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Abstract 

The introduction of machine learning to small molecule research– an inherently multidisciplinary field in which 
chemists and data scientists combine their expertise and collaborate - has been vital to making screening processes 
more efficient. In recent years, numerous models that predict pharmacokinetic properties or bioactivity have been 
published, and these are used on a daily basis by chemists to make decisions and prioritize ideas. The emerging 
field of explainable artificial intelligence is opening up new possibilities for understanding the reasoning that under-
lies a model. In small molecule research, this means relating contributions of substructures of compounds to their 
predicted properties, which in turn also allows the areas of the compounds that have the greatest influence on the 
outcome to be identified. However, there is no interactive visualization tool that facilitates such interdisciplinary col-
laborations towards interpretability of machine learning models for small molecules. To fill this gap, we present CIME 
(ChemInformatics Model Explorer), an interactive web-based system that allows users to inspect chemical data sets, 
visualize model explanations, compare interpretability techniques, and explore subgroups of compounds. The tool is 
model-agnostic and can be run on a server or a workstation.
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Introduction
In small molecule and drug discovery research, machine 
learning (ML) and exploratory data analysis techniques 
are crucial to making screening processes more effi-
cient and performing quantitative structure-activity 
relationship (QSAR) studies. Scientists investigate sets 
of thousands of chemical compounds and analyze their 
properties, similarities, and other information using 
cheminformatics tools. In silico experiments are already 

part of life science research in general and have proved 
their value in drug discovery and design [1–3].

Predictive models enable prioritization of compounds 
with otherwise unknown properties and facilitate cost-
effective discovery of promising candidate compounds. 
Further, data scientists can use explainable artificial intel-
ligence (XAI) methods to gain insights into the reason-
ing underlying the models and identify chemical regions 
of interest. XAI techniques aim to unveil information 
hidden in ML models that are not readily interpretable. 
Making this information understandable to humans 
requires visualization techniques [4].

In chemistry, a visual approach to XAI involves visu-
alizing atomic contributions to specific properties pre-
dicted by a model  [5]. Figure 1 illustrates the process of 
generating explainability and overlaying a molecular 
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structure with the information gained. Some atoms are 
highlighted, indicating that the model considers them 
important, which means that these atoms contribute 
more to the prediction than others. Such XAI visualiza-
tions can facilitate both the inclusion of domain experts 
in the development cycle and interaction with other 
experts and non-experts alike, for instance, when models 
are to be explained to regulatory agencies or when aim-
ing to build trust in the results.

To support the analysis of large sets of compounds, 
cheminformatics tools allow users to explore the data 
by means of exploratory visualization techniques, for 
example by projecting a high-dimensional space into a 
low-dimensional space and enabling interactivity. One 
common desired outcome of multidimensional pro-
jection techniques is to preserve the relative distances 
between the samples as much as possible, either globally 
or in neighborhoods of similar entities  [6–14]. By rep-
resenting compounds in a two-dimensional space, the 
chemical space can be explored, and similar compounds 
can be identified [15–20].

Visualization-based cheminformatics tools are crucial 
in complex scenarios where data scientists and chem-
ists analyze large sets of compounds and the output of 
AI models and XAI methods. Many goals in this context 
(e.g., to improve model accuracy) can be achieved by exe-
cuting a series of abstract analytical tasks that will lead 
to data-driven decision-making. Each task can be carried 
out with the support of a variety of technologies, such as 
specific human-interaction and visualization techniques. 
Based on the experience acquired in our collaborations 
with data scientists and chemists, we identified three 
main tasks (Explore, Understand, and Compare) that help 
them to achieve their goals. For each task, we explain why 
it is relevant, give a few examples of how it can be per-
formed, and relate it to use cases defined in this article in 
which it is a key element of the analysis:

• Task Explore: Exploring chemical space Why: to 
gain an overview of the entire dataset and explore 
compound neighborhoods; to select elements of 
interest, such as clusters and compounds; to find 
better ways of representing the chemical space, such 
as fingerprints, chemical properties, and the latent 
space of chemical models  [21]. How: (a) users inter-
act with an overview representation of the data and 
select interesting compounds for detailed inspection; 
(b) the dataset contains various types of compound 
representations, and users use each type to create 
projections that provide multiple perspectives on the 
chemical space. Use cases: 1, 2, and 3.

• Task Understand: Understanding model behavior 
Why: to understand why a model returns a particular 
prediction; to identify patterns correlated to good/
poor predictions; to increase trust in the reported 
results; to check whether the model’s reasoning 
matches expert knowledge. How: (a) users select 
groups of compounds and compare the explana-
tions extracted from a model; (b) explanations from a 
model are mapped to the various parts of a molecular 
structure, and users choose to validate whether the 
highlighted regions do, in fact, contribute to solubil-
ity. Use case: 1.

• Task Compare: Comparing models and XAI meth‑
ods Why: to select or discard a model based on pre-
diction performance, interpretability, or a trade-off 
between the two; to identify better XAI methods. 
How: (a) users have two models with similar accu-
racy and compare their explanations to select that 
which is more consistent with chemical knowledge; 
(b) users compare the predictions of two models 
and identify specific regions of the chemical space in 
which both models perform poorly; (c) users com-
pare explanations from two XAI methods and iden-
tify agreements and disagreements. Use case: 2.

Fig. 1 Data scientists create models that predict molecular properties and XAI reveals logic connecting substructures to the prediction: (left) a 
compound of interest is selected for inspection; (center) contributions for the predicted property of interest are calculated with an XAI method that 
delivers one score for each atom; (right) overlaying a molecular structure with those atom-scores
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Tools with exploratory functionalities designed for 
chemical spaces   [19, 22–26] and molecular-represen-
tation methods [27–29] can be used for the purpose of 
Task Explore; tools that were not designed for chemical 
data, can also be used, but may limit the analysis.

Task Understand is addressed by a few 
approaches  [30–32] that utilize various XAI methods 
to highlight contributions of compound substructures. 
In general, data scientists write scripts that visually 
map the explanations onto molecular diagrams, using 
functionalities from programming toolkits (e.g., a 
function from RDKit originally created for similar-
ity mapping  [33]). The resulting images are explored 
individually or in small portions in a non-interactive 
fashion.

Task Compare is a broader task, and many tools [34–
38] help data scientists to find (dis-)similarities in pre-
diction behavior, performance, training behavior, and 
interpretability of models to choose the most suitable 
model. The capabilities of these tools include compari-
son of models using performance metrics, model inter-
pretability, or other architecture-specific measures. 
However, we did not find any interactive tool designed 
for chemistry tasks that combine visualization of per-
formance metrics and model interpretability. Data 
scientists can use programming toolkits  [39, 40] with 
analytical and visualization features to accomplish Task 
Compare. However, this approach is limited because 
interactive and coordinated visualizations cannot be 
promptly used out of the box.

In conclusion, while many of the defined tasks can—
to some extent—be addressed by combining available 
tools, none enables integrated and interactive in-depth 
analysis of AI models and XAI methods. To close this 
gap, we propose CIME (ChemInformatics Model 
Explorer), an interactive web-based system that allows 
users to inspect model explanations, analyze models, 
and screen sets of compounds. CIME enables users to 
visualize explanations overlaid on chemical structures 
and to explore the chemical space through multidi-
mensional projection. Our goal is to facilitate the com-
munication between data scientists and chemists and 
to provide ways to compare and analyze chemical ML 
models by means of visualization of AI explanations 
and exploratory visualization techniques.

