKD2. AKI increases the risk for
progression to CKD (HR 2.67, 95% CI 1.99-3.58), end stage renal
disease (HR 4.81, 95% CI 3.04-7.62), and death (HR 1.80, 95% CI
1.61-2.02)3. Understanding the pathomechanism of adaptive and
fibrotic repair is therefore critical.

During the last decade, we made important progress in our
understanding of adaptive kidney repair and regeneration. Mul-
tiple studies have focused on identifying the source of progenitor
or stem cells in the kidney following AKI. While early work
indicated a potential role for mesenchymal stem cells, rigorous
linage tracing experiments demonstrated a key role of epithelial
cells in regeneration®°. Several reports indicate that Sox9-positive
cells expand, proliferate, and differentiate following injury®-8.
Other studies have identified Lgr4 and Lgr5-positive precursor
cells®*10, Activation of classic developmental pathways such as
Wnt and Notch plays an important role in lineage decision and
transit amplification promoting regeneration!!, however, sus-
tained activation of these pathways inhibits full differentiation of
epithelial cells. Spatial and temporal organization of develop-
mental signals are critical for proper regeneration.

Several events have been identified in the AKI-to-CKD tran-
sition. Compromised microvascular integrity, tubular epithelial
cell damage!?, interstitial inflammation!>!# and myofibroblast
recruitment!®, and are key factors of maladaptive repair!¢-18,
However, the exact mechanisms have not been fully evaluated.
One of the most important changes observed in CKD is the influx
and expansion of immune cells. Immune cells likely secrete
cytokines to heal the epithelium but could also play a critical
profibrotic role!®20. Immune cell subtypes and their activation
are poorly characterized in the context of AKI-to-CKD transition.

A key bottleneck in the understanding of adaptive and mala-
daptive regeneration has been the limited insight into temporal
and cell-specific genome-wide gene expression changes to define
signals that initiate and drive cell differentiation and cell-cell
interactions. Single-cell RNA sequencing (scRNA-seq) has fun-
damentally improved our understanding of kidney disease
development in mice and humans?!-33. Several studies have
analyzed maladaptive regeneration following AKI and identified a
variety of pathways. However, these studies failed to compare
adaptive and maladaptive regeneration to comprehensively dif-
ferentiate pathways attributable to successful repair and fibrosis34.
In addition, only one study performed follow-up validation
experiments confirming the role of specific pathways.

Here we develop a model of adaptive and maladaptive regen-
eration and directly compare single-cell transcriptomic profiling
in these conditions by defining cell-autonomous and cell-cell
interaction changes, identifying and validating factors that drive
maladaptive regeneration. We show that maladaptive (fibrotic)
repair is associated with activation of inflammatory cell death
pathways (pyroptosis and ferroptosis) inducing the influx and
activation of immune cells.

Results

Single-cell transcriptome dynamics of adaptive and maladap-
tive regeneration following bilateral renal ischemia. To
understand differences between renal regeneration and fibrosis
we established a model of adaptive and maladaptive repair by
carefully titrating renal ischemia time in mice. We analyzed

changes following short (23 min) or long (30 min) bilateral
ischemia and collected samples 1, 3, and 14 d post-ischemia
(Fig. 1a, Supplementary Dataset 1, “Methods”). Kidney function
measured by iSTAT serum creatinine and blood urea nitrogen
(BUN) showed AKI peaking on day 1 (BUN 149 and 83 mg/dL,
creatinine 1.2 and 0.5mg/dL after long and short ischemia
reperfusion injury (IRI), respectively). These values were similar
to functional impairments observed in recently published
studies3*. By day 14, creatinine levels returned to baseline in both
groups, while BUN levels remained elevated in the long ischemia
group (Figs. 1b, Sla). Blinded histopathological scoring con-
firmed similar early structural changes on day 1 and 3 post-IRI in
both groups and sustained acute tubular injury 14d post-IRI in
mouse kidneys. Mice with prolonged kidney ischemia developed
fibrosis by day 14 following ischemia (Fig. 1b-e).

We performed bulk and scRNA-seq from the same kidneys on
2 mouse samples at each time point, yielding a total of 18 samples
(n=6 long IRI, n=6 short IRI, and n =6 controls). Marker
genes of fibrosis such as Fnl, Tgfbl, Collal, and Col3al were
higher in long ischemia samples in bulk RNA-seq data (Fig. 1f,
Supplementary Dataset 2). We also performed scRNA-seq,
aggregated transcriptomes of high-quality single cells into a
single dataset following batch integration with LIGER3®, and
retained 113,579 high-quality cells after rigorous filtering based
on UMI counts, mitochondrial percentage, doublet removal, and
ambient RNA and batch effect correction (Figs. Slb-d, S2a,
“Methods”). Our analysis indicated 18 clusters. We next
performed analysis of differentially expressed genes (DEGs) for
each cluster and identified all major kidney cell types, including
endothelial cells, podocytes, tubule cells, and a variety of immune
cells (Fig. 1g, h and Supplementary Dataset 3).

Cell fraction changes during repair and fibrosis. To gauge the
effect of the degree of injury on cell fraction changes, we analyzed
changes in cell proportion in single-cell and bulk RNA-seq samples.
We observed considerable differences in cell fractions that correlated
both with the degree of ischemia and the timing following injury
(Fig. S2b and Supplementary Datasets 4, 5). Immune cells con-
stituted 10, 45, and 66% of analyzed cells in kidneys of control, short,
and long IRI samples in the single-cell dataset; proximal tubule (PT)
cell fraction decreased to 54, 12, 8% in control, short, and long IRI
models (Fig. 1i, j). We also analyzed changes by cell density, which
has an advantage of potentially avoiding artificially binning the cells
into clusters. Tubule cell density was highest in short IRI and control
samples (Fig. 1k). This confirmed the markedly higher immune cell
density in the long IRI samples. Amongst the immune cells, we
observed a greater increase in myeloid cells, the fraction of which
correlated with ischemia dose (Figs. 1j, S2c).

As the single-cell analysis is sensitive to cell drop-out, we
confirmed cell fraction changes by in silico deconvolution of bulk
RNA-seq samples. We corroborated lower PT cell and higher
myeloid cell fractions in IRI samples (Fig. S3a, b). Using a
previous single cell dataset from our group that is known to be
rich in immune cell subtypes as a reference for deconvolution®’,
we also confirmed CD4 and CD8 T cell as well as macrophage,
neutrophil, and basophil infiltration with increasing injury dose
(Fig. 2a, b). Myeloid and PT cell changes were greater as time
progressed after injury (Figs. 2b, S3b, S4a, b). Accordingly,
myeloid and PT cell-specific genes were among the top-loading
genes contributing most to principal component heterogeneity
(Fig. S5a, b). Bulk RNA-seq confirmed that genes differentially
expressed in repairing vs fibrotic samples could be deconvoluted
to PT and myeloid cells, respectively (Fig. S5c—e), indicating that
cell heterogeneity was a likely major contributor of bulk gene
expression changes.
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Fig. 1 Single-cell transcriptome dynamics of adaptive and maladaptive regeneration following bilateral renal ischemia. a Experimental setup. Male
C57BL/6 mice were subjected to short and long ischemia and followed for 1, 3 and 14 d (n =12). Bulk and scRNA-seq was performed in n = 2 mice per condition
and time point and compared to n = 6 controls; artwork own production and from https://smart.servier.com, license https.//creativecommons.org/licenses/by-
sa/3.0/). b Histopathological evidence of acute tubular injury (left panel), blood creatinine (middle panel) and BUN changes (right panel) 1, 3, and 14 d post-IRI.
BUN of long IRl was comparable to previously published data (Kirita et al.); means + SEM. Representative light microscopy of Periodic acid-Schiff (¢) and Sirius
red (d)-stained kidneys; scale bars =50 um. e Fibrosis quantification from (d); means * SEM; p values are given for one-way ANOVA comparisons between
Control and IRI groups and between short and long IRI groups, respectively. f Bulk RNA-seq analysis of fibrosis markers Fnl, Tgfbl, Collal, and Col3aT;

means + SEM; p values are given for one-way ANOVA comparisons between Control and IRl groups and between short and long IRl groups, respectively.

