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Abstract

Phthalates are chemical esters used as additives in common consumer goods, such as

plastics, household cleaners, and personal care products. Phthalates are not chemically

bound to the items to which they are added and can easily leach into the surrounding envi-

ronment. Anthropogenic drivers, such as coastal plastic pollution and wastewater runoff,

increase the exposure potential for coastal marine fauna. Phthalate exposure in free-rang-

ing bottlenose dolphins has been the focus of recent study, with indications of heightened

exposure to certain phthalate compounds. The objective of this study was to compare uri-

nary phthalate metabolite concentrations among bottlenose dolphins (Tursiops truncatus)

sampled in Sarasota Bay, FL, to levels reported in human samples collected as part of the

Centers for Disease Control and Prevention’s (CDC) National Health and Nutrition Examina-

tion Survey (NHANES). Monoethyl phthalate (MEP) and mono-(2-ethylhexyl) phthalate

(MEHP) were the most prevalent metabolites detected in dolphin urine (n = 51; MEP =

29.41%; MEHP = 54.90%). The geometric mean (GM) concentration of MEP was signifi-

cantly lower for dolphins (GM = 4.51 ng/mL; 95% CI: 2.77–7.34 ng/mL) compared to

humans (p<0.05), while dolphin concentrations of MEHP (GM = 4.57 ng/mL; 95% CI: 2.37–

8.80 ng/mL) were significantly higher than levels reported in NHANES (p<0.05). Health

impacts to bottlenose dolphins resulting from elevated exposure to the MEHP parent com-

pound (diethyl-2-ethylhexyl phthalate, DEHP) are currently unknown. However, given the

evidence of endocrine disruption, reproductive impairment, and abnormal development in

humans, pursuing investigations of potential health effects in exposed bottlenose dolphins

would be warranted.
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Introduction

Phthalates are a class of manmade chemicals added to plastics, personal care products, clean-

ing solutions, cosmetics, and pesticides to enhance various properties such as lubrication, flexi-

bility, and fragrance [1–3]. These chemicals are concerning to public and wildlife health

because of their ubiquitous use in common goods and their potential for endocrine disruption

[4–6]. Endocrine disrupting chemicals (EDCs) interfere with the normal production, secre-

tion, or transport of hormones through the body by either mimicking naturally produced

compounds or interfering with hormone receptors [7]. Ultimately, this hormone disruption

can impact reproduction, development, and/or growth [4, 5, 8–12]. Humans are exposed to

phthalates intravenously through the use of medical tubing or via dermal absorption, inhala-

tion, or ingestion resulting from the use of products and materials containing phthalates [13–

15]. Because of the environmental ubiquity of phthalates, humans seem particularly at risk of

adverse health impacts resulting from chronic exposure.

The Centers for Disease Control and Prevention’s (CDC) National Health and Nutrition

Examination Survey (NHANES) is a health assessment of randomly selected individuals across

the United States. NHANES data are collected annually and use surveys and specimen collec-

tion to evaluate markers of behavioral, mental, physical, and biological health. Blood, urine,

and fecal samples are collected to evaluate exposure to environmental chemicals, including

phthalate metabolites [16]. Urine is the preferred sampling matrix to evaluate exposure due to

the rapid hydrolysis and conjugation of diester phthalate parent compounds, thereby resulting

in detectable monoester metabolites [17–20]. Phthalate exposure has been assessed in

NHANES urine samples since 1999 [16], and these national surveys often serve as a compari-

son for studies investigating populations with heightened exposure and risk of adverse health

impacts [21–23].