In the following two sections, we provide details 
about the implementation of CIME and demonstrate 
its use. In the Implementation section, we refer to Task 
Explore, Task Understand, and Task Compare whenever 
a feature of CIME is directly associated. In the Results 
section, we refer to the tasks by linking them to use 
cases in which their core ideas are achieved.

Implementation
CIME is an extension of the ProjectionPathExplorer by 
Hinterreither et  al  [41]. The front-end of the applica-
tion is a website written in TypeScript, and it uses the 
React framework [42]. Although the ProjectionPathEx-
plorer web-application is standalone by default, provid-
ing all CIME-related features requires a back-end. We 
therefore developed a server-side Python application 
that uses the bottle framework [43] and can be accessed 
via a web-API (Application Programming Interface).

Figure  2 gives an overview of the interactions 
between users, front-end, and back-end.

Since chemists are familiar with Structure Data For-
mat (SDF) files, and the format provides a clear struc-
ture of additional (atom-level) properties, we use them 
to define datasets of chemical compounds. The front-
end, however, can only handle files in table format. The 
back-end is used to convert the provided SDF into the 
format required for the web application.

Furthermore, all features related to chemical com-
pounds (substructure calculations, structure rendering, 
etc.) are accessed over the API by the front-end.

CIME is an open-source project hosted at github. 
com/ jku- vds- lab/ cime. In the following subsections, 
we provide more details about the implementation of 
CIME.

Data processing
The following subsections detail how a suitable data-
set is generated and how this dataset is transformed 
and augmented in the back-end, and describes various 
approaches to rendering chemical compounds.

SDF generation
To get started with the tool, users must generate a suit-
able SDF file that contains a set of chemical compounds 
of interest. For each compound, additional informa-
tion can be provided, such as its molecular fingerprint, 
molecular properties and predictions, or coordinates 
of a predefined projection. If users do not provide fin-
gerprint data, the system will calculate 256-bit Morgan 
Fingerprints [44] by default. For the fingerprint calcula-
tion, we fix the radius to 5 and do not use count values. 
Furthermore, users can specify attribution scores at 
the atom-level that were generated by an XAI method, 
or any other method, for instance, the Gasteiger 
Charges  [45]. An example of how to create such a file 
can be found at github. com/ jku- vds- lab/ cime/ tree/ 
main/ Examp les. The SDF file is highly customizable to 
user needs (i.e., users can add any information of inter-
est) and it is model-agnostic.

https://github.com/jku-vds-lab/cime
https://github.com/jku-vds-lab/cime
https://github.com/jku-vds-lab/cime/tree/main/Examples
https://github.com/jku-vds-lab/cime/tree/main/Examples
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Data transformation
In the back-end, we use the RDKit Python library  [40] 
to load the SDF file and iterate over the compounds 
in the dataset. For each compound, we derive its 
SMILES  [46] string and extract its compound-level 
properties from the dataset (i.e., scalars or other values 
that are specified for the whole compound) to bring it 
in a tabular format. Properties that have a vector for-
mat, such as atom-level properties (i.e., properties that 
have one value for each atom in the compound) cannot 
be transformed into table format, since the vectors can 
have different lengths for each compound. To solve this 
problem, we serialize this kind of data and store it in 
a single additional column for later use. Depending on 
the size of the dataset, the initial data preparation can 
be time-consuming, as in many cases numerous com-
pounds must be processed. However, once the dataset 
has been prepared, it is stored on the server and can be 
reused in later sessions.

Data augmentation
When the front-end requests a dataset from the back-
end, the data is simplified and returned as a table. First, 

we remove the serialized column that contains all the 
information about atom-level properties, since it is not 
needed initially by the front-end. The column names of 
the dataset are then changed such that they include addi-
tional information that can be utilized in the front-end 
(e.g., specific columns—for example, those containing 
fingerprint data—belong together, but are spread across 
the whole table). Additionally, the tool checks whether 
fingerprints are provided in the dataset, and automati-
cally adds default fingerprints otherwise.

Compound rendering
After dataset processing, one of the main tasks of the 
back-end is the rendering of two-dimensional compound 
structures. The back-end API provides a function that 
takes a SMILES string as input and returns an image of 
the two-dimensional structure of the compound. If a list 
of SMILES strings is provided, there are several ways of 
processing them:

• List of images: For each SMILES string in the list, we 
return a two-dimensional image of the compound 
structure.

Fig. 2 Workflow illustrating how users interact with the tool (solid line) and how the front-end web application communicates with the back-end 
server (dashed line). Creation of the SDF files is done externally (dotted box)
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• Single image: The maximum common substructure 
(MCS) of all compounds is calculated. An image of 
the two-dimensional MCS is returned.

• List of images with MCS highlight: The MCS of all 
compounds is calculated, and a list of images is 
returned with the MCS on the two-dimensional 
structure of each compound highlighted.

• List of images with contribution highlight: For each 
compound in the list, we retrieve the correspond-
ing data point from the stored table. We extract the 
serialized column that contains the atom-level infor-
mation and return images of the two-dimensional 
structure of the compounds with the attributions 
color-coded in green (positive score) and magenta 
(negative score). The magnitude of the value is dis-
played with contour lines.

The rendering of compounds and most compound calcu-
lations are done with the help of RDKit functions.

Clustering
The back-end has a function that calculates clusters of 
the provided data using HDBSCAN  [47]. The API call 
takes as input a list of x and y coordinates, and custom 
hyperparameters.

User interface
Figure  3 shows the CIME front-end composed of four 
linked views: (1) the Projection View, which shows a scat-
terplot with the projected compounds, (2) the Table View 
for viewing and filtering information about the com-
pounds, (3) the Hover View, which displays compound 
structures, and (4) the Structures View, which displays 
selected compounds and attributions. The following 
subsections provide details about these views and how 
users can interact with them. Figure 2 illustrates CIME’s 
workflow and how the front-end communicates with the 
back-end.

Projection view
Once users have uploaded a file, data points are shown 
in a two-dimensional scatterplot with random initial 
positions—if x and y coordinates are not explicitly pro-
vided—and can be projected using Uniform Manifold 
Approximation and Projection (UMAP, [48]) as dimen-
sionality reduction (DR) technique. Users can choose the 
attributes that are to be used for projection and whether 
they are to be standardized to have a zero mean and unit 
variance. Fingerprints, latent space representations from 
neural networks, or molecular descriptors are good ini-
tial choices for the projection. An example of a projected 
dataset is shown in Fig. 3 “Projection View”. Projections 

Fig. 3 User interface of the CIME web application
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can be stored, and users can switch between stored pro-
jections to compare different representations of the data 
(Task Explore).

To enable easier user interaction with the points in 
the scatterplot, the system offers a function for group-
ing neighboring points. Users can customize visual 
encodings of the points in the scatterplot. For example, 
the points can be sized by molecular weight or colored 
by group, as shown in the “Projection View” in Fig.  3. 
Grouping and interactively changing the visual encod-
ing of data points help users to explore patterns and 
find clusters in the data (Task Explore). Using an encod-
ing to visualize model performance metrics allows users 
to identify regions of the projection related to specific 
aspects of the model (Task Understand). For example, 
if dark colors represent inaccurate prediction, users can 
quickly identify groups of dark compounds, analyze them 
and check whether there are patterns that correlate to the 
inaccurate predictions.