g UMAP projection of 113,579 cells (n =6 controls, n =6 short, n =6 long IRl samples) passing rigid quality control filtering (nFeatures > 200 and < 3000, mt
% < 50, doublet removal) and after dataset integration with LIGER, yielding 18 cell clusters: GEC glomerular endothelial cell; Endo endothelial cell; Myofib
myofibroblast; Podo podocyte; PT S1 proximal convoluted tubule; PT S3, proximal straight tubule; LOH, loop of Henle; DCT, distal convoluted tubule; PC, principal
cell; IC, intercalated cell; Granul, granulocyte; Mono, monocyte; Macro, macrophage; T cell; B cell. h Cell type-specific expression of marker genes for manually
annotated clusters. Dot size denotes percentage of cells expressing the marker. Color scale represents average gene expression values. i, j Fractions of PT (h) and
immune cell (i) clusters stratified by treatment group (Control; IRl short; IRl long). Statistical significance for comparisons was derived using differential
proportion analysis, with a mean error of 0.1 over 100,000 iterations; p values are given for comparisons between Control and IRI groups and between short and
long IRI groups, respectively. k Changes in cell type proportions between treatment groups (Control; IRl short; IRl long), visualized as cell density.
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Fig. 2 Bulk deconvolution and flow cytometry confirm lymphoid and myeloid cell infiltration in maladapted kidneys. a Kidney bulk RNA-seq data were in
silico deconvoluted using a previously published kidney single cell reference that is known to be rich in heterogeneous immune cell populations (Dhillon
et al.). b Quantification of cell fractions after bulk RNA-seq deconvolution, displayed as Tukey box plots. ¢ Flow cytometry was performed in an
independent set of experiments; the gating strategy is shown in Fig. S6. d, e Flow cytometry quantification of lymphoid (d) and myeloid (e) cells
representing n = 4 independent experiments. Increasing doses of ischemic injury resulted in significant increases in lymphoid and myeloid cell infiltration;
means + SEM; p values for one-way ANOVA (Holm-Sidak corrected); light coloring in bar graphs denotes 3 d time points, full coloring denotes 14 d time

points; NK, natural killer.

To investigate whether dissociation bias due to single-cell
preparation protocols might have skewed cell proportions we
sought to validate immune cell fraction changes by an orthogonal
method. As immune cells are defined by their cell surface
markers, we chose flow cytometry as the gold standard of
quantitation. We performed flow cytometry on mouse kidneys in
an additional set of experiments to quantify immune cells such as
lymphocytes (B, CD4, and CD8 T cells) and myeloid cells
(macrophages, neutrophils, basophils, eosinophils, mast cells, and
dendritic cells) infiltrating the kidney 3 and 14 d after sham, IRI
short, and IRI long procedures, respectively (Figs. 2¢c, S6 and
Supplementary Dataset 6). While early (3 d) after IRI, severe

injury significantly increased only macrophage and neutrophil
influx, we observed ischemia dose-dependent increases of CD4
and CD8 T cells as well as pronounced increases of myeloid cell
(macrophage, neutrophil, basophil, eosinophil, mast cell, den-
dritic cell) fractions 14 d after injury (Fig. 2d, e), thus
independently validating cell fraction changes from our tran-
scriptomic and deconvolution data. Again, flow cytometry
highlighted the proinflammatory nature of the long IRI model
with profound immune cell influx 14 d after injury.

In summary, renal IRI was characterized by marked changes in
cell fractions including a dose-dependent, progressively lower PT
cell and higher myeloid cell number.
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Profibrotic PT cells accumulate during maladaptive repair. As
PT cells showed some of the most dramatic changes, we focused
our attention on these cells. We subclustered all 28,385 PT cells
and identified 11 distinct subgroups (Figs. 3a, S7a). Three sub-
clusters expressed classic markers of proximal convoluted tubule
(S1) (distinguished by Slc5a2, Sic5a12, and Gatm). Two sub-
groups expressed S3 proximal straight tubule (PST) markers
(Slc22a30, Atplla, Inmt). One subgroup expressed S2 PST marker
Slc22a6. We identified 3 injured PT subclusters expressing either
Veaml, Haverl and Krt20, or Nuprl (Figs. 3b, S7b-d and Sup-
plementary Dataset 7). These injured PT subclusters were
observed by previous studies3*37-38, In addition, we identified a
proinflammatory subcluster expressing a variety of chemokines
(I1b, Cxcl2, Ccl3, Tyrobp, and C3).

We observed significant cell heterogeneity among PT cells
(Fig. S7e, f). Control and IRI short samples showed the highest
cellular densities in healthy PT clusters (Fig. 3c). Injured PT cells
were higher on day 1 following injury; we found that the
proinflammatory subcluster was present almost exclusively at
later stages of the long IRI group (Figs. 3c, d, S7c, d), therefore we
called this cluster maladaptive or profibrotic. This profibrotic
cluster showed very strong IRI score enrichment (Fig. S7g-j),
which we established using the top 100 IRI and top 100 Control
DEGs (Fig. S7g, “Methods”) and validated in published single-cell
renal IRI data (Fig. S7k). To validate the maladaptive/profibrotic
cluster, we analyzed our own (obtained from the same samples)
and external bulk RNA-seq datasets and confirmed the presence
and enrichment of this maladaptive cluster 14 d post long IRI
(Figs. 3e, S8a, b)3”. Moreover, maladaptive PT genes were
enriched among PT cells of fibrotic kidneys in a unilateral
ureteric obstruction (UUO) scRNA-seq dataset (Fig. 3f).

To further validate the presence of the maladaptive/
profibrotic cluster, we analyzed previously published kidney
IRI single-cell data34. Integration of all kidney cells from both
datasets (n =240,043) demonstrated highly conclusive overlap
of cluster identities of all kidney cell types (Fig. 3g). We were
intrigued to see considerable overlap of gene expression
signatures of our injured and profibrotic/maladaptive cluster
(Figs. 3h, i, S8c-e).

In summary, we identified heterogeneous PT subgroups, such
as injured and maladaptive PT cells. We also validated their
presence in a second kidney fibrosis model (UUO) and in
previously published bulk and single-cell datasets.

PT trajectories of adaptive and maladaptive repair. To under-
stand cell differentiation driving adaptive and maladaptive PT cell
repair, we first defined PT cell lineage relationships using pseu-
dotemporal cell ordering by Gaussian mixed modeling (GMM)
(Fig. S9a, b, “Methods”). In a randomly down-sampled dataset
(n=1650 PT cells) we retrieved two distinct trajectories, both
arising from cells injured early in the time course (Fig. 4a).
Starting at 1d post-IRI, short IRI samples progressed along
lineage 1 towards healthy (control) PT, indicating successful PT
repair (Fig. 4b). Long IRI samples branched off along lineage 2
towards an endpoint formed by maladaptive profibrotic cells
(Figs. 4b, S9¢). RNA velocity analysis confirmed results obtained
via GMM clustering (Fig. 4c) and IRI scoring showed the highest
degree of injury at the endpoint of lineage 2 (Fig. 4d). We con-
firmed our trajectory results using Monocle2, Monocle3, and
Slingshot trajectory analysis tools, indicating the robustness of
transcriptomic relationships between adaptively repaired and
profibrotic PT cells (Fig. S9e-j, “Methods”). Next, we examined
DEGs along pseudotime between the two diverging lineages. We
saw typical PT differentiation markers for lineage 1 such as
Sle34al, Tmem27, Acsm2, and Slc27a2, whereas cells at the

endpoint of lineage 2 demonstrated inflammatory and myeloid
markers such as 111, Cxcl2, $100a8, and S100a9 (Figs. 4e, SOf).

To unravel the gene regulatory network driving adaptive and
maladaptive repair, we used cis-regulatory network analysis as
implemented by SCENIC? and revealed transcription factor
(TF)-centered gene co-expression networks (“Methods”). Binar-
ized regulon activity (“on” or “off) clearly separated two
trajectories (Figs. 4f, g, S9d and Supplementary Dataset 8). These
two trajectories were consistent with our previous pseudotime
analysis results. Clusters of repair lineage 1 (GMM1-3) showed
specific enrichment e.g., of Hoxa7, Nrlh4, Maf, and Hnf4a
regulons, while the maladaptive lineage 2 endpoint (GMMS5)
enriched for regulons Cebpd, Fosl2, Atf3, Cebpb, and Ets2. Gene
expression of these representative lineage-differentiating TFs
showed Hnf4a and Maf increase along lineage 1 and decrease
along lineage 2, with vice versa relationships for fibrosis-driving
TFs Atf3, Cebpb, Cebpd, Ets2, and Fosl2 and corresponding
predicted targets (Figs. 4h, j, S9f-h, j). Reassuringly, binarized
regulon activity better highlighted TF enrichment specific to
certain trajectory branches (Fig. 4i) than gene expression
information alone (Fig. 4h). Maladaptive PT cells (in GMM
cluster 5) showed the highest density of regulons among all
PT cells (Fig. 4k, 1).