In contrast to persistent organic pollutants (POPs) such as polychlorinated biphenyls

(PCBs), dioxins, and furans, phthalates are not considered persistent environmental contami-

nants, but ongoing release of phthalates into the environment may lead to a chronic exposure

risk to wildlife. Marine and aquatic organisms may be exposed through inhalation or ingestion

of phthalate-contaminated air, water, sediment, and prey, as well as ingestion of plastic [24–

27]. Studies of phthalate exposure have been widespread among marine and aquatic fauna,

including the harbor porpoise (Phocoena phocoena; [28]), fin whale (Balaenoptera physalus;
[26, 29]), Risso’s dolphin (Grampus griseus; [29]), striped dolphin (Stenella coeruleoalba; [29]),

common bottlenose dolphin (Tursiops truncatus) [29, 30], Atlantic bluefin tuna (Thunnus
thynnus; [31]), basking shark (Cetorhinus maximus; [26]), American alligator (Alligator missis-
sippiensis; [32]), European eel (Anguilla anguilla; [33]), as well as crustacean, mollusc, and fish

species [27, 34]. These studies have detected phthalate parent compounds and/or metabolites

in a variety of matrices (e.g., skin, blubber, muscle, urine), with variable concentrations

reported within and across species (Table 1).

A recent study of free-ranging common bottlenose dolphins sampled in Sarasota Bay, Flor-

ida, USA during 2016 and 2017 (n = 17) detected phthalate metabolite concentrations among

70% of dolphins sampled, suggesting prevalent environmental exposure to these man-made

chemicals [30]. As top-level predators with a long lifespan (>60 years; [35]), year-round resi-

dent bottlenose dolphins serve as sensitive gauges to detect disturbances in their local environ-

ment [36]. This has been demonstrated in epidemiologic studies of dolphin health impacts

linked with PCBs [37, 38], harmful algal blooms [39], and oil-associated toxin exposure [38,

40]. Unfortunately, the extent, sources, and impacts of widespread phthalate exposure in bot-

tlenose dolphins are not yet understood. The objective of this study was to compare bottlenose

dolphin phthalate metabolite concentrations to levels reported for human reference
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populations (i.e., NHANES) and use a One Health approach to develop hypotheses for phthal-

ate-associated health impacts for exposed bottlenose dolphins. “One Health” is a term used to

describe gained knowledge of wildlife health by studying humans, and vice versa [41]. In this

study, phthalate-associated health effects reported in human epidemiological studies were

used to predict potential dolphin health impacts that will be explored in future investigations.

Materials and methods

Dolphin study population

Bottlenose dolphins have been the subject of population and health studies in Sarasota Bay, FL

since 1970 [42]. The study area includes inshore waters between southern Tampa Bay (approx-

imately 27.56˚N) and Venice Inlet (approximately 27.10˚N), and offshore of the barrier islands

Table 1. Mean concentrations (solid mass reported as wet weight (w.w.) or dry weight (d.w.)) of monoethyl phthalate (MEP) and mono-(2-ethylhexyl) phthalate

(MEHP) with corresponding ranges and standard deviations as reported in varying matrices from other marine species.

Species N Sampling Pd. MEP mean

(s.d.)

MEP range MEHP mean (s.d.) MEHP range Matrix

Harbor porpoise (Phocoena phocoena; [28]) 100 2016–2017 5.99 ng/g w.

w.

2.62–17.4

ng/g w.w.

- - Liver

Fin whale (Balaenoptera physalus; [26]) 5 2007–2013 - - Approximately 190 ng/g l.b.

reported graphically

- Blubber

Fin whale (Balaenoptera physalus; [29]) 3 2014 - - <LOD - Blubber

Risso’s dolphin (Grampus griseus; [29]) 1 2014 - - 463.7 ng/g d.w. - Blubber

Common Bottlenose dolphin (Tursiops
truncatus; [29])

1 2014 - - 1770 ng/g d.w. - Blubber

Striped dolphin (Stenella coeruleoalba; [29]) 2 2014 - - 1720 ng/g d.w. - Blubber

Atlantic Bluefin tuna (Thunnus thynnus; [31]) 23 2012 - - 2.13 (1.52) ng/g w.w. 1.58–6.30 ng/

g w.w.