Table view
By default, the data is projected to two dimensions and 
displayed in a scatterplot. To show all details of the origi-
nal data, we include the well-established LineUp tech-
nique  [49]. This additional view—which can be opened 
on demand — facilitates interactive filtering and explora-
tion of the chemical space (Task Explore) and compari-
son of multiple models by various performance metrics 
(Task Compare). Users can filter the table by providing 
the SMILES string of a compound substructure, the back-
end calculates whether the substructure is included in 
each of the compounds. The interactive table also allows 
users to group compounds and show summary visualiza-
tions of the data, as illustrated in Fig. 3 “Table View”. For 
the compound structure, the summary visualization is 
the maximum common substructure of the compounds.

Hover view
Users can hover over points in the scatterplot or rows in 
the LineUp table to show the 2D structure of the corre-
sponding compound in a separate view, as illustrated in 
Fig.  3 “Hover View”. This feature helps users to quickly 
understand the nature of the compound (Task Explore).

Structures view
Selection of several data points prompts the tool to open 
a side view that shows a list of the corresponding chemi-
cal structures. The structures in this list highlight the 
maximum common substructure of all selected com-
pounds and can also be aligned according to this sub-
structure such that differences and similarities are better 
visible to users. In this view, users can choose from a list 
of attribution scores if they previously defined them in 

the SDF file. Analyzing model explanations helps users to 
better understand a model’s behavior (Task Understand). 
For the same compound, users can compare different 
attributions by means of additional views that are shown 
alongside each other. This can be helpful, for example, 
in comparing the explanations of multiple models (Task 
Compare), of different properties (Task Understand), or 
of different explanations retrieved from the same model 
using different methods. Further, users can manually fil-
ter the initial compound list to focus on the most inter-
esting compounds. An example of the “Structures View” 
is shown in Fig. 3.

Results
To give an idea of how to utilize CIME, we describe three 
use cases from authors of this paper, who are data scien-
tists and computational chemists:

• Use case 1: Visualizing attributions to free hydration 
energy predictions using SHAP values.

• Use case 2: Comparing the attributions of models 
trained on a lipophilicity dataset.

• Use case 3: Comparing the latent space of a trained 
model to a fingerprint representation.

Use case 1: visualizing attributions to free hydration 
energy predictions using SHAP values
In this use case, we explored the predictions of a model 
that was trained on the hydration free energy of a set of 
compounds. Hydration energy is one component in the 
quantitative analysis of solvation. It is a particular spe-
cial case of water and describes the amount of energy 
released when one mole of ions is covered by water mol-
ecules. If the hydration energy is greater than the lattice 
energy, then the enthalpy of solution is negative (heat is 
released), otherwise it is positive (heat is absorbed). The 
more negative the hydration free energy, the more solu-
ble in water the compound. Hydration free energy is an 
important physicochemical property to assess properties 
such as the bioavailability of small molecules.

With the goal of exploring the hydration free energy of 
compounds, we downloaded the Free Solvation Database 
(FreeSolv) dataset [50] which has already been used as a 
benchmark set in the past  [51]. It consists of 642 com-
pounds in the latest version along with their measured 
and calculated hydration free energy values. We then 
trained a CatBoost multiregression gradient-boosted 
tree model [52] to predict these variables. The features to 
train the model were the Morgan fingerprint count val-
ues  [44] combined with MACCS keys  [53]. The model 
performed well with an RMSE value of 1.03 as estimated 



Page 7 of 14Humer et al. Journal of Cheminformatics           (2022) 14:21  

by a 5-fold nested cross-validation approach (see Supple-
mentary Material, Additional File 1 for details).

Aiming to understand how each atom contributed to 
the predicted hydration free energy value, we first calcu-
lated the tree SHAP (SHapley Additive exPlanations [54, 
55]) values for every fingerprint feature. SHAP values 
are given in the same unit(s) as the target variable(s) — 
in our case hydration free energy—and indicate by how 
many units a feature pushed the prediction towards posi-
tive or negative values for a given instance.

To analyze the chemical space, we derived a UMAP 
projection from the rank-based Spearman correlation 
matrix of the SHAP values of all observations. With this, 
we grouped the compounds by the similarity of the expla-
nations (Fig.  4), making full use of the multivariate and 
feature interaction information. Which should be more 
expressive than just using Tanimoto similarity based on 
Morgan and MACCS fingerprints.

As we can see in Fig.  4, the projection reveals a few 
groups. The color indicates how nicely that SHAP val-
ues can be used to segregate compounds based on 
predicted hydration free energy of the trained model, 
since the segregation matches well the color diver-
sion. The projection algorithm placed the compounds 
with positive predictions mostly at the top-right area. 
At the bottom-right, we found a group with 12 similar 

compounds in terms of structure and explanations, 
highlighted with the rectangle, and detailed on the 
right side of the figure. The bold stroke represents the 
maximum common substructure (i.e., the three rings 
that they have in common).

Furthermore, we used the SHAP values to under-
stand how much each individual atom of a compound 
increased or decreased the predicted value. To this end, 
we determined for every non-zero feature the atoms 
that represent this feature, and then summed all SHAP 
values for every atom in the compound—these are our 
explanations, that indicate how each atom contributed to 
the prediction. As example, in Fig. 5, we show four com-
pounds and how their atoms contribute to hydration free 
energy. For these compounds the less polar hydrocarbon 
regions appear in green, whereas polar atoms forming 
hydrogen bonds appear in magenta, as we would expect.

In this use case, we demonstrated how a set of mol-
ecules can be explored under the perspective of SHAP 
values (Task Explore). Exploring the chemical space 
considering how a model sees the data can help users to 
identify interesting groups of compounds. SHAP-based 
explanations allowed us to confirm that the model seems 
to identify which regions of the selected compounds con-
tribute positively, and negatively, to hydration free energy 
(Task Understand).

Fig. 4 Compounds projected based on the SHAP values and colored by predicted free hydration energy. On the right, detailed view of a group and 
their maximum common substructure highlighted in bold
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Use case 2: comparing the attributions of models trained 
on physico‑chemical properties
Lipophilicity is an important parameter in medicinal 
chemistry, related to the pharmacokinetic properties of 
a drug  [56]. Therefore, it is of great interest to moni-
tor such property in drug discovery projects. Here, we 
explore a set of compounds examining their lipophi-
licity and compare two in-house models as for their 
interpretability.

The lipophilicity dataset was taken from the Molecu-
leNet datasets  [57]. Two in-house pre-trained graph 
convolutional models (see [58] for more details on 
the training datasets) were used to predict logD of the 
compounds from the lipophilicity dataset. Here, LogD 
is the logarithm of the partition coefficient of a com-
pound between octanol and water, taking into account 
the charge state of the compound at a physiologically 
relevant pH. The first model is hereafter referred to as 
the “base model”. The second model, here identified as 
“XAI model”, was designed to be more interpretable by 
adding constraints during training  [59]. The dataset of 
4200 compounds was uploaded to CIME. It contains 
the measured lipophilicity, the logD predictions by the 
two models, the models’ latent space representations 
and atom contributions for both predictions. The Class 
Attribution Maps (CAM) methodology was adapted to 

graph neural networks  [30] to obtain the atom contri-
butions for the two models.

Once the data had been uploaded, a UMAP projection 
was calculated based on the explainable model’s latent 
space representations. We then proceeded to explore 
different groups, the predictions obtained by the mod-
els and the related explanations. Here we present our 
findings related to one specific group that contains 26 
compounds with high structural similarity (see Supple-
mentary Material, Additional File 1 for a detailed view of 
the group and projection).

Using CIME’s “Table View”, we display in Fig.  6 an 
overview of the measured and predicted logD and abso-
lute errors from each model for the entire dataset (a) and 
selected group (b). We observe that for some compounds 
the predictions (of one or both models) are good with an 
error below 0.5 log units while others have predictions a 
bit off (errors above 0.5 log units)—see Supplementary 
Material, Additional File 1.