Pyroptosis and ferroptosis following sustained injury drive
fibroinflammation. To understand changes in control, injured,
and maladaptive PT cells, we next identified DEGs for each time-
point and ischemia dose (Supplementary Dataset 9). KEGG
pathway analysis identified changes in proteasome pathways in all
analyzed samples, as described before. Importantly, our data
indicated early (day 1) changes in ferroptosis in both short and
long IRI samples (Fig. 5a and Supplementary Dataset 10). Long
IRI samples continued to show high levels of genes associated
with ferroptosis (Ptgs2, Chacl, Acsl4, Slc7all, and Hmoxl),
apoptosis (Casp8, Bad, Bakl), and pyroptosis (Caspl, Casp4,
Gsdmd, 1118, and Il1b). Maladaptive PT cells showed marked
pathway enrichment for ferroptosis and pyroptosis (caspase-1-
mediated cell death in response to Salmonella or Leishmania
spp-4041, Figs. 5a, b, S10a—c). At the same time, repairing PT cells
showed enrichment for key homeostatic functions, such as oxi-
dative phosphorylation and fatty acid degradation (Figs. 5a, S10d,
e). This was also consistent with Hnf4a, Maf, and Nr1h4 regulon
activities (Figs. 4f-h, S9d). Reassuringly, we found some of the
pyroptosis-associated transcripts from our IRI model such as
Aim2, Nlrp3, Pycard, Nod2, Naip2, Naip5 (inflammasome sensors
and adapters), Caspl, Casp4, Panxl, P2rx7, Casp8 (canonical and
non-canonical activation of GSDMD), Gsdmd (pore forming
executioner of pyroptosis), 1118, and Il1b (canonical downstream
effectors) to be enriched in failed repair PT cells of a previous IRI
dataset?, in PT cells of a rejecting kidney allograft, and in
PT cells of mice conditionally overexpressing Notch in tubules
(Fig. Slla-c)*2. We also corroborated evidence of increased
GSDMD cleavage in IRI long samples compared to sham-treated
samples in whole kidney lysates (Fig. S11d, e and Supplementary
Dataset 11). In an orthogonal approach, we sought to validate
pathway enrichment results by unbiased weighted gene coex-
pression network analysis (WGCNA, “Methods”). After gen-
erating metacells of the PT dataset (Fig. 6a, b), we retrieved 8 gene
modules (Figs. 6¢, S12a) demonstrating high specificity for IRI
degree and timing post-ischemia (Figs. 6d, S12b). For example,
the black module corresponded to PT cells 14 d after long
ischemia (Figs. 6e, S12c and Supplementary Dataset 12). Pyr-
optosis markers Gsdmd and Il1b proved to be important hub
genes (Fig. 6f) whose relatively high expression in maladaptive
PT cells was highly specific (Fig. 6g, h). This was consistent with
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Fig. 3 Profibrotic PT cells accumulate during maladaptive repair. a UMAP projection of 28,385 PT cells, demonstrating 11 PT subclusters. Subclusters
with a clear S1, S2, and S3 phenotype are annotated. b Corresponding dot plot showing PT subcluster-specific expression patterns of differentially
expressed genes (DEGs). ¢ Changes in cell type proportions of PT cells between different treatment groups (Control; IRl short; IRl long), visualized as cell
density. Control and IRI short samples are dominated by healthy PT subclusters, IRl long samples by Maladaptive PT. d Fractions of Healthy, Maladaptive,
and Injured PT cells stratified by ischemia dose and time post-IRI. Statistical significance for comparisons in n = 28,385 cells was derived using differential
proportion analysis, with a mean error of 0.1 over 100,000 iterations; p values are given for comparisons between Control and IRI groups and between
short and long IRI groups, respectively. e Fraction of cells annotated as Maladaptive PT after bulk kidney RNA-seq data cell type deconvolution using
BisqueRNA, displayed as Tukey box plots. X-axis denotes the different treatment groups (Control, IRl short 1 d, IRl short 3 d, IRl short 14 d, IRl long 1d,
IRl long 3 d, IRl long 14 d). Corresponding results for the MuSiC deconvolution pipeline are shown in Fig. S8a. f Heatmap showing the expression of the top
100 differentially expressed genes (DEGs) from PT_7_Maladaptive in 16,267 PT cells from fibrotic mouse kidneys undergoing unilateral ureteric
obstruction (UUO) highlights significant overlap with profibrotic (Profib) and immune phenotype clusters. Top DEGs are highlighted on the right. g Joint
UMAP embedding after integration of all 113,579 kidney cells with the dataset from Kirita et al. (126,464 kidney cells). Labels and colors represent
clustering as in Fig. 1f. Cells from Kirita et al. are labeled in gray. h Cells annotated as PT_7_Maladaptive are colored orange in the joint UMAP embedding.
Note similar projection within the joint embedding space. Cluster labels as in Fig. 1f. i Heatmap showing the expression of the top 100 differentially
expressed genes (DEGs) from PT_7_Maladaptive in 50,159 PT cells from Kirita et al. highlights significant overlap with injured clusters “NewPT1" and
“NewPT2". Top DEGs are highlighted on the right.
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Fig. 4 PT trajectories of adaptive and maladaptive repair. a, b Slingshot-derived trajectories of 1,650 randomly sampled PT cells using Gaussian mixture
modeling (GMM) yielded 5 clusters in 2 trajectories. GMM clusters (@) and treatment groups (b) demonstrated major overlap: Trajectory 1 represented
adaptive repair of acutely injured cells 1 d post-ischemia (GMM4) towards endpoint clusters (GMM1&3) corresponding to control and short IRI 14 d
samples. Trajectory 2 represented maladaptive repair of acutely injured cells (GMM4) towards fibroinflammation (GMM5). ¢ RNA velocity analysis in the
same 1650 PT cells recapitulated similar trajectories. Cells are colored by GMM clusters as in (a). d Steady IRI score increase along trajectory 2. e Heatmap
showing generalized additive modeling (GAM)-derived differentially expressed genes (DEGs) along the 2 PT lineages following IRI. Rows represent DEGs,
columns represent individual PT cells. Color legend at the top corresponds to GMM clusters from (a). The lineage 1 endpoint was exclusively from samples
14 d after short IRI and Controls, demonstrating increased expression of PT differentiation markers (e.g., Slc34al, Acsm2). The lineage 2 endpoint was
exclusively from samples 14 d after long IRl and showed increased inflammatory (e.g., I[1b, Cxcl2, S100a8, and S100a9) and stress marker (e.g., Junb, Fos)
expression. f Heatmap of cell type-specific binarized regulon activity, as inferred by cis-regulatory network analysis using SCENIC. Rows represent regulon
activity (binarized to “on” = black or “off” = white), columns represent individual PT cells. Color legend at the top displays GMM clusters. g Heatmap of PT
subcluster-specific scaled regulon activity. Rows represent regulons, columns represent PT subclusters. h, i Gene expression and regulon activity of
exemplary lineage-specific transcription factors (TFs) governing top specific regulons. h Pseudotime-dependent gene expression along the 2 PT lineages
and corresponding feature plots. i Binarized regulon activity (blue ="on", gray = “off"). Regulon activity and gene expression largely overlapped and
demonstrated lineage-specific patterns. j Gene expression of Cebpb targets, as predicted by motif analysis, showed strong increases of proinflammatory
genes such as I1b and Nirp3 along lineage 2. k tSNE reduction plot of GMM clusters showing good separation of trajectory-inferred clustering. I tSNE

representation of regulon density as a surrogate for stability of regulon states.
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Fig. 5 Increase in pyroptosis and ferroptosis following sustained injury drives inflammation. a Enrichment ratios of top enriched KEGG pathway terms,
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KEGG pathway analysis (Fig. S13 and Supplementary Data-
set 13). Finally, we validated gasdermin D as pyroptosis marker
with in situ hybridization (Fig. 6i) and immunofluorescence
(Fig. 6j), demonstrating indeed presence of Gsdmd mRNA and
GSDMD protein in PT cells of maladapted kidneys.