Muscle

Basking shark (Cetorhinus maximus; [26]) 6 2006–2013 - - Approximately 90 ng/g l.b.

reported graphically

Muscle

American alligator (Alligator mississippiensis;
[32]) Everglades

9 Sampling year not

reported

- - 4,540 (11,800) ng/mL ND-35,700

ng/mL

Urine

American alligator (Alligator mississippiensis;
[32]) Okeechobee–Belle Glade

10 Sampling year not

reported

- - 1,490 (1,290) ng/mL ND-11,500

ng/mL

Urine

American alligator (Alligator mississippiensis;
[32]) Okeechobee–Moonshine Bay

10 Sampling year not

reported

- - 1,290 (3,470) ng/mL ND-11,100

ng/mL

Urine

American alligator (Alligator mississippiensis;
[32]) Woodruff

9 Sampling year not

reported

- - 56.4 ng/mL ND-506 ng/

mL

Urine

American alligator (Alligator mississippiensis;
[32]) Apopka

12 Sampling year not

reported

- - - - Urine

European eels (Anguilla Anguilla; [33]) 117 2010 33 (108) ng/

g d.w.

- 282 (206) ng/g d.w - Fillet

muscle

Roach (Rutilus rutilus; [34]) 4 Sampling year not

reported

53 (15.3) ng/

mL

- 15.5 ng/mL - Bile

Roach (Rutilus rutilus; [34]) 4 Sampling year not

reported

28.6 (4.9)

ng/mL

- 122 (7.7) ng/mL - Plasma

Roach (Rutilus rutilus; [34]) 4 Sampling year not

reported

263 (154)

ng/g d.w.

- 237 (81) ng/g d.w. - Liver

Prawn [27] 20 2013 ND-6.82 ng/

g w.w.

- ND-61.6 ng/g w.w. - Edible

tissue

Mollusc [27] 6 2013 0.42–3.31

ng/g w.w.

- 7.50–11.6 ng/g w.w. - Edible

tissue

Fish [27] 69 2013 0.06–4.70

ng/g w.w.

- ND-24.8 ng/g w.w. - Edible

tissue

https://doi.org/10.1371/journal.pone.0240506.t001
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to approximately 82.75˚W. Using well-established techniques developed and refined over 50

years, free-ranging dolphins were encircled by a net and temporarily restrained to collect bio-

logical samples indicative of an individual’s health [36]. The sex of each dolphin was deter-

mined by physical examination, and age was estimated by either known birth year or the

observation of dentinal growth layers [43]. A combination of factors were used to determine

maturity status including age (� 10 years; [44]), calving history, pregnancy diagnosis via ultra-

sonography, or sex hormone concentrations [45, 46]. Bottlenose dolphin health assessments

were conducted under scientific research permit #522–1785, #15543, and #20455 from the

National Oceanic and Atmospheric Administration’s (NOAA) National Marine Fisheries Ser-

vice (NMFS), and research studies were reviewed and approved annually by Mote Marine

Laboratory’s Institutional Animal Care and Use Committee (IACUC).

Urinary phthalate metabolite detection and quantification

This study relied upon bottlenose dolphin urinary metabolite concentrations reported in Hart

et al. [30] (sample years 2016–2017), as well as results from analyses conducted on samples col-

lected 2010–2015 and 2018–2019. Urine samples were opportunistically collected aseptically

via catheterization from bottlenose dolphins during routine health assessments conducted

under permit from the National Oceanic and Atmospheric Administration’s (NOAA)

National Marine Fisheries Service (NMFS) between 2010 and 2019, as described in Wells [42]

and Hart et al. [30]. Archived urine samples for the years 2010–2015 were retrieved from the

Sarasota Dolphin Research Program’s specimen bank, where urine samples were stored frozen

at -80˚C. The protocol for sample collection and storage for years 2016–2019 are described in

Hart et al. [30]. All urine samples were screened for eight phthalate metabolites including:

monomethyl phthalate (MMP), monoethyl phthalate (MEP), monoisobutyl phthalate (MiBP),

monobutyl phthalate (MBP), monobenzyl phthalate (MBzP), mono-(2-ethylhexyl) phthalate

(MEHP), mono-(2-ethyl-5-oxohexyl) phthalate (MEOHP), and mono-(2-ethyl-5-hydroxy-

hexyl) phthalate (MEHHP). Methods for analyzing phthalate metabolite concentrations in

bottlenose dolphin urine were based on protocols established in Hart et al. [30] and conducted

at the NOAA National Centers for Coastal Ocean Science (NCCOS) lab in Charleston, SC,

USA. Briefly, urine samples were spiked with 13C-labeled internal standards prior to an enzy-

matic de-glucuronidation step. Phthalate metabolites were isolated by solid phase extraction