Figure  7 shows attributions from both models for a 
subset of accurately predicted compounds in the selected 
group. Note that magenta atom contributions are sites 
which push the prediction towards lower values of logD 
(i.e., less lipophilic), and green contributions indicate sites 
that push the predictions towards higher values of logD 
(i.e., more lipophilic). We observe that the attributions 

Fig. 5 Four compounds and their atomic contributions to the prediction of hydration free energy. Magenta and green indicate contributions that 
decrease and increase energy, respectively

Fig. 6 Screenshot from the LineUp table in CIME showing the predicted and measured logD values, and absolute error from each model as follows: 
a) histograms of values from the entire dataset; b) box plots of values from the studied group
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produced by the base model are uniformly green for all 
compounds, which is not useful to a chemist trying to 
find optimal positions for modifications. This is the case 
for all compounds of the cluster, not only for those shown 
in Fig. 7. Furthermore, the atom contributions according 
to the XAI model are more diverse and sparse: there are 
atom contributions labeled as (i) increasing lipophilicity, 
(ii) decreasing lipophilicity and (iii) as largely irrelevant 
to the prediction.

Both models give similar predictions.
In four out of six cases, the XAI model attributes lower 

lipophilicity to the ester group. Similarly, the heteroatoms 
in the three rings of the scaffold are often marked as low-
ering the lipophilicity, or at least are excluded from the 
green highlights. Both of which accords with a medicinal 
chemist’s intuition. Nevertheless, the attributions are far 
from perfect, especially from a stability point of view: 
some very similar compounds have different attributions 
in the XAI model (for example, molecules 239 and 621 
only differ by one methyl group but have very different 
explanations).

This use case demonstrated how CIME can be used to 
compare attributions from two models (Task Compare) 

through the exploration of a test dataset (Task Explore), 
and might increase user trust in predictions made by an 
interpretable model. A similar workflow could be used 
for comparing two (or more) attribution methods for a 
single model; or one attribution method and one ground 
truth attribution in cases where ground truth explana-
tions are known.

Use case 3: comparing the latent space of a trained model 
to a fingerprint representation
Protein kinases feature prominently in the human 
genome [60], and kinase inhibitors are of particular inter-
est in drug discovery [61]. Recently, Sydow et al. [62] have 
developed a fragment-library approach to generating 
novel kinase inhibitors. In this approach, known kinase 
inhibitors are split into smaller molecular fragments, and 
those fragments are then virtually recombined. While 
theoretically the number of potential new kinase inhibi-
tors is limited only by the number of possible fragment 
combinations, in practice some of these “recombined” 
compounds will be more desirable than others, for 
instance, because of their physicochemical properties or 
synthetic feasibility. It is thus of interest to explore the 

Fig. 7 Comparison of attributions and predictions for the two models of interest (XAI and base model) for six compounds with low prediction 
error. The logD column reports experimentally determined lipophilicity. The number next to the compound structure corresponds to the model’s 
prediction. Magenta highlights correspond to atoms which are lowering the logD prediction, green highlights correspond to atoms which are 
increasing the logD prediction.
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large set of virtually generated candidates to find subsets 
of promising candidate kinase inhibitors.

Extended connectivity fingerprints (ECFPs)  [63] 
are commonly used descriptors in ligand-based vir-
tual screening. However, ECFPs encode only structural 
information. More abstract encodings pertaining to the 
prediction of physicochemical properties can be better 
expressed using latent space representations generated 
from deep learning models (i.e., replacing use of finger-
prints with latent space representations to generate a 
projection). In this use case, we used the same in-house 
pre-trained explainable model as in Use Case 2 to gener-
ate the learned embeddings for the compounds and frag-
ments in the kinase dataset.

In Fig.  8, we illustrate the representation of the frag-
ments for both the latent space from a deep learning 
model (left) and the ECFP4 fingerprint (right). We high-
light and color only the fragments known to bind to the 
FP subpocket. Regarding the positioning of the frag-
ments, the visualizations suggest that the latent space 
generates a smoother representation compared to the 
ECFP4 fingerprint space. This makes intuitive sense since 
ECFP4 is a 2048-dimensional bitwise fingerprint based 
fully on structural features, whereas the deep learning 
representation is a 256-dimensional continuous vector. In 
the left part of Fig. 8, we colored the fragments by the pre-
dicted solubility and see that most of them are predicted 
to be soluble (i.e., they are between yellow and green). 
The fact that the analyzed “front pocket”fragments have 
generally higher predicted solubility is congruent with 
chemical rationalizations given in [62]. Since the ECFP4 

fingerprint is not by itself predictive, we only highlight 
whether the compound is found in the front pocket or 
not in Fig. 8 (right).

Sydow et al. [62] provided a recombined ligand library 
of over 6 million potential kinase inhibitors, helpfully 
scoring the ligands based on their closest chemical simi-
larity to compounds found in the ChEMBL database [64, 
65], as measured by the Tanimoto similarity. By using this 
information, we can quickly identify regions in a projec-
tion where the recombined compounds are similar to 
known molecules.

We therefore projected the recombined ligands based 
on the latent space from a deep learning model, as was 
done for fragments in Fig. 8 left. We utilized only ligands 
with a Tanimoto similarity greater than 0.8 to at least 
one ligand in ChEMBL. Then, we colored the com-
pounds according to their similarity to known ligands 
in ChEMBL (Fig. 9). This view of the recombined ligand 
space allows focusing on specific regions that are densely 
populated in compounds highly similar to existing com-
pounds. The selected region is enlarged for a closer view, 
and several relevant chemical structures are revealed. 
We speculate that compounds that are different from the 
known ChEMBL molecules (“Distant ligands” in Fig.  9) 
but positioned closer to more ChEMBL-similar mole-
cules in the fingerprint space are more likely to represent 
promising ligands than recombined molecules that are in 
dark blue regions (none of their neighbors is close to a 
known molecule).

This use case demonstrated how CIME can be utilized 
to explore a chemical space and to compare molecular 

Fig. 8 UMAP projection of kinase inhibitor fragments. Colored points correspond to fragments found in molecules that bind in the front pocket. 
Gray points correspond to fragments found in molecules that bind in other kinase pockets. Left: projection based on the latent space generated by 
a deep learning model, colored according to the predicted solubility. Right: projection based on the ECFP fingerprint representation.
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representations for a set of labeled compounds (Task 
Explore). By using an approach based on exploring two 
types of similarities, we showed how CIME can be used 
to select smaller sets of pertinent candidate compounds 
from a large chemical space.

Performance
We conducted structured benchmarks on two differ-
ent machines by gradually increasing (i) the number of 
compounds in the dataset and (ii) the number of features 
used for projection (i.e., fingerprints). A summary of the 
benchmark is visualized in Fig. 10. We provide a detailed 
description of the CIME benchmark in the Supplemen-
tary Material, Additional File 1.

Overall, CIME dealt well with datasets of up to 
20,000 compounds and 1,000 fingerprints. Beyond 
these thresholds, we experienced longer loading times 
(i.e.,>= 5 minutes). The results are better if fingerprints 
are not handled by the system; that is, the projection 
is precalculated and stored in the SDF. Not having fin-
gerprints uploaded or computed by CIME resulted in a 
considerable drop in memory usage in both back- and 
front-end. We tested datasets of up to 100,000 com-
pounds with only 1 fingerprint to simulate this scenario 
in our benchmark, where CIME generally handled the 
datasets well, with only LineUp’s initial loading being 
slow at 5-20 seconds when over 60,000 compounds 
were used.