Cell-cell interaction landscape after short and long ischemia.
Next, we sought to investigate the complex network of cell-cell
communication following severe and moderate IRI (“Methods”).
Control kidneys demonstrated only limited interactions between
immune (mostly T) cells and epithelial, endothelial, or stromal
cells (Fig. S14a). More cell-cell interactions were observed after
IRI and even greater after long ischemia (Fig. S14a—c). Top sig-
nals of ligand-receptor interaction involving PT cells included
typical immune signaling such as ligand Cxcl2 (expressed by
maladaptive PT cells and myeloid cells) to its receptor Cxcr2
(expressed by granulocytes). IlIb and its receptors IlI1r2 and

Adrb2 were expressed not only by myeloid cells but also by
maladaptive PT cells. CcI3 and its receptor Ccrl and II34and its
receptor CsfIr showed similar patterns (Fig. 7a). The maladaptive
PT cluster showed high expression of immune cytokines and
typical myeloid markers, which we validated in an external
dataset®3 (Figs. 7a, S15a-d). In fibrotic kidneys, inflammatory
signaling connections were active in maladaptive PT cells and
myeloid cells (PT-to-immune) as well as among epithelial cells
(maladaptive PT-to-maladaptive PT) (Fig. 7a, b). For example,
while IL1B signaling was active within the immune compartment
at baseline, in long IRI and fibrosis maladaptive PT cells became a
signaling node. Finally, ligand-receptor interactions between
myeloid cells and profibrotic PT increased substantially following
long IRI (Fig. 7b), highlighting the role of profibrotic PT in
attracting myeloid cells.

Intrigued by these results and the high enrichment of immune
cells in our dataset, we then set out to characterize the immune
cell landscape of the kidney following short and long ischemia.
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Subclustering revealed intricate diversity of cell types (Figs. 7c, d,
S16a) with specific enrichment of CD4t T and NK cells in
control, CD8%, Treg/yST, and dendritic cells in adaptively
repaired (IRI short), and Ly6CPM monocytes, and granulocytes
in maladapted (IRI long) kidneys, respectively (Figs. 7e, f, S16b).
A subset of granulocytes (Granul 2) was highly specific to
maladapted kidneys (Figs. 7f, S16¢) and showed strong enrich-
ment of cell death pathways by GO term analysis (Fig. S16d-f).

In summary, long ischemia led to sustained enrichment of
pyroptosis and ferroptosis in PT cells. Profibrotic PT cells
contributed the most to these changes and were likely responsible
for attracting myeloid cells that were enriched in fibrotic kidneys.

Druggability screen identifies pyroptosis and ferroptosis as key
driver pathways for maladaptive repair. To gain further insight
into pathways driving the maladaptive kidney response and to
identify potential candidates for therapeutic interventions, we
queried the LINCS database of drug response patterns for overlap
with our observed maladaptive kidney signature. Drug prototype
ranked lists (PRLs) were calculated for L1000 drug responses as
described recently** and queried for DEGs specific to maladaptive
PT cells using GSEA (Fig. 8a, “Methods”)*>. Top drugs with
positive normalized enrichment scores (NES) for the maladaptive
signature included crizotinib and erlotinib (Figs. 8b, S17a, b).
These drugs have been shown to prevent fibrosis development in
experimental models of kidney disease although both drugs are
known to induce pyroptosis*®#7, which we confirmed by quan-
titative real-time PCR (qPCR) in vitro analyzing primary mouse
renal tubular epithelial cells (Fig. S18a-d, Supplementary Data-
set 14); we also confirmed erlotinib and crizotinib did not induce
ferroptosis via gPCR and live cell imaging of lipid peroxidation
(Fig. S18d, e). Furthermore, leading edge analysis of the top 24
enriched drugs confirmed the strongest drug-induced upregula-
tion to affect IL1B, FCER1G, TYROBP, and CXCL2 (Fig. 8c),
suggesting involvement of pyroptosis.

Having found pyroptosis and ferroptosis as candidate druggable
pathways in the mouse single-cell data, we analyzed human CKD
samples with fibrosis. We examined microdissected human kidney
tubule RNA-seq profiles of n=433 human kidney biopsy
samples*8. Expression of genes associated with pyroptosis (CASPI,
NLRP3) and ferroptosis (ACSL4, CYBB) showed strong and
significant positive correlation with fibrosis (R = 0.66, 0.51, 0.40,
and 0.55) and negative with eGFR (R = —0.41, —0.26, —0.34, and
—0.34) (Fig. 8d). Similar relationships were seen for genes specific
to maladaptive PT injury (Fig. S19a), while relationships were
inverse for successful PT repair genes (Fig. S19b).

In summary, our single-cell analysis highlighted pyroptosis and
ferroptosis in maladaptive PT cells and potential druggable
pathways in maladaptive PT repair.

Pharmacological inhibition of pyroptosis and ferroptosis ame-
liorates maladaptive kidney response and fibrosis after severe
IRI. Finally, we sought to confirm our computational results by
using pharmacological inhibitors of pyroptosis and ferroptosis or
vehicle in our severe IRI mouse model (Fig. 9a). We repeated the
long IRI model and treated mice with VX-765 (pyroptosis inhi-
bitor) and liproxstatin (ferroptosis inhibitor) for 14 d, we then
sacrificed animals and repeated the single-cell analysis. Integration
of inhibitor-treated kidney scRNA-seq samples with our previous
dataset of short and long IRI yielded 133,433 kidney cells after
quality control (Figs. 9b, S20a).

We observed preserved PT cell numbers in the inhibitor-
treated animals (Fig. 9c). Consistent with the notion that
maladaptive PT cells attract immune cells via cytokine secretion,
we observed lower myeloid and immune cell fractions in mice

treated with pyroptosis and ferroptosis inhibitors (Fig. 9d, e). Cell
fractions and densities of inhibitor-treated kidneys resembled
control kidneys (Figs. 9c-e, S20b, c¢) and myeloid and
maladaptive/profibrotic PT cells-driven high IRI scores in fibrotic
kidneys were reduced to control levels by pharmacological
inhibition (Fig. 91, g).

We then aimed to dissect putative driver TFs of the observed
protective drug response by employing trajectory and motif
enrichment analyses in all 47,791 PT cells of this integrated
dataset. We found two trajectories towards adaptive (lineage 1)
and maladaptive repair (lineage 2) (Fig. 9h). Intriguingly, both
lineages were connected by inhibitor-treated cells (Fig. S20d, e)
demonstrating a low IRI score (Fig. S20f). Motif enrichment
analysis confirmed the highest regulon density in this cluster
(Figs. S20g, S21a) and a number of distinctly activated regulons
for clusters along lineages 1 and 2, respectively (Fig. S21b, ¢):
Lineage 1 (adaptive) showed specific enrichment of regulons such
as Esrra, Foxo3, Hnf4a, Maf, Pax2, Ppara, Ppargcla, and Teadl,
important for oxidative phosphorylation, fatty acid oxidation, and
PT differentiation. Lineage 2 (maladaptive) enriched for regulons
Jun, Junb, Jund, Fos, Fosb, Atf3, Atf4, Stat3, Stat5a Irf2, Irf5, Irf8,
Irf9, Runxl, Runx3, Egrl, Cebpa, Cebpb, Cebpd (Fig. S21c),
important for stress, injury, and proinflammatory response as
well as myeloid differentiation.

Finally, following pharmacological inhibition of pyroptosis and
ferroptosis, reduced gene expression of important marker genes
for these pathways (Fig. 9i) resulted in amelioration of functional
and structural AKI (Fig. 9j-1 and Supplementary Dataset 15).
BUN and creatinine were significantly ameliorated in VX-765 vs.
vehicle-treated mice at all timepoints up to 14 d post-ischemia,
whereas liproxstatin only resulted in structural but not functional
amelioration. However, irrespective of kidney function, both VX-
765 and liproxstatin treatment resulted in significant reduction of
fibrosis 14 d post-IRI despite severe ischemia (Fig. 9k-1).