(SPE) using an Agilent Bond Elute Nexus SPE. Male samples that had excess sperm were cen-

trifuged (1,000 rpm for 10 minutes) prior to extraction to separate the urine and prevent the

SPE cartridge from becoming clogged. Analytical separation, detection, and quantification of

phthalate metabolites in urine were performed using high performance liquid chromatography

(HPLC; Agilent 1100) paired with electrospray ionization (ESI) tandem mass spectrometry

(AB Sciex API 4000; ESI- mode). Compounds were separated using a C18 analytical column

(Waters XBridge 50 mm x 2.1 mm; 2.5 μm particle size) with a gradient mobile phase of HPLC

water with 0.1% acetic acid and acetonitrile with 0.1% acetic acid. Analytes of interest were

identified using multiple reaction monitoring (MRM; S2 Table) and quantified against stan-

dard calibration curves [17, 30], and the limit of detection (LOD) was determined for each

metabolite based on the lowest point of the calibration curve that could be detected on the

instrument, divided by the volume of urine extracted. Complete details of the instrumental

methodology is detailed in Hart et al. [30]. As reported in Hart et al. [30] quality assurance and

control methods included laboratory spikes, laboratory blanks, field blanks, a standard refer-

ence material (SRM 3672), and matrix spikes. Both lab and field blanks were used to correct

urine samples for equipment contamination. Urine samples were run in batches of 10–12,

with one corresponding blank per batch. Field blanks were taken in triplicate for each week
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where sampling occurred and used to correct all samples in the corresponding year. In addi-

tion, calibration verification was conducted for each batch of urine samples to ensure the

integrity of the calibration curve.

Human reference population data

Human geometric mean concentrations (ng/mL) were retrieved from NHANES for the fol-

lowing study periods: 2009–2010; 2011–2012; 2013–2014; 2015–2016; concentrations used for

analyses were not corrected for creatinine [16]. These study periods were selected due to the

temporal overlap with our bottlenose dolphin samples (2010–2019), although NHANES con-

centrations were unavailable for years following 2016. Phthalate metabolite concentrations

were measured in randomly selected individuals from the total NHANES sample population

for a given study period (n~2,500; [16]). Metabolite concentrations were quantified from urine

samples using mass spectrometry in the CDC’s Environmental Health Laboratory [17], and

non-creatine corrected measurements were used for comparisons to bottlenose dolphins [16].

Statistical analysis

Minimum, maximum, and geometric mean (GM) concentrations were calculated for all

phthalate metabolites where concentrations exceeded the limit of detection (LOD) for at least

10% of the bottlenose dolphin study sample. Geometric means were calculated for all detect-

able concentrations across the entire study period (2010–2019). Concentrations were natural

log-transformed prior to testing for correlation between major metabolites. Geometric mean

concentrations of detectable phthalate metabolites (i.e., concentrations >LOD) were com-

pared between bottlenose dolphins and human reference populations by evaluating overlap of

the 95% confidence intervals for each pairwise comparison (e.g., dolphin GM (2010–2019) vs.

NHANES GM (2009–2010) [47]. For each NHANES study period (2009–2010; 2011–2012;

2013–2014; 2015–2016), comparisons between bottlenose dolphins and humans relied on

reported geometric mean concentrations for the total NHANES sample (i.e., all age groups,

gender, and race/ethnicity). Statistical significance was evaluated using α = 0.05 and all analy-

ses were performed using Statistica (v. 13.3, Tibco Software Inc., Palo Alto, CA) or R (v. 3.6.1,

R Foundation for Statistical Computing, Vienna, Austria) computing software.

Results

Study sample details

Between 2010 and 2019, 69 urine samples were screened for detectable concentrations of

phthalate metabolites. These samples included 17 dolphin specimens reported in Hart et al.

[30]. Thirteen dolphins were repeatedly evaluated in Sarasota Bay health assessments during

the study period, but only the most recent specimens were used for the analysis herein (n = 51

unique individuals). More than half of the dolphins were female (58.82%), and 66.67% were

considered adults.