Fig. 9 Visualizations of kinase inhibitors. Left: UMAP projection based on the latent space of recombined ligands with a Tanimoto similarity greater 
than 0.8 to at least one known ligand in ChEMBL. Ligands are shaded according to their maximum similarity to known ligands. Right: a region from 
the projection

Fig. 10 The line-charts show the loading time (left) and the memory usage of the backend (right) for datasets with increasing number of 
compounds. Color indicates the number of fingerprints provided in the dataset. The vertical dashed lines indicate the limitations of the system w.r.t. 
the number of fingerprints
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Future work
Currently, the tool does not allow direct comparison of 
different projected spaces: users see only one projection 
at a time. However, we are working on a feature that 
allows displaying two projections next to each other for 
better comparison of representations.

Another limitation of the tool is its inability to save its 
current state, which means that users must show their 
live analyses directly to collaborators or make screen-
shots to document the results. We are working on a 
solution that simplifies collaboration between users on 
different devices and enables users to store their analy-
sis and continue it at a later point.

CIME enables users to select compounds and display 
each compound structure overlaid with attributions. 
Although CIME allows users to show structure-based 
aggregations of selected compounds using MCS, it is 
not possible to display aggregations of attributions of a 
list of compounds. We are not aware of existing visuali-
zation techniques that are capable of displaying multi-
ple weights (attributions) per atom effectively.

Regarding the visual representation of compounds, 
users can neither interact with the compounds nor 
check the numerical values of atom contributions. 
However, we plan to adapt a JavaScript library for 
drawing the compounds in the front-end and make 
them interactive.

Currently, only one algorithm is available for project-
ing and one for clustering data—UMAP and HDBSCAN, 
respectively. Users can alternatively include precalcu-
lated projections and cluster affiliations in the SDF file. 
CIME can also be enhanced programmatically by users to 
include additional projection methods. As part of future 
work, we plan to provide more projection and clustering 
algorithms directly within the tool. However, not every 
library can be integrated into CIME’s official repository 
due to licensing restrictions

Conclusion
We have presented the ChemInformatics Model Explorer 
(CIME), which facilitates work with data from chemical 
compounds, AI models, and XAI methods. CIME is a sig-
nificant step towards a better understanding and compari-
son of AI models in the chemical domain. It enables users 
to interactively explore chemical spaces by combining 
overview and detailed visualization techniques. CIME’s 
model-agnostic nature allows it to be applied to a variety of 
cheminformatics tasks, as demonstrated in three use cases 
involving domain experts. We believe that CIME improves 
collaboration between chemists and data scientists and 
thus helps to improve cheminformatics workflows.

Availability and requirements
Project name: CIME–ChemInformatics Model Explorer

Article project version: cimeV0.1.20
Project home page: github. com/ jku- vds- lab/ cime
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Operating systems: Platform-independent
Programming language: TypeScript, Python
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2020.09.5, bottle 0.12.18, hdbscan 0.8.27, joblib 0.17.0, 
and bottle-beaker 0.1.3.

License: BSD 3-Clause License.

Abbreviations
AI:: Artificial intelligence; API:: Application programming interface; CAM:: Class 
Activation Maps; CIME:: ChemInformatics Model Explorer; DR:: Dimensionality 
Reduction; ECFP:: Extended connectivity fingerprint; HDBSCAN:: Hierarchical 
density-based spatial clustering of applications with noise; MCS:: Maximum 
common substructure; ML:: Machine learning; QSAR:: Quantitative structure-
active relationship; SDF:: Structure data format; SHAP:: Shapley additive expla-
nations; SMILES:: Simplified molecular input line entry system; UMAP:: Uniform 
manifold approximation and projection; XAI:: Explainable AI.

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s13321- 022- 00600-z.

Additional file 1. Supplementary Material including details about the 
benchmark and use cases.

Acknowledgements
This work was supported by the JKU Visual Data Science Lab and Bayer AG 
(HRB 48248). We thank Michael Koch for participating in the initiation of the 
project and for follow-up discussions; Michael pühringer for reading the final 
version of the article and Moritz Heckmann for technical support.

Authors’ contributions
TW, FM, JH and HH conceived the initial idea. All authors discussed, provided 
suggestions, and further developed the concept. FM, JH, MS and HH 
were involved in planning and supervising the implementation work. CH 
developed the back- and front-end, HH and FM tested the system, actively 
discussing with CH throughout the entire development cycle. RH, FM, and 
HH prepared the initial datasets used during development. HH and CH 
maintained the availability of the system and performed the benchmarking. 
FM, TW, FH and RH conceptualized the use cases and prepared the respective 
datasets. HH and CH wrote the initial draft of the manuscript. FM, RH, TW and 
FH wrote the first draft of the use cases included in the manuscript. All authors 
read, reviewed and approved the final manuscript.

Funding
This work was supported in part by Bayer AG, State of Upper Austria and the 
Austrian Federal Ministry of Education, Science and Research via the LIT - Linz 
Institute of Technology (LIT-2019-7-SEE-117), and the Austrian Science Fund 
(FWF DFH 23--N). TW and FH acknowledge funding from the Bayer AG Life Sci-
ence Collaboration Project ("Machine Guided Compound Profiling"). HH, RH, 
FM and JH acknowledge funding from the Bayer AG Life Science Collaboration 
Project ("Explainable AI").

https://github.com/jku-vds-lab/cime
https://doi.org/10.1186/s13321-022-00600-z
https://doi.org/10.1186/s13321-022-00600-z


Page 13 of 14Humer et al. Journal of Cheminformatics           (2022) 14:21  

Availability of data and materials
We modified publicly available datasets by adding information extracted from 
AI models and XAI methods for the exclusive purpose of demonstrating the 
tool in this article. The AI and XAI methods used to modify the datasets are 
not part of CIME, and therefore beyond the scope of this work. However, we 
provide a Python script that gives an example of how users can create their 
datasets to use with CIME at github. com/ jku- vds- lab/ cime/ tree/ main/ Examp 
les. The original datasets for use cases 2 and 3 (i.e., without AI and XAI data) are 
open and freely available under MIT license (github. com/ deepc hem/ molec 
ulenet, github. com/ volka merlab/ KinFr agLib). The “FreeSolv” dataset for use 
case 1 is available at escho larsh ip. org/ uc/ item/ 6sd40 3pz (version 0.51) under 
CC BY-NC-SA 4.0 license. The derived datasets that we utilize in the use cases 
(i.e., with AI and XAI data) are available at www. doi. org/ 10. 17605/ OSF. IO/ 
KNS6M under the following licenses: use cases 2 and 3, CC BY 4.0 Attribution 
license (creat iveco mmons. org/ licen ses/ by/4. 0/); and use case 1, CC BY-NC-SA 
4.0 (creat iveco mmons. org/ licen ses/ by- nc- sa/4. 0/). These datasets were not 
used during the development of CIME and are not part of the system. They are 
not published in CIME’s git repository. The datasets can be downloaded from 
the data-repository and explored with CIME through the DEMO webpage, 
which is hosted and maintained by JKU Linz, without any commercial interest.

Declarations

Competing interests
The authors declare that they have no competing interests.

Author details
1 Division Crop Science, Bayer AG, 40789 Monheim am Rhein, DE, Germany. 
2 Johannes Kepler University Linz, Linz, Austria. 3 Digital Technologies, Bayer AG, 
13353 Berlin, DE, Germany. 4 Division Crop Science, Bayer AG, 65926 Frankfurt, 
DE, Germany. 