Discussion

Here we present a comprehensive temporal and cell type reso-
lution analysis of adaptive and maladaptive kidney repair. We
identify key cell type-specific regulatory networks driving both
renal adaptive repair and maladaptive/fibrotic repair during the
AKI-to-CKD transition. We show that in PT cells, which are most
susceptible to toxic and hypoxic injury*$, necrotic cell death
pathways such as pyroptosis and ferroptosis demonstrate sus-
tained enrichment and are associated with maladaptive AKI-to-
CKD progression. Finally, leveraging drug response data, we
confirm in vivo that targeting of pyroptosis and ferroptosis
ameliorated maladaptive injury signatures despite severe IRI,
highlighting the druggability of necrotic cell death pathways.

A variety of cell death pathways has been described during
AKI, including apoptosis and regulated necrosis (ferroptosis,
pyroptosis, and necroptosis)**=>1. The data on their role in injury
and repair is controversial’>3. For example, while inhibitor-
based studies indicated a key role of apoptosis in AKI®#%>, it can
also be a beneficial, non-inflammatory form of cell death>3. A key
bottleneck in determining the role of cell death pathways has been
that prior methods have been unable to generate cell type-specific
read-outs. Our comprehensive single-cell resolution analysis of
adaptive and maladaptive IRI fills in a key information gap.
Consistent with previous studies highlighting the importance of
ferroptosis for causing synchronized regulated necrosis in renal
tubules early after AKI°6-%0, we found early changes in ferroptosis
in both short and long AKI models. We observed important
differences, as ferroptosis and pyroptosis were markedly pro-
nounced in the long AKI model. We found genes associated with
pyroptosis, such as Casp1, Casp3, Casp4, 111b, 1118, and Gsdmd, as
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Fig. 8 Druggability screen identifies pyroptosis and ferroptosis as key driver pathways for maladaptive repair. a Experimental setup: Identifying
candidate molecules for drug: Gene expression values were calculated from experiments in the LINCS database and used to select drugs that would up- or
downregulate the genes identified as Maladaptive PT markers. b Gene set enrichment analysis (GSEA) plots of top 2 drug response patterns overlapping
with pre-ranked maladaptive DEGs (“Methods"). € Corresponding leading edge analysis heatmap visualizing expression of core genes enriched in the
respective top 24 drug response patterns overlapping with pre-ranked maladaptive DEGs. //Tb was among the genes upregulated most frequently and the
drugs eliciting 111b upregulation are listed in the corresponding table along with their target and whether they induce pyroptosis or not. d Correlation of
pyroptosis (CASP1, NLRP3) and ferroptosis (ACSL4, CYBB) marker gene expression in microdissected human kidney tubules with fibrosis (top row) and
eGFR (bottom row); error bands represent 95% confidence interval.
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Fig. 9 Pharmacological inhibition of pyroptosis and ferroptosis ameliorates maladaptive kidney response and fibrosis after severe IRI. a Experimental
setup. Male C57BL/6 mice were treated 30 min before and daily after long (30 min) bilateral renal ischemia with vehicle (IRl long), VX-765 (pyroptosis
inhibition), or Liproxstatin (ferroptosis inhibition) for 14 d. Sham-operated animal served as controls; artwork own production and from https://smart.servier.
com, license https://creativecommons.org/licenses/by-sa/3.0/). b UMAP projection of 133,433 cells of n =6 controls, n =6 IRl short, n=6 IRl long, n =1
IRl long+VX765, and n=1 IRl long+Liprox samples passing rigid quality control filtering (nFeatures > 200 and < 3000, mt% < 50, doublet removal) and
after dataset integration with LIGER. ¢, d Fractions of PT (¢) and immune cell (d) clusters stratified by treatment. Statistical significance for comparisons was
derived using differential proportion analysis, with a mean error of 0.1 over 100,000 iterations; p values are given for comparisons between inhibitor and
vehicle-treated IRI long groups. e Highest cell densities in IRl long samples were among PT_7_Maladaptive and myeloid clusters, whereas inhibitor-treated
and control samples showed highest cell densities in healthy PT clusters. f IRl scores were highest in myeloid and PT_7_Maladaptive clusters. g Fractions of
IRI-classified cells were drastically reduced in inhibitor-treated and control samples. h Diffusion map dimensional reduction of Slingshot-derived cell
trajectories of 47,791 PT cells using Gaussian mixture modeling (GMM) yielded 9 clusters in 2 trajectories. Trajectory 1 encompassed mostly IRl short and
control samples, trajectory 2 encompassed long IRl samples. Inhibitor-treated samples were right at the junction between lineages 1 and 2. i Dot plots
showing experimental group-specific expression of genes in PT cells involved in regulated cell death pathways pyroptosis and ferroptosis. Dot size denotes
percentage of cells expressing the marker. Color scale represents average gene expression values. j Functional effects of pyroptosis and ferroptosis inhibition
on long IRI. Blood urea nitrogen (BUN) and creatinine changes (right panel) 1, 3, and 14 d post-IRl; means + SEM; p values are given for multiple t tests
(Benjamini, Krieger, Yekuteli corrected) comparing IRl + VX-765 (n =5) vs. IRl + vehicle (n =11). IRl 4 Liprox (n = 5) vs. IRl + vehicle (n =11) comparisons
were non-significant; n =3 independent experiments, n=5 Sham samples. k Representative light microscopy of Sirius red-stained kidneys; scale

bars =50 um. I Fibrosis quantification from (k); p values are given for one-way ANOVA (Holm-Sidak corrected).
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well as markers for ferroptosis, such as Ptgs2, Chacl, Acsl4,
Slc7all, and Hmox1, to be highly enriched in PT cells from
samples following long IRI compared to all other samples.
Interestingly, apoptosis markers such as Casp8, Bad, Bakl, Nuprl,
and Ppp2rla were similarly enriched in IRI samples irrespective
of the damage degree, when compared to controls. It is important
to note that necroptosis marker enrichment was not particularly
strong in any of the PT cells, indicating that necroptosis might be
important in non-PT cells®!. Our observations are in keeping
with a growing body of evidence that pyroptosis and the NLRP3
inflammasome are intertwined with AKI and fibrogenesis. For
example, it has been shown that pyroptosis was upregulated in
cisplatin®203 and IRI models®2649> and Gsdmd and Caspll-
deficient mice were protected against cisplatin-induced AKI®2,
Others demonstrated that NLRP3 facilitated TGFp/Smad
signaling®®, while Nirp3-deficient mice were protected against
diabetic nephropathy and renal fibrosis®”, highlighting pyroptosis
as a critical pathway promoting both AKI and profibrotic tran-
sition to CKD.

In our analysis, inflammatory cell death was a key nidus for
ensuing inflammation. Maladaptive cells expressed several
inflammatory and immune TFs and a variety of cytokines, such as
Il1b, 1134, and Cxcl2 etc. Cell-cell interaction analysis indicated
that these cytokines play key roles in attracting myeloid cells and
fibroblasts via the maladaptive PT cluster. Indeed, we observed
major changes in immune, specifically myeloid cell fractions in
fibrotic samples. It is important to note that these cytokines
signaled to not only immune cells but other PT cells, likely
maintaining the vicious cycle of maladaptive repair. Myeloid cells
are known to play a key role in fibrosis development and were
shown to be highest 28 d post-IRI in a previous study®3:6,

Our results indicate that single-cell transcriptomics are not
only well-suited to identify changes in cell fraction and cell type-
specific gene expression but can be effectively used for identifying
druggable pathways for intervention. Our analysis highlighted
ferroptosis and pyroptosis as key targetable pathways. Indeed,
treatment of mice with VX765 or liproxstatin protected from
maladaptive repair and fibrosis. It was interesting to note that
while VX765 prevented the acute rise in BUN and creatinine, the
effect of liproxstatin was more pronounced on preventing long-
term structural damage and fibrosis development. These results
indicate that protecting from CKD and fibrosis is more complex
than just looking at biochemical markers of kidney function’®.