Overall phthalate metabolite detection in sampled bottlenose dolphins

Detectable concentrations (i.e., concentrations > LOD) of at least one metabolite were mea-

sured in 74.51% of individual dolphins sampled (n = 51; 2010–2019). Limits of detection are

provided in Table 2. In addition to data reported by Hart et al. [30], the most commonly

detected metabolites were MEHP (n = 28) and MEP (n = 15; S1 Table).
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Findings by major metabolites

MEHP was the most commonly detected metabolite among sampled bottlenose dolphins

(54.90%), with a geometric mean concentration of 4.57 ng/mL (95% CI:2.37–8.80 ng/mL) and

overall range of<LOD to 76.60 ng/mL (Table 3). Approximately 29% of screened dolphins

had detectable concentrations of MEP, with a geometric mean of 4.51 ng/mL (95% CI: 2.77–

7.34 ng/mL) and range of<LOD to 33.40 ng/mL (Table 3). Natural-log transformed concen-

trations of MEP and MEHP were not significantly correlated (r = -0.12; p = 0.41). In fact, only

nine of the 28 dolphins (32.14%) with detectable concentrations of MEHP had detectable con-

centrations of MEP.

Comparisons between bottlenose dolphin and human concentrations

Comparisons to human urinary phthalate metabolite concentrations were conducted for

detectable concentrations of MEP and MEHP. Geometric mean concentrations of MEP ran-

ged between 33.60 and 64.40 ng/mL for NHANES study samples (2009–2016; [16]; Table 4).

The geometric mean concentration of MEP for bottlenose dolphins (4.51 ng/mL; 95% CI:

2.77–7.34 μg/L) was significantly lower than NHANES for all study years (p<0.05, Table 4 and

Fig 1). For MEHP, NHANES geometric mean concentrations were only reported for 2009

(1.59 ng/mL) and 2010 (1.36 ng/mL) because of the high prevalence of non-detectable concen-

trations in subsequent years ([16]; Table 4). In our study, the geometric mean concentration of

detectable MEHP (4.57 ng/mL; 95% CI:2.37–8.80 ng/mL) was significantly higher than

NHANES 2009 and 2010 (p<0.05, Table 4 and Fig 1).

Discussion

This study revealed prevalent exposure (74.51%, n = 51) to phthalates among free-ranging bot-

tlenose dolphins sampled in Sarasota Bay, FL (2010–2019). MEHP was detected in over half of

the individuals sampled (n = 28), while MEP was detected in nearly one-third (n = 15) of bot-

tlenose dolphins. Detectable concentrations of these metabolites were highly variable for bot-

tlenose dolphins in this sample (MEHP: 0.39–76.60 ng/mL; MEP: 1.60–33.40 ng/mL), which

Table 2. Range of limits of detection for phthalate metabolites (ng/mL) measured in urine samples from common bottlenose dolphins sampled during health

assessments conducted in Sarasota Bay, FL, USA (2010–2019).

MMP MEP MEHP MEOHP MEHHP MBzP MBP MiBP

LOD 0.10–0.167 1.0–3.43 0.24–0.60 0.10–0.70 0.20–0.90 0.10–0.80 0.50–0.85 0.50–0.983

This table includes limits of detection reported in Hart et al. [30].

https://doi.org/10.1371/journal.pone.0240506.t002

Table 3. Summary of common phthalate metabolites (ng/mL) detected in common bottlenose dolphins sampled

during health assessments conducted in Sarasota Bay, FL, USA (2010–2019).

MEP MEHP

Number >LOD 15 28

% Above Limit of Detection 29.41 54.90

Minimum1 1.30 0.26

Maximum1 33.40 76.60

GM among detects (95% CI)1 4.51 (2.77–7.34) 4.57 (2.37–8.80)

1reported for dolphins with concentrations >LOD for metabolite.