Received: 7 December 2021   Accepted: 12 March 2022

References
 1. Terstappen GC, Reggiani A (2001) In silico research in drug discovery. 

Trends Pharmacol Sci 22(1):23–26
 2. Brogi S, Ramalho TC, Kuca K, Medina-Franco JL, Valko M (2020) In silico 

methods for drug design and discovery. Front Chem 8:612
 3. Schneider P, Walters WP, Plowright AT, Sieroka N, Listgarten J, Goodnow 

RA, Fisher J, Jansen JM, Duca JS, Rush TS (2020) Rethinking drug design in 
the artificial intelligence era. Nat Rev Drug Discov 19(5):353–364

 4. Chatzimparmpas A, Martins RM, Jusufi I, Kerren A (2020) A survey of sur-
veys on the use of visualization for interpreting machine learning models. 
Inf Vis 19(3):207–233

 5. Polishchuk P (2017) Interpretation of quantitative structure-activity 
relationship models: past, present, and future. J Chem Inf Model 
57(11):2618–2639

 6. Joia P, Coimbra D, Cuminato JA, Paulovich FV, Nonato LG (2011) Local 
affine multidimensional projection. IEEE Trans Vis Comput Graph 
17(12):2563–2571. https:// doi. org/ 10. 1109/ TVCG. 2011. 220

 7. Martins RM, Andery GF, Heberle H, Paulovich FV, de Andrade Lopes A, 
Pedrini H, Minghim R (2012) Multidimensional projections for visual 
analysis of social networks. Comput Sci 27(4):791–810

 8. Pagliosa P, Paulovich FV, Minghim R, Levkowitz H, Nonato LG (2015) 
Projection inspector: assessment and synthesis of multidimensional 
projections. Neurocomputing 150:599–610

 9. Saeed N, Nam H, Haq MIU, Muhammad Saqib DB (2018) A survey on 
multidimensional scaling. ACM Comput Surv (CSUR) 51(3):1–25

 10. Nonato L, Aupetit M (2019) Multidimensional projection for visual analyt-
ics: linking techniques with distortions, tasks, and layout enrichment. IEEE 
Trans Vis Comput Graph 25:2650–2673

 11. Vernier EF, Garcia R, Silva IPd, Comba JLD, Telea AC (2020) Quantitative 
evaluation of time-dependent multidimensional projection techniques. 
Computer graphics forum https:// doi. org/ 10. 1111/ cgf. 13977

 12. Chatzimparmpas A, Martins RM, Kerren A (2020) t-viSNE: interactive 
assessment and interpretation of t-sne projections. IEEE Trans Vis Comput 
Graph 26(8):2696–2714. https:// doi. org/ 10. 1109/ TVCG. 2020. 29869 96

 13. Espadoto M, Vernier EF, Telea AC (2020) Selecting and sharing multidi-
mensional projection algorithms: a practical view. In: Gillmann C, Krone 
M, Reina G, Wischgoll T (eds) VisGap—the gap between visualization 
research and visualization software. The Eurographics Association, 
Norrköping. https:// doi. org/ 10. 2312/ VISGAP. 20201 105.

 14. Espadoto M, Martins RM, Kerren A, Hirata NST, Telea AC (2021) Toward 
a quantitative survey of dimension reduction techniques. IEEE Trans Vis 
Comput Graph 27(3):2153–2173. https:// doi. org/ 10. 1109/ TVCG. 2019. 
29441 82

 15. Daszykowski M, Walczak B, Massart D (2003) Projection methods in chem-
istry. Chemometr Intell Lab Syst 65(1):97–112

 16. Naveja JJ, Medina-Franco JL (2019) Finding constellations in chemical 
space through core analysis. Front Chem 7:510

 17. Medina-Franco JL, Naveja JJ, López-López E (2019) Reaching for the 
bright StARs in chemical space. Drug Discov Today 24(11):2162–2169

 18. Probst D, Reymond J-L (2020) Visualization of very large high-dimensional 
data sets as minimum spanning trees. J Cheminformatics 12(1):1–13

 19. Sabando MV, Ulbrich P, Selzer M, Byška J, Mičan J, Ponzoni I, Soto AJ, 
Ganuza ML, Kozlíková B (2021) ChemVA: interactive visual analysis of 
chemical compound similarity in virtual screening. IEEE Trans Vis Comput 
Graph 27(2):891–901. https:// doi. org/ 10. 1109/ TVCG. 2020. 30304 38

 20. Wentzell PD, Gonçalves TR, Matsushita M, Valderrama P (2021) Combina-
torial projection pursuit analysis for exploring multivariate chemical data. 
Anal Chim Acta 1174:338716

 21. Kell DB, Samanta S, Swainston N (2020) Deep learning and generative 
methods in cheminformatics and chemical biology: navigating small 
molecule space intelligently. Biochem J 477(23), 4559–4580 https:// doi. 
org/ 10. 1042/ BCJ20 200781.https:// portl andpr ess. com/ bioch emj/ artic le- 
pdf/ 477/ 23/ 4559/ 899192/ bcj- 2020- 0781. pdf

 22. Laskowski RA, Swindells MB (2011) LigPlot+: multiple ligand-
protein interaction diagrams for drug discovery. J Chem Inf Model 
51(10):2778–2786

 23. Awale M, Van Deursen R, Reymond J-L (2013) MQN-mapplet: visualization 
of chemical space with interactive maps of drugbank, chembl, pubchem, 
gdb-11, and gdb-13. J Chem Inf Model 53:509–518

 24. Lewis R, Guha R, Korcsmaros T, Bender A (2015) Synergy maps: exploring 
compound combinations using network-based visualization. J Chemin-
formatics 7(1):1–11

 25. Yoshimori A, Tanoue T, Bajorath J (2019) Integrating the structure-activity 
relationship matrix method with molecular grid maps and activity 
landscape models for medicinal chemistry applications. ACS Omega 
4(4):7061–7069

 26. Sorkun MC, Mullaj D, Koelman JMVA, Er S(2021) ChemPlot, a python 
library for chemical space visualization https:// doi. org/ 10. 33774/ chemr 
xiv- 2021- 3zv3k. Preprint at. https:// chemr xiv. org/ engage/ chemr xiv/ artic 
le- detai ls/ 61718 0aaff 3ba99 1f99a f550. Accessed 25 Nov 2021

 27. Dong J, Cao D-S, Miao H-Y, Liu S, Deng B-C, Yun Y-H, Wang N-N, Lu A-P, 
Zeng W-B, Chen AF (2015) ChemDes: an integrated web-based platform 
for molecular descriptor and fingerprint computation. J Cheminformatics 
7(1):1–10

 28. Jaeger S, Fulle S, Turk S (2018) Mol2vec: unsupervised machine learning 
approach with chemical intuition. J Chem Inf Model 58(1):27–35

 29. David L, Thakkar A, Mercado R, Engkvist O (2020) Molecular representa-
tions in AI-driven drug discovery: a review and practical guide. J Chemin-
formatics 12(1):1–22

 30. Pope PE, Kolouri S, Rostami M, Martin CE, Hoffmann H (2019) Explainabil-
ity methods for graph convolutional neural networks. In: 2019 IEEE/CVF 
conference on computer vision and pattern recognition (CVPR), Long 
Beach, pp. 10764–10773 https:// doi. org/ 10. 1109/ CVPR. 2019. 01103