An important limitation of our work is that we could not fully
distinguish the targets of VX765 and liproxstatin at the single-cell
level and we cannot fully exclude that some of their impact was
not due to off-target effects, given that interdependencies of the
several necrotic cell death forms have already been
demonstrated®0. Future studies will be needed to elucidate the
individual contributions and potentially intricate inter-
dependencies of necrotic cell death pathways. Our in silico drug
database screen used in vivo experimental data rather than just
gene or pathway predictions. Future studies shall examine these
pathways in a more detailed manner.

Taken together, we demonstrate that maladaptive repair fol-
lowing injury is characterized by an inflammatory profibrotic PT
cell phenotype that secretes large amounts of cytokines and is
responsible for myeloid cell influx and fibrosis. We show that
single-cell analysis can identify druggable pathways for inter-
vention. Finally, we demonstrate that in maladaptive PT cells
ferroptosis and pyroptosis drive immune cell activation and
fibrosis development.

Methods

Renal ischemic reperfusion injury model. Male C57Bl/6] mice were obtained
from Jackson Laboratories (Bar Harbor, ME, stock no. 000664). Animal studies

(protocol #804138) were approved by the Institutional Animal Care and Use
Committee (IACUC) of the University of Pennsylvania. Mice were housed in

a pathogen free environment (12 h dark/light cycle) and fed with standard mouse
diet and water ad libitum. All surgeries were performed by the same investigators
who were blinded to the experimental grouping by using a de-identifying num-
bering scheme. 10-12 wks old mice were anesthetized with isoflurane and placed
on an automatic closed loop temperature control system (Homeothermic Mon-
itoring System, Harvard Apparatus, Holliston, CA). Core body temperature as
measured via rectal probe was maintained at 36.8-37.2 °C throughout the proce-
dure. Kidneys were exposed via dorsal incision. Renal pedicles of both kidneys were
exposed and bilateral clamping was performed with arterial clips to induce bilateral
renal ischemia, which was visually confirmed by color change. Six animals were
subjected to moderate renal ischemia (23 min), whereas another 6 mice were
subjected to severe injury (30 min). Buprenorphine SR (0.1 mg/kg s.c.) was
administered after release of arterial clips and before weaning of anesthesia. Ani-
mals were sacrificed and blood and kidneys were sampled 1, 3, and 14 d post-
ischemia, respectively.

In a second set of experiments, mice were treated with intraperitoneal injection
of inhibitors or vehicle 30 min before as well as every 24 h for 14 d after long IRI
(30 min). In a sham group, renal pedicles were not clamped after bilateral
visualization, and anesthesia was maintained for the identical time. Inhibitors VX-
765 (100 mg/kg) and liproxstatin (10 mg/kg) were dissolved in DMSO and
formulated in sesame oil to final concentrations of 16.67 and 1.67 mg/mL,
respectively, as in previous studies®®”!. The vehicle group received equal amounts
of DMSO.

Blood creatinine and blood urea nitrogen. To estimate kidney function, blood
creatinine and BUN were measured at time points as indicated with VetScan
iSTAT CHEMS + cartridges (Abaxis, Union City, CA).

Histopathological and immunofluorescence analysis. Kidneys samples were
fixed in 10% neutral formalin and paraffin-embedded sections were stained Periodic
acid-Schiff (PAS) and Sirius red. Samples were scored by an experienced pathologist
in a blinded fashion for signs of acute tubular injury. Fibrosis was quantitated in
Sirius red-stained sections using MRI fibrosis tool and Color Deconvolution plugin
for “Image] [https://github.com/MontpellierRessourcesImagerie/imagej_macros_
and_scripts/wiki/MRI_Fibrosis_Tool]”. Ten similarly oriented photos in the same
part of the kidney at the same magnification were studied per biological sample.
Color deconvolution and simple auto-thresholding were applied and the fibrosed
area of the selection was measured and compared to the area of the selection on the
input image.

Immunofluorescence staining was performed after deparaffinization and
antigen retrieval using citrate buffer pH 6.0 with a pressure cooker (PickCell
Laboratories, Agoura Hills, CA). Antibodies were diluted in blocking buffer (TBS
0.1% Tween 20, 0.05% Triton X-100, 5% bovine serum albumin) as follows: anti-
GSDMD (1:100, Santa Cruz, #393656), anti-SLC34A1 (1:100, Novus, #NBP2-
13328), anti-CD11B (1:50, BD, #555386), AF555-conjugated donkey anti-rabbit
(1:1000, LifeSciences, #A31572), AF488-conjugated goat anti-mouse (1:1000,
LifeSciences, #A11029).

Flow cytometry. Mice were perfused with 10 mL PBS prior to organ procurement.
Kidneys were diced and digested in a solution of 1 mg/mL collagenase A (Roche)
and 100 mg/mL DNase (Roche) in complete RPMI for 1h at 37 °C to obtain a
single cell suspension. Cells were homogenized by passing through an 18G needle 5
times and filtered through a 100 um mesh. Cells were then washed with FACS
buffer (1x PBS, 2.5% FBS, 2mM EDTA) before incubating with Fc block (99.5%
FACS buffer, 0.5% normal rat serum, 1 pg/mL 2.4G2 IgG antibody) prior to
staining. Cells were stained with the viability dye Ghost Dye Violet 510 (Tonbo
biosciences, #12-0870) and antibodies used for staining are shown in the Supple-
mentary Table 1. Samples were run on FACSymphony A3 (BD Biosciences) and
analyzed using the FlowJo Software analysis program (TreeStar). Gating strategy is
shown in Fig. S6.

In situ hybridization. In situ hybridization was performed using formalin-fixed
paraffin-embedded tissue samples and the RNAscope® 2.5 HD Duplex Detection
Kit (ACD #322436) with Mm-Gsdmd probe #537601. We followed the manu-
facturer’s original protocol.

Isolation and culture of primary mouse tubular epithelial cells. Primary mouse
tubular epithelial cells were isolated from kidneys of 2-4 wks old C57Bl/6] mice
(Jackson Laboratories, Bar Harbor, ME, stock no. 000664). Cells were grown in
RPMI 1640 supplemented with 10% fetal bovine serum (FBS), 20 ng/mL epithelial
growth factor (Peprotech #AF-100-15), 1x ITS (Gibco #51500-056), and 1%
penicillin-streptomycin (Corning #30-002-CI) at 5% CO, and 37 °C. Prior to drug
treatment, cells were grown for 12 h in media supplemented with 1% FBS. Cells
were then treated for 24 h with different doses of erlotinib, crizotinib, and erastin
(all Cayman Chemical), respectively. Dimethyl sulfoxide (DMSO, Merck) was used
as vehicle control. Lactate dehydrogenase (LDH) release was measured using
CytoTox 96 Non-Radioactive cytotoxicity assay (Promega), cytotoxicity and
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viability were measured by using MultiTox-Fluor Multiplex cytotoxicity assay
(Promega) as per the manufacturer’s instructions.

Live cell imaging. Primary cultured renal tubule cells were incubated with 1.5 pM
BODIPY™ 581/591 C11 (Thermo Fisher #D3861) for 30 min at 5% CO, and 37 °C.
After staining with Hoechst 33342 at a final concentration of 1 pug/mL in PBS, cells
were imaged directly with a Keyence fluorescence microscope.

qPCR. RNA was isolated from cells using Trizol (Invitrogen). 2 ug RNA was
reverse-transcribed using cDNA Reverse Transcription Kit (Applied Biosystems,
#4368813), and gPCR was run on a ViiA 7 System (Life Technologies) using SYBR
Green Master Mix (Applied Biosystems, #4367659) and gene-specific primers. For
quantitative analysis, samples were normalized to glyceraldehyde-3-phosphate
dehydrogenase (Gapdh) with the AACt method. Primer sequences are listed in
Supplementary Dataset 16.