GM = geometric mean.
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has been observed in other species (e.g., American alligator, Mediterranean fin whale, harbor

porpoise; Table 1), and could be attributed to diet, metabolism, or spatiotemporal exposure

differences [25, 32]. Environmental introduction of phthalates can occur via wastewater con-

tamination, groundwater intrusion via landfill leakage, surface runoff, direct application (e.g.,

agricultural, residential, and industrial pesticides and fertilizers), or atmospheric evaporation

[1, 3, 48, 49]. Removal of phthalate metabolites from wastewater is variable, ranging between

29% and 100% depending on the compound, treatment methodology, and treatment time [48,

49]. Once in the environment, persistence in different substrates can be affected by tempera-

ture, precipitation, microbial conditions, and chemical properties [49].

Table 4. Comparison of detectable concentrations of urinary phthalate metabolites between bottlenose dolphins sampled in Sarasota Bay, FL, USA (2010–2019)

and human reference populations (NHANES; 2009–2010, 2011–2012, 2013–2014, 2015–2016).

Bottlenose

Dolphins

NHANES 2009–

2010

p3 NHANES 2011–

2012

p3 NHANES

2013–2014

p3 NHANES 2015–

2016

p3

MEHP <0.05 <0.05 - -

N 28 2,749 2,489 2,685 2,975

GM_detects1 (95%
CI)

4.57 (2.37–8.80) 1.59 (1.41–1.79) 1.36 (1.25–1.49) NA2 - NA2 -

MEP

N 15 2,749 <0.05 2,489 <0.05 2,685 <0.05 2,975 <0.05

GM_detects1 (95%
CI)

4.51 (2.77–7.34) 64.40 (58.30–71.20) 37.90 (33.00–43.50) 35.70 (32.10–

39.80)

33.60 (29.30–38.40)

1reported for dolphins with concentrations >LOD for metabolite; concentration is reported in ng/mL
2proportion <LOD was too high to calculate reliable estimate [16]
3p value evaluated based on 95% confidence interval overlap [47]

https://doi.org/10.1371/journal.pone.0240506.t004

Fig 1. Geometric mean concentrations and 95% confidence intervals for detectable phthalate metabolites for Sarasota Bay

bottlenose dolphins (“A”) and NHANES human reference populations (“B-E”: 1) MEHP (n = 28); 2) MEP (n = 15).

Bottlenose Dolphin (A); NHANES 2009–2010 (B); NHANES 2011–2012 (C); NHANES 2013–2014 (D); NHANES 2015–

2016 (E).

https://doi.org/10.1371/journal.pone.0240506.g001
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Dolphin-human comparisons: MEP and MEHP

Bottlenose dolphin MEP concentrations were significantly lower than reported exposure in

human reference populations [16]. MEP is the monoester metabolite of diethyl phthalate

(DEP), which is added to a wide range of commercial goods including plastic items, food pack-

aging, personal care products, cosmetics, pesticides, and some medications [1, 50–52].

Humans are directly exposed via inhalation, ingestion, or dermal absorption of products made

with DEP or contaminated by DEP, albeit at variable concentrations [1, 14]. Epidemiologic

studies of human exposure to DEP demonstrate higher risk among users of certain personal

care products, especially cosmetics and products containing fragrance [53–58]. Given the pri-

mary sources for DEP exposure in humans, it is not surprising that bottlenose dolphin concen-

trations of MEP were significantly lower than NHANES levels. Compared to other commonly

used phthalate esters, DEP has a lower molecular weight, is more quickly degraded by

microbes, and has a shorter half-life in marine environments (< 1 day to 2 weeks; [49, 59]). As

a result, DEP may be less bioavailable than other phthalate parent compounds for free-ranging

bottlenose dolphins.

The geometric mean concentration of MEHP for bottlenose dolphins was significantly

higher than NHANES concentrations [16]. MEHP is a metabolite of di-(2-ethylhexyl) phthal-

ate (DEHP), which is primarily used to increase the flexibility of plastic (e.g., polyvinyl chlo-

ride, food packaging, wire covering, toys, medical tubing; [3, 50, 60]). DEHP can also be found

in cosmetics, personal care products, oil and paint [3], although studies have suggested this is

due to migration from the plastic containers housing these products [14, 61]. Because of weak

bonds with the corresponding substrate, DEHP can be easily leached into food and the envi-

ronment [3, 60].