 31. Rodríguez-Pérez R, Bajorath J (2020) Interpretation of compound activity 
predictions from complex machine learning models using local approxi-
mations and shapley values. J Med Chem 63(16), 8761–8777 https:// doi. 
org/ 10. 1021/ acs. jmedc hem. 9b011 01.PMID: 31512867. https:// doi. org/ 10. 
1021/ acs. jmedc hem. 9b011 01

https://github.com/jku-vds-lab/cime/tree/main/Examples
https://github.com/jku-vds-lab/cime/tree/main/Examples
https://github.com/deepchem/moleculenet
https://github.com/deepchem/moleculenet
https://github.com/volkamerlab/KinFragLib
https://escholarship.org/uc/item/6sd403pz
https://www.doi.org/10.17605/OSF.IO/KNS6M
https://www.doi.org/10.17605/OSF.IO/KNS6M
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://doi.org/10.1109/TVCG.2011.220
https://doi.org/10.1111/cgf.13977
https://doi.org/10.1109/TVCG.2020.2986996
https://doi.org/10.2312/VISGAP.20201105
https://doi.org/10.1109/TVCG.2019.2944182
https://doi.org/10.1109/TVCG.2019.2944182
https://doi.org/10.1109/TVCG.2020.3030438
https://doi.org/10.1042/BCJ20200781.
https://doi.org/10.1042/BCJ20200781.
https://portlandpress.com/biochemj/article-pdf/477/23/4559/899192/bcj-2020-0781.pdf
https://portlandpress.com/biochemj/article-pdf/477/23/4559/899192/bcj-2020-0781.pdf
https://doi.org/10.33774/chemrxiv-2021-3zv3k
https://doi.org/10.33774/chemrxiv-2021-3zv3k
https://chemrxiv.org/engage/chemrxiv/article-details/617180aaff3ba991f99af550
https://chemrxiv.org/engage/chemrxiv/article-details/617180aaff3ba991f99af550
https://doi.org/10.1109/CVPR.2019.01103
https://doi.org/10.1021/acs.jmedchem.9b01101.
https://doi.org/10.1021/acs.jmedchem.9b01101.
https://doi.org/10.1021/acs.jmedchem.9b01101
https://doi.org/10.1021/acs.jmedchem.9b01101


Page 14 of 14Humer et al. Journal of Cheminformatics           (2022) 14:21 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

 32. Karpov P, Godin G, Tetko IV (2020) Transformer-CNN: Swiss knife for QSAR 
modeling and interpretation. J Cheminformatics 12(17):1758–2946. 
https:// doi. org/ 10. 1186/ s13321- 020- 00423-w

 33. Riniker S, Landrum GA (2013) Open-source platform to benchmark fin-
gerprints for ligand-based virtual screening. J Cheminformatics 5(1):1–17

 34. Yu W, Yang K, Bai Y, Yao H, Rui Y (2014) Visualizing and comparing con-
volutional neural networks Preprint at. http://arxiv.org/abs/1412.6631. 
Accessed 25 Nov 2021

 35. Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado GS, 
Davis A, Dean J, Devin M, Ghemawat S, Goodfellow I, Harp A, Irving G, 
Isard M, Jia Y, Jozefowicz R, Kaiser L, Kudlur M, Levenberg J, Mané D, 
Monga R, Moore S, Murray D, Olah C, Schuste, M, Shlens J, Steiner B, 
Sutskever I,TalwarK, Tucker P, Vanhoucke V, Vasudevan V, Viégas F, Vinyals 
O, Warden P, Wattenberg M, Wicke M, Yu Y, Zheng X (2015) TensorFlow: 
large-scale machine learning on heterogeneous systems. Software 
available from tensorflow.org https:// www. tenso rflow. org/ Accessed 
Accessed 24 Nov 2021

 36. Zeng H, Haleem H, Plantaz X, Cao N, Qu H (2017) Cnncomparator: Com-
parative analytics of convolutional neural networks Preprint at. http://
arxiv.org/abs/1710.05285. Accessed 25 Nov 2021

 37. Hinterreiter A, Ruch P, Stitz H, Ennemoser M, Bernard J, Strobelt H, Streit 
M (2020) ConfusionFlow: a model-agnostic visualization for temporal 
analysis of classifier confusion. IEEE Trans Vis Comput Graph. https:// doi. 
org/ 10. 1109/ TVCG. 2020. 30120 63

 38. Pühringer M, Hinterreiter A, Streit M (2020) InstanceFlow: Visualizing the 
evolution of classifier confusion at the instance level. In: 2020 IEEE visuali-
zation conference (VIS), pp. 291–295. IEEE, Salt Lake City. https:// doi. org/ 
10. 1109/ VIS47 514. 2020. 00065

 39. Hunter JD (2007) Matplotlib: a 2d graphics environment. Comput Sci Eng 
9(3):90–95. https:// doi. org/ 10. 1109/ MCSE. 2007. 55

 40. RDKit: Open-Source Cheminformatics Software. Accessed: 16/07/2021. 
https:// www. rdkit. org/

 41. Hinterreiter A, Steinparz C, Schöfl M, Stitz H, Streit M (2021) Projection 
path explorer: exploring visual patterns in projected decision-making 
paths. ACM Trans Interact Intell Syst. https:// doi. org/ 10. 1145/ 33871 65

 42. React: A JavaScript library for building user interfaces. Accessed: 20 Jul 
2021. https:// react js. org/

 43. Bottle: Python web framework. Accessed 20 Jul 2021. https:// bottl epy. 
org/ docs/ dev/

 44. Morgan Fingerprints. Accessed 20 Jul 2021. https:// rdkit. readt hedocs. io/ 
en/ latest/ Getti ngSta rtedI nPyth on. html# morgan- finge rprin ts- circu lar- 
finge rprin ts

 45. Gasteiger J, Marsili M (1980) Iterative partial equalization of orbital 
electronegativity-a rapid access to atomic charges. Tetrahedron 
36(22):3219–3228. https:// doi. org/ 10. 1016/ 0040- 4020(80) 80168-2

 46. Weininger D (1990) SMILES. 3. DEPICT. graphical depiction of chemical 
structures. J Chem Inf Comput Sci 30(3):237–243. https:// doi. org/ 10. 1021/ 
ci000 67a005

 47. Campello RJGB, Moulavi D, Sander J (2013) Density-based clustering 
based on hierarchical density estimates. In: Pei J, Tseng VS, Cao L, Motoda 
H, Xu G (eds) Advances in knowledge discovery and data mining. Lecture 
notes in computer science. Springer, Berlin, pp 160–172

 48. McInnes L, Healy J, Melville J (2020). UMAP: Uniform manifold approxima-
tion and projection for dimension reduction Preprint at. http://arxiv.org/
abs/1907.10902. Accessed 10 Jun 2021

 49. Gratzl S, Lex A, Gehlenborg N, Pfister H, Streit M (2013) LineUp: visual 
analysis of multi-attribute rankings. IEEE Trans Vis Comput Graph 
19(12):2277–2286. https:// doi. org/ 10. 1109/ TVCG. 2013. 173

 50. Mobley DL, Guthrie JP (2014) FreeSolv: a database of experimental and 
calculated hydration free energies, with input files. J Comput Aided Mol 
Des 28(7):711–720

 51. Wu Z, Ramsundar B, Feinberg EN, Gomes J, Geniesse C, Pappu AS, 
Leswing K, Pande V (2018) MoleculeNet: a benchmark for molecular 
machine learning. Chem Sci 9(2), 513–530 https:// doi. org/ 10. 1039/ C7SC0 
2664A.Accessed 25 Nov 2021