Western blot. Nearly 15 mg of total kidney tissue was homogenized in SDS lysis
buffer (Cell Signaling Technology, CST, #7722), sonicated, and heated at 95 °C.
Lysates were cleared by centrifuging (14,000 x g at 4 °C for 10 min). 10 pL of total
lysate was loaded onto 11% SDS-PAGE and subjected to electrophoresis (100 V,
room temperature). Proteins were transferred onto PVDF membranes at 100 V on
ice for 1 h. Membranes were incubated in 3% non-fat skimmed milk solution
prepared in Tris-buffered saline containing Tween-20 (TBST) for 1h at room
temperature on an orbital rocker. Membranes were probed with anti-GSDMD
(Ab209845, abcam, dilution 1:1000) and anti-N-GSDMD (#36425S, CST, dilution
1:1000) antibodies at 4 °C over night. After primary antibody incubation blots were
washed three times with TBST, HRP-conjugated secondary antibodies (#7074,
CST, dilution 1:2000) were probed for 1 h at room temperature prepared in TBST.
Finally, blots were washed with TBST for 3 min each at room temperature and
developed using ECL (SuperSignal™ West Femto Maximum Sensitivity Substrate,
#34096, Thermo Fisher Scientific) in Li-COR imager (Odyssey® XF), Image Studio
software. Relative protein levels were quantified using Image] software.

Kidney bulk RNA-seq. Total RNA was isolated using RNeasy mini kit (Qiagen).
Sequencing libraries were constructed using the Illumina TruSeq RNA Preparation
Kit. High-throughput sequencing was performed using Illumina HiSeq4000 with
100 bp single-end according to the manufacturer’s instruction.

Kidney bulk RNA-seq data analysis

Quality control, alignment, differential expression analysis. Adaptor and lower-
quality bases were trimmed with Trim-galore. Reads were aligned to the Gencode
mouse genome (GRCm38) using STAR. Gene and isoform expression levels (TPM)
were estimated using RSEM. DEGs between control and disease groups were
identified using DESeq2. To examine the enrichment of the DEGs in single cell
clusters, a z score of normalized expression value was first obtained for every single
cell. Then, we calculated the mean z scores for individual cells in the same cluster,
resulting in 30 values for each gene. The z scores were visualized by heatmap
showing the enrichment patterns of the genes across the cell types.

Deconvolution. Bulk RNA-seq deconvolution was performed using two indepen-
dent methods, Multi-subject Single Cell deconvolution (MuSiC) and
BisqueRNA7273, MuSiC weights genes showing cross-subject and cross-cell con-
sistency, enabling the transfer of cell type-specific gene expression information
from one dataset to another. After inputting bulk and scRNA-seq data, bulk cell
type proportions were estimated using function music_prop. BisqueRNA captures
relative abundances of a cell type across individuals. Note that these abundances
are not proportions, so they cannot be compared between different cell types.
Function ReferenceBasedDecomposition with subcommands markers = NULL,
use.overlap = F was used.

Preparation of single-cell suspension. Euthanized mice were perfused with
chilled 1x PBS via the left ventricle. Kidneys were harvested, minced into
approximately 1 mm? cubes and digested using Multi Tissue dissociation kit
(Miltenyi, 130-110-201). The tissue was homogenized using 21G and 26.5G syr-
inges. Up to 0.25 g of the tissue was digested with 50 pL of Enzyme D, 25 uL of
Enzyme R, and 6.75 pL of Enzyme A in 1 mL of RPMI and incubated for 30 min at
37 °C. Reaction was deactivated by 10% FBS. The solution was then passed through
a 40 um cell strainer. After centrifugation at 400 x g for 5 min, cell pellet was
incubated with 1 mL of RBC lysis buffer on ice for 3 min. Cell number and viability
were analyzed using Countess AutoCounter (Invitrogen, C10227). This method
generated single-cell suspensions with > 80% viability.

Single-cell RNA-seq. 10,000 cells were loaded into the Chromium Controller (10X
Genomics, PN-120223) on a Chromium Single Cell B Chip (10X Genomics, PN-
120262) and processed to generate single-cell gel beads in the emulsion (GEM)
according to the manufacturer’s protocol (10X Genomics, CG000183). Libraries
were generated using Chromium Single Cell 3’ Reagent Kits v3 (10X Genomics,

PN-1000092) and Chromium i7 Multiplex Kit (10X Genomics, PN-120262)
according to the manufacturer’s manual. Quality control for constructed library
was performed by Agilent Bioanalyzer High Sensitivity DNA kit (Agilent Tech-
nologies, 5067-4626) for qualitative analysis. Quantification analysis was performed
by Illumina Library Quantification Kit (KAPA Biosystems, KK4824). The library
was sequenced on Illumina HiSeq 4000 system with 2 x 150 paired-end kits using
the following read length: 28 bp Read1 for cell barcode and UMI, 8 bp 17 index for
sample index, and 91 bp Read2 for transcript.

Single-cell RNA-seq data analysis

Alignment and quality control. Raw fastq files were aligned to the mm10 (Ensembl
GRCm38.93) reference genome and quantified using CellRanger. Seurat was used
for data quality control, preprocessing, and dimensional reduction analysis. After
gene-cell data matrix generation of n = 12 IRI samples and n = 6 control samples,
all 18 matrices were merged and poor-quality cells with < 200 or > 3000 expressed
genes and mitochondrial gene percentages > 50 (to take into account high mito-

chondrial content in proximal tubule cells) were excluded. Remaining barcodes of
high-quality cells were exported.

Batch integration. 10X filtered output matrices of all 18 batches were merged and
subset to the barcodes of cells above and subjected to batch integration using
LIGER (Linked Inference of Genomic Experimental Relationships) package. In
short, LIGER identifies shared and dataset-specific factors through integrative non-
negative matrix factorization (iNMF). After normalization by number of unique
molecular identifiers (UMIs), gene expression was scaled but not centered because
NMF requires non-negative values. Function optimizeALS was used with

kappa = 20 and lambda = 5, followed by quantile normalization using function
quantile_norm as well as joint clustering with louvainCluster with a resolution of
0.25. For dimensionality reduction, dimensions 1:ncol(object@H.norm), perplex-
ity = 30 and theta = 0.5 were used as per default settings for visualization in UMAP
space. Function ligerToSeurat was used to export the results back to Seurat.

Ambient RNA quantification. As in droplet-based scRNA-seq experiments there is
always a certain amount of background mRNAs present that get distributed into
droplets and sequenced along with cells. In order to quantify the net effect of
ambient RNA contamination, we used R package SoupX’. Function autoEstCount
was used to estimate the contamination fraction in PO and adult batches separately.
We visualized the change in expression due to soup correction in UMAP space.
Function adjustCounts was used to correct the count expression matrices for
downstream processing. We then used the corrected matrices and reran the whole
Seurat pipeline with the same parameters. The average expression of genes per
cluster were used for Pearson correlation coefficient analysis to compare between
matrices with and without ambient RNA correction. As results with and without
ambient RNA were similar, results without ambient RNA correction are shown
throughout the manuscript.

Removal of doublet-like cells. Doublet-like cells were identified using package
DoubletFinder’>. Assuming no ground truth in order to facilitate an unbiased
approach, pK was identified using paramSweep_v3 function with PCs = 1:10.
Homotypic doublet proportion was estimated with function modelHomotypic using
above clustering information after LIGER integration as annotations. Finally,
function doubletFinder_v3 was run with pN = 0.25, pK, and nExp as identified by
the functions above. After excluding 9394 cells that were identified to likely be
doublets, 113,579 singlet cells remained.

Identification of marker genes and differentially expressed genes. The whole pipeline
in Seurat and LIGER was run again on the remaining 113,579 high quality singlet
cells to produce the final dataset used for all downstream analyses. Differentially
expressed genes in cell clusters were identified in Seurat using FindAllMarkers
function with parameters test.use = MAST, min.pct = 0.05 and logfc.threshold =
0.2 and a list of marker genes?! was used for manual annotation of cell types to the
18 identified clusters in the final dataset.

Proximal tubule cell subclustering analysis. The whole Seurat and LIGER pipeline
was again repeated with only those barcodes of cells annotated as PT cells. The
same settings were used for the pipeline as stated above, yielding 11 PT subclusters.

Immune cell subclustering analysis. Similarly, all cells belonging to clusters anno-
tated Granul_1, Granul_2, Mono_1, Mono_2, Macro, T cell_1, T cell_2, and B cell
were subjected to subclustering analysis, yielding 17 immune cell subclusters.

