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ABSTRACT

RNA-binding proteins (RBPs) are crucial factors of
post-transcriptional gene regulation and their modes
of action are intensely investigated. At the center
of attention are RNA motifs that guide where RBPs
bind. However, sequence motifs are often poor pre-
dictors of RBP-RNA interactions in vivo. It is hence
believed that many RBPs recognize RNAs as com-
plexes, to increase specificity and regulatory possi-
bilities. To probe the potential for complex formation
among RBPs, we assembled a library of 978 mam-
malian RBPs and used rec-Y2H matrix screening to
detect direct interactions between RBPs, sampling
> 600 K interactions. We discovered 1994 new in-
teractions and demonstrate that interacting RBPs
bind RNAs adjacently in vivo. We further find that
the mRNA binding region and motif preferences of
RBPs deviate, depending on their adjacently bind-
ing interaction partners. Finally, we reveal novel RBP
interaction networks among major RNA processing
steps and show that splicing impairing RBP muta-
tions observed in cancer rewire spliceosomal inter-
action networks. The dataset we provide will be a
valuable resource for understanding the combinato-
rial interactions of RBPs with RNAs and the resulting
regulatory outcomes.
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INTRODUCTION

RNA-binding proteins (RBPs) interact with RNAs from
the first moments of transcription and guide RNA pro-
cessing, nuclear export, cytoplasmic localization, transla-
tion and decay. As such, RBPs are crucial for guiding gene
expression in time, space and depending on the cellular con-
text. Hundreds of RBPs have been discovered so far (1)
and numerous methods have been developed to understand
which RNAs are bound by which RBPs and where (2–6).
The locations where RBPs bind an RNA are guided by pri-
mary RNA sequences (7), tertiary structures (8,9) and post
translational modifications (10). These locations can pro-
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vide information about the function of RBPs (11). Still,
understanding the determinants of RBP-RNA interactions
is a controversial and intense field of research. Predicting
where an RBP might bind based on RNA motifs, that are
often degenerate, is not straightforward; many RBP mo-
tifs exist on a large fraction of the transcriptome, but only
a small percentage of these motifs are actually bound in
vivo (12). Possible explanations for this observation are that
an RBP motif can be sequestered in inaccessible secondary
structures (13), that motifs are sterically blocked by other
RBPs that bind an adjacent motif with higher affinity (14),
or that a larger sequence context is important for RBP tar-
get selection (12,15–16). Another possibility is that many
RBPs act in complexes (17–19) and that only when mo-
tifs for two or more RBPs are present in the right spacing
and orientation, efficient binding can occur. Complex for-
mation can increase specificity, affinity and avidity, thereby
increasing the precision of regulation (20). Also, combina-
torial binding of RBPs increases the possibilities for regu-
latory complexity and enables encoding of multiple check-
points (only when two or more RBPs bind, a process is
triggered). Such combinatorial sequence recognition is of-
ten observed for DNA-binding transcription factors, which
possess a range of cooperative DNA binding modes (21,22)
and can even alter their motif preference depending on their
interaction partner (23,24). In the case of RBPs, a few ex-
amples exist illustrating how RBP-RBP interactions trigger
high-affinity binding, enable a specific process or alter the
function of an RBP depending on its interaction partner
(18,25–28). To which extent combinatorial RNA-binding
mechanisms are employed by RBPs, however, is not system-
atically understood. A major limitation is an RBPome-scale
understanding of which RBPs directly interact. Detecting
direct RBP interactions has been difficult, potentially