 52. Prokhorenkova L, Gusev G, Vorobev A, Dorogush AV, Gulin A (2018) Cat-
Boost: unbiased boosting with categorical features. In: Bengio S, Wallach 
H, Larochelle H, Grauman K, Cesa-Bianchi N, Garnett R (eds.) Advances in 
Neural Information Processing Systems, vol. 31. Curran Associates, Inc., 
Montréal https:// proce edings. neuri ps. cc/ paper/ 2018/ file/ 14491 b756b 
3a51d aac41 c2486 32855 49- Paper. pdf

 53. Durant JL, Leland BA, Henry DR, Nourse JG (2002) Reoptimization of MDL 
keys for use in drug discovery. J Chem Inf Comput Sci 42(6), 1273–1280 
https:// doi. org/ 10. 1021/ ci010 132r.Accessed 19 Apr 2021

 54. Lundberg S, Lee S-I (2017) A unified approach to interpreting model 
predictions. In: Advances in Neural Information Processing Systems. Curran 
Associates, Inc., Long Beach https:// papers. nips. cc/ paper/ 2017/ hash/ 8a20a 
86219 78632 d76c4 3dfd2 8b677 67- Abstr act. html Accessed 25 Nov 2021

 55. Lundberg SM, Erion G, Chen H, DeGrave A, Prutkin JM, Nair B, Katz R, 
Himmelfarb J, Bansal N, Lee S-I (2020) From local explanations to global 
understanding with explainable AI for trees. Nat Mach Intell 2(1), 56–67 
https:// doi. org/ 10. 1038/ s42256- 019- 0138-9. Accessed 25 Nov 2021

 56. Rutkowska E, Pajak K, Jóźwiak K (2013) Lipophilicity-methods of determi-
nation and its role in medicinal chemistry. Acta Pol Pharm 70(1):3–18

 57. Wu Z, Ramsundar B, Feinberg EN, Gomes J, Geniesse C, Pappu AS, 
Leswing K, Pande V (2018) MoleculeNet: a benchmark for molecular 
machine learning. Chem Sci 9(2):513–530

 58. Montanari F, Kuhnke L, Ter Laak A, Clevert D-A (2019) Modeling physico-
chemical ADMET endpoints with multitask graph convolutional net-
works. Molecules 25(1):44. https:// doi. org/ 10. 3390/ molec ules2 50100 44

 59. Henderson R, Clevert D-A, Montanari F (2021) Improving molecular graph 
neural network explainability with orthonormalization and induced 
sparsity. In: Proceedings of the 38th international conference on machine 
learning, pp 4203–4213. PMLR, Virtual Event ISSN: 2640-3498. https:// 
proce edings. mlr. press/ v139/ hende rson2 1a. html Accessed 25 Nov 2021

 60. Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S (2002) The 
protein kinase complement of the human genome. Science 298(5600), 
1912–1934 https:// doi. org/ 10. 1126/ scien ce. 10757 62. American Associa-
tion for the Advancement of Science Section: Review. Accessed 09 Jun 
2021

 61. Cohen P (2002) Protein kinases - the major drug targets of the twenty-first 
century? Nat Rev Drug Discov 1(4), 309–315 https:// doi. org/ 10. 1038/ nrd773. 
Number: 4 Publisher: Nature Publishing Group. Accessed 09 Jun 2021

 62. Sydow D, Schmiel P, Mortier J, Volkamer A (2020) KinFragLib: exploring 
the kinase inhibitor space using subpocket-focused fragmentation and 
recombination. J Chem Inf Model 60(12):6081–6094. https:// doi. org/ 10. 
1021/ acs. jcim. 0c008 39

 63. Rogers D, Hahn M (2010) Extended-connectivity fingerprints. J Chem Inf 
Model 50(5), 742–754. Publisher: American Chemical Society. Accessed 
09 Jun 2021

 64. Davies M, Nowotka M, Papadatos G, Dedman N, Gaulton A, Atkinson F, 
Bellis L, Overington JP (2015) ChEMBL web services: streamlining access to 
drug discovery data and utilities. Nucleic Acids Res 43(Web Server issue), 
612–620 https:// doi. org/ 10. 1093/ nar/ gkv352. Accessed 10 Jun 2021

 65. Mendez D, Gaulton A, Bento AP, Chambers J, De Veij M, Félix E, Magariños 
M, Mosquera J, Mutowo P, Nowotka M, Gordillo-Marañón M, Hunter F, 
Junco L, Mugumbate G, Rodriguez-Lopez M, Atkinson F, Bosc N, Radoux 
C, Segura-Cabrera A, Hersey A, Leach A (2019) ChEMBL: towards direct 
deposition of bioassay data. Nucleic Acids Res 47(D1), 930–940https:// 
doi. org/ 10. 1093/ nar/ gky10 75. Accessed 10 Jun 2021

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1186/s13321-020-00423-w
https://www.tensorflow.org/
https://doi.org/10.1109/TVCG.2020.3012063
https://doi.org/10.1109/TVCG.2020.3012063
https://doi.org/10.1109/VIS47514.2020.00065
https://doi.org/10.1109/VIS47514.2020.00065
https://doi.org/10.1109/MCSE.2007.55
https://www.rdkit.org/
https://doi.org/10.1145/3387165
https://reactjs.org/
https://bottlepy.org/docs/dev/
https://bottlepy.org/docs/dev/
https://rdkit.readthedocs.io/en/latest/GettingStartedInPython.html#morgan-fingerprints-circular-fingerprints
https://rdkit.readthedocs.io/en/latest/GettingStartedInPython.html#morgan-fingerprints-circular-fingerprints
https://rdkit.readthedocs.io/en/latest/GettingStartedInPython.html#morgan-fingerprints-circular-fingerprints
https://doi.org/10.1016/0040-4020(80)80168-2
https://doi.org/10.1021/ci00067a005
https://doi.org/10.1021/ci00067a005
https://doi.org/10.1109/TVCG.2013.173
https://doi.org/10.1039/C7SC02664A.
https://doi.org/10.1039/C7SC02664A.
https://proceedings.neurips.cc/paper/2018/file/14491b756b3a51daac41c24863285549-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/14491b756b3a51daac41c24863285549-Paper.pdf
https://doi.org/10.1021/ci010132r.
https://papers.nips.cc/paper/2017/hash/8a20a8621978632d76c43dfd28b67767-Abstract.html
https://papers.nips.cc/paper/2017/hash/8a20a8621978632d76c43dfd28b67767-Abstract.html
https://doi.org/10.1038/s42256-019-0138-9
https://doi.org/10.3390/molecules25010044
https://proceedings.mlr.press/v139/henderson21a.html
https://proceedings.mlr.press/v139/henderson21a.html
https://doi.org/10.1126/science.1075762
https://doi.org/10.1038/nrd773
https://doi.org/10.1021/acs.jcim.0c00839
https://doi.org/10.1021/acs.jcim.0c00839
https://doi.org/10.1093/nar/gkv352
https://doi.org/10.1093/nar/gky1075
https://doi.org/10.1093/nar/gky1075

	ChemInformatics Model Explorer (CIME): exploratory analysis of chemical model explanations
	Abstract 
	Introduction
	Implementation
	Data processing
	SDF generation
	Data transformation
	Data augmentation
	Compound rendering
	Clustering

	User interface
	Projection view
	Table view
	Hover view
	Structures view


	Results
	Use case 1: visualizing attributions to free hydration energy predictions using SHAP values
	Use case 2: comparing the attributions of models trained on physico-chemical properties
	Use case 3: comparing the latent space of a trained model to a fingerprint representation
	Performance
	Future work

	Conclusion
	Availability and requirements
	Acknowledgements
	References