Human exposure occurs primarily through the ingestion of dust and food stored in packag-

ing containing DEHP, particularly dairy, meats, and other fatty foods as DEHP is lipophilic [3,

14, 60–62]. The highest doses of exposure, however, occur among people requiring transfu-

sions or dialysis due to DEHP-containing medical equipment [3]. Because DEHP is one of the

most abundantly used phthalates, contamination of the natural environment is expected.

DEHP introduction into the marine environment can occur via agricultural [63] and non-per-

meable surface runoff [48], as well as wastewater effluent, although removal can be quite high

depending on treatment methods (e.g., up to 95%, [48]). DEHP is the most prevalent phthalate

detected in freshwater, soil, atmospheric and landfill leachate samples, and this environmental

pervasiveness is likely due to many factors including high production, increased urbanization,

and chemical properties that slow down the biodegradation process [49]. Resident dolphins in

Sarasota Bay, FL are considered selective feeders, choosing soniferous fish disproportionately

relative to their availability [64, 65]. While diet may be a source of exposure to DEHP for bot-

tlenose dolphins, evidence from Staples et al. [59] suggests that prey ingestion is not likely the

primary exposure route. In fact, Staples et al. [59] demonstrated that phthalate ester concentra-

tions actually decrease with increasing trophic levels and suggested that higher-order meta-

bolic biotransformation might outpace bioaccumulation.

Plastics are of increasing concern to environmental health because of their ubiquitous use

in industrial settings and in the production of many commercial goods [66], combined with

the fact that plastic waste materials are slow to degrade and therefore persist in the environ-

ment [67]. Geyer et al. [68] estimated a global plastic production of 380 million tons in 2015,

of which 11% was polyvinyl chloride. Plastic additives, composed primarily of plasticizers such

as phthalates, accounted for 7% of non-fiber plastic mass [68]. Approximately 60% of plastics

are disposed of in landfills or the natural environment [68], so it seems reasonable that plastic

pollution could be a source of phthalate exposure for marine fauna. Marine plastic debris is
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often categorized by size [67]; macro- and mesoplastics (� 5mm diameter) enter the marine

environment directly as waste, while microplastics may not be filtered out by water treatment

facilities or result from fragmentation of larger plastic items [24, 67]. Eriksen et al. [69] esti-

mated that our oceans contain over 5.25 trillion plastic particles, of which 92.4% are microplas-

tics. Previous cetacean studies provide evidence of a link between environmental microplastic

contamination and phthalate exposure, based on blubber samples of stranded cetaceans and

water/plankton samples from nearby seas and estuaries [25, 26, 29]. MEHP concentrations

measured in blubber and muscle samples from stranded fin whales and bycaught basking

sharks were higher in animals sampled in regions with significantly higher water and plankton

microplastic concentrations [25, 26]. While the potential exposure sources of DEHP and other

phthalate compounds are not yet understood for Sarasota Bay bottlenose dolphins, the detec-

tion of high concentrations of MEHP warrants further investigation.

Potential implications for bottlenose dolphin exposure and health impacts

Between 2010 and 2019, Sarasota Bay bottlenose dolphin urinary concentrations of MEHP

ranged between <LOD and 76.60 μg/L, with a geometric mean concentration of 4.57 μg/L

(95% CI: 2.37–8.80 μg/L). Upon exposure, DEHP is hydrolyzed into MEHP and conjugated

before urinary excretion. Hydrolysis occurs in the liver through mechanisms involving the

alpha-mediated enzymes of the peroxisome proliferator-activated receptor (PPARα) and effi-

ciency can vary among individuals. Metabolites of DEHP (e.g., MEHP, MEOHP, MEHHP)

can bind to PPARα and disrupt normal kidney, liver, heart, and reproductive function [60]. In

humans, higher MEHP concentrations have been associated with myriad health impacts

including decreased oocyte counts [70], early pregnancy loss [71], reduced sperm quality [72],

and abnormal reproductive development [73], among others. These phthalate-associated

health impacts may be due to interference in steroid, sex, or thyroid hormone circulation, but

the occurrence and magnitude of endocrine disruption seem to vary by phthalate ester type,

degree of exposure, sex, pregnancy, and age [3–5, 8–12, 60, 74–79]. While epidemiological

studies in humans and experimental studies in laboratory rodents indicate potential health

risks for bottlenose dolphins, we found that direct comparisons to human studies were hin-

dered as most papers reported concentrations were adjusted for creatinine or specific gravity.