Cell cycle analysis and IRI scoring. Cell cycle scoring was performed with Seurat
package using function CellCycleScoring with cell cycle gene sets provided by
Kowalczyk et al.7%. To keep biological information intact, cell cycle genes were not
regressed out from the dataset. Similarly, we customized the same function to
create an IRI score using two gene sets for cells from Control and IRI samples,
respectively. Gene sets were derived by running differential gene expression ana-
lysis between Control and IRI samples using FindAllMarkers function in Seurat.
The 100 most specific DEGs for both conditions were chosen and subjected to
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Pearson correlation analysis, pruning genes with poor auto- or anticorrelation,
thereby ensuring high intra-group correlation and high inter-group anticorrelation.
The underlying scoring strategy enabling us to classify cells into either Control, IRI
or neither was described by Tirosh et al.””.

scRNA-seq trajectory analysis

Slingshot: To construct single cell pseudotime trajectories of PT cells and to
identify genes whose expression changed as the cells underwent transition, package
Slingshot”8 was applied to a random sample of PT cells consisting of an evenly
distributed 150 cells per PT subcluster, resulting in a total of 1650 cells. First, genes
were filtered for cell type markers with at least 3 reads in at least 10 cells. Next,
counts were normalized and dimensionality was reduced using diffusion maps with
package destiny’. Then, cells were clustered with Gaussian mixture modeling
(GMM) making use of package mclust®(. Slingshot functions getLineages and
getCurves were used to calculate trajectories. In order to identify temporally dif-
ferentially expressed genes, generalized additive modeling (GAM) was applied with
a locally estimated scatterplot smoothing (LOESS) term for pseudotime. The top
genes were picked based on p value and their expression over pseudotime was
visualized in a heatmap.

Monocle2 & Monocle3: Slingshot-derived pseudotime trajectories were validated
with Monocle28! and Monocle382 packages using the same cells as input. Genes for
ordering cells were selected if they were expressed in > 10 cells, their mean
expression value was > 0.05 and dispersion empirical value was > 2. Highly variable
genes along pseudotime were identified using differentialGeneTest function of
Monocle2 with g < 0.01. Individual branches were analyzed using BEAM and
plot_genes_branched_heatmap functions. In Monocle3 cells were re-clustered using
a resolution of 3e~3 with k-nearest neighbor (kNN) k = 29. The trajectory was
produced using default parameters of function learn_graph. Cluster centers of
samples harvested 1d after ischemia were set as root node before ordering cells
along pseudotime with function order_cells.

TradeSeq: For further analysis of gene expression along trajectories, package tra-
deSeq was used downstream of slingshot. First, a negative binomial model was
fitted after an optimal number of knots was estimated. Next, general additive
models were fitted with function fitGAM using nknots = 5, as determined by
evaluateK function. Gene expression was projected onto coordinates in a two-
dimensional space, as provided by Slingshot, using function plotGeneCount.
Function plotSmoothers was used to visualize gene expression along the 2 PT
trajectories over pseudotime.

RNA velocity: To calculate RNA velocity, Python-based Velocyto command-line
tool as well as Velocyto.R package were used as instructed®3. We used Velocyto to
calculate the single-cell trajectory/directionality using spliced and unspliced reads.

From loom files produced by the command-line tool, we subset the exact same cells
that were previously selected randomly for Slingshot trajectory analysis. This subset
was loaded into R using the SeuratWrappers package. RNA velocity was estimated
using gene-relative model with k-nearest neighbor (kNN) cell pooling (k = 25). The
parameter n was set at 200 when visualizing RNA velocity on the UMAP embedding.

Differential proportion analysis. Changes in cell population proportions across
groups were analyzed as described previously®4. Briefly, to analyze whether
observed changes in proportions of cell populations are greater than expected by
chance, a permutation-based statistical test was used. We used the original source
code from the authors, so that both technical variation within the experimental
technique (e.g., absolute cell numbers within the experiment, cell-type capture bias)
and variation due to in silico analysis (e.g., cluster assignment accuracy) were
considered. After creating a proportion table of clusters per phenotype/group, the
difference in cluster proportion was compared with a null distribution, which was
constructed by randomly permutating random subsamples of cluster labels across a
random proportion of total cells. This was done 100,000 times and the observed
distribution was then compared with the null distribution, from which the final p
values were obtained. As suggested in the original paper, we set the w parameter to
0.1, so that lower values would trend toward a stricter test (fewer significant hits),
and higher values toward higher numbers of significant hits.

Gene regulatory network inference. To identify TFs and characterize cell states, we
employed cis-regulatory analysis using the R package SCENIC3, which infers the
gene regulatory network based on co-expression and DNA motif analysis. The
network activity is then analyzed in each cell to identify recurrent cellular states. In
short, TFs were identified using GENIE3 and compiled into modules (regulons),
which were subsequently subjected to cis-regulatory motif analysis using RcisTarget
with two gene-motif rankings: 10 kb around the TSS and 500 bp upstream. Regulon
activity in every cell was then scored using AUCell. Finally, binarized regulon
activity was projected onto Slingshot-created UMAP trajectories.

Weighted gene coexpression network analysis (WGCNA). We applied WGCNA to
our scRNA-seq dataset using the R package WGCNA, as described previously>8°.
First, to circumvent the sparsity of single-cell data we constructed metacells with a

bootstrapped aggregation process to single-cell transcriptomes and pooled cells
within the same cell type and experimental group to retain these metadata for
WGCNA. We then created a similarity matrix, in which the similarity between
genes reflects the sign of the correlation of their expression profiles. To emphasize
strong correlations and reduce the emphasis of weak correlations on an exponential
scale, we raised the signed similarity matrix to power p. The resulting adjacency
matrix was transformed into a topological overlap matrix. Modules were defined
using the following specific module-cutting parameters: module size = 50 genes,
deepSplit Score = 4, threshold of correlation = 0.2. Modules with a correlation of
> 0.8 were merged. The first principal component of the module, the module
eigengene (ME), was used to correlate with experimental group. Hub genes were
defined using intra-modular connectivity (kME) parameters of the WGCNA
package.

Ligand-receptor interactions. To assess cellular crosstalk between different cell
types, we used the CellPhoneDB repository to infer cell-cell communication net-
works from single-cell transcriptome data®”. We used the Python package Cell-
PhoneDB with database v2.0.0 to predict cell type-specific ligand-receptor
interactions as per the authors’ instructions. Only receptors and ligands expressed
in more than 5% of the cells in the specific cluster were considered. 1000 iterations
of permutation test were conducted and p values were corrected with FDR
methods. We kept only statistically significant means of interaction partners from
the CellPhoneDB output, serving as a proxy for mean expression of both ligand
and receptor of a given predicted connection. Connections were visualized in
Circos plots after quantification using Circos Table Viewer®s.

Gene set enrichment analysis (GSEA) of LINCS drug database. To inform about
potential treatment candidates and driver pathways of the observed maladaptive
kidney response signature, we performed GSEA on drug PRLs derived from the
Library of Integrated Network-based Cellular Signatures (LINCS, http://www.
lincsproject.org/) drug database, which catalogs transcriptional responses following
treatment with small molecules, as described recently*4. In short, a weight average
fold change difference between treated and untreated conditions representing the
drug effect was calculated for each gene, and genes were ranked according to their
differential expression. Ranked lists for each drug in L1000 Phase 1 and Phase 2
experiments were merged according to the PRL methodology*’, creating drug PRLs
representing consensus transcriptional drug response patterns. We then queried
PRLs for the maladaptive gene signature derived from PT subcluster DEG analysis,
using GSEA® to find drugs with positive normalized enrichment scores (NES),
indicating upregulation of the maladaptive signature, and negative NES, indicating
downregulation of the maladaptive signature. Bonferroni-corrected p values < 0.05
were used.

Statistics & reproducibility. Data are expressed as means + SEM unless otherwise
stated. Statistical analyses are indicated in the respective “Methods” section and
figure legends. Appropriate parametric or non-parametric tests were performed as
per normality distribution. P < 0.05 was considered to be statistically significant. No
statistical method was used to predetermine sample size. No data were excluded
from the analyses.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

Raw and metadata are available at GEO accession number “GSE180420”. Processed data
are available via an “interactive website [www.susztaklab.com/ischemia_reperfusion_
injury/scRNA/]”. All other relevant data supporting the key findings of this study are
available within the article and its Supplementary Information files or from the
corresponding author upon reasonable request.

Code availability
Codes to reproduce all parts of the analysis are provided via a “GitHub repository
[https://github.com/ms-balzer/IRI_adaptive_maladaptive_kidney_regeneration]”?.
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