Additionally, NHANES concentrations of MEHP have declined in recent years [16], suggest-

ing reduced exposure and inhibiting studies to identify and validate health impacts. Thus, con-

tinued study of Sarasota Bay bottlenose dolphins will enable epidemiological investigations of

hormonal, physiological, and reproductive correlates with phthalate exposure, due in large

part to long-term monitoring efforts and regularly conducted health assessments.

Study strengths and limitations

This study relied upon well-established analytical methods developed by the CDC to screen for

phthalate metabolites in mammalian urine samples. Urinary phthalate metabolites are consid-

ered the most reliable indicators of exposure in human populations due to the rapid metabo-

lism of these chemicals, and because sampling equipment can be contaminated with parent

compounds during analysis [18, 80, 81]. Additionally, several methods were used to avoid

sample and analytical contamination and validate reported phthalate metabolite data mea-

sured in these dolphin samples. The cross-sectional study design, however, reflects prevalent,

rather than cumulative, exposure. Studies in humans suggest urinary phthalate metabolite con-

centrations measured in spot urine samples can reflect prior exposure to parent compounds of

a time spanning months to a year (3–6 months; [17, 82]); however, this information is not yet

available for dolphins.
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To our knowledge, this is the largest assessment of phthalate exposure within any wild

marine mammal species. The large sample size provided statistical power to facilitate compari-

sons between dolphin and human concentrations. To facilitate comparability between study

samples, we selected NHANES years that overlapped the timing of our dolphin sample collec-

tion, thereby helping to control for decreasing trends in human exposure to MEP and MEHP

over time [16]. We observed significant differences in exposure to MEP (lower in dolphins)

and MEHP (higher in dolphins), but despite having different routes and sources for exposure,

metabolic differences between dolphins and humans should also be considered as a possible

explanation for divergent metabolite concentrations. Resting metabolic rate (RMR) for a 150

kg bottlenose dolphin in Sarasota Bay is estimated to be 3.9 mL O2 min-1 kg-1 [83], while

McMurray et al. (2014) [84] estimate an average RMR between 2.8 mL O2 min-1 kg-1 and 3.0

mL O2 min-1 kg-1 for men and women. Physiologic adaptations to help dolphins dive, thermo-

regulate, and forage are likely to impact the biotransformation of phthalate parent compounds;

however, these mechanisms, as they relate to phthalate metabolism, are not currently

understood.

Finally, laboratory and human epidemiological studies investigating phthalate-related

health impacts have demonstrated mixed findings [3, 72, 85] likely due to biases in study

design, data collection, or sampling demographic. As such, future studies to investigate bottle-

nose dolphin phthalate exposure and health impacts should consider the influence of potential

confounding variables.

Conclusions

Findings from this study indicate higher exposure to MEHP among bottlenose dolphins

inhabiting Sarasota Bay, FL, compared to U.S. human reference populations; however, the sig-

nificance of these results is uncertain. For decades, bottlenose dolphins have been considered

sentinels of environmental health and indicators of potential health risks to human users of

coastal resources [86]. For example, studies of bottlenose dolphins inhabiting waters near

Brunswick, GA and Miami, FL, documented unprecedented exposure to toxic, polychlorinated

biphenyl compounds (PCBs; [87–90]), which corresponded with high exposure risks for

humans living in the same area [91]. Backer et al. [91] suggest that because of trophic concur-

rence, dolphins can gauge and even predict environmental pollution risks for coastal human

populations (and vice versa). Similarly, Rabinowitz et al. [92] state that ‘shared health risks’

can facilitate the comparison of exposure risks and corresponding health outcomes between

wildlife and human populations. Health impacts to bottlenose dolphins resulting from elevated

exposure to the MEHP parent compound (DEHP) are currently unknown. Accordingly, stud-

ies relying on long-term reproductive health data collected from Sarasota Bay bottlenose dol-

phins to investigate associations between phthalate exposure and indicators of endocrine

disruption, reproductive impairment, or abnormal growth and development are underway.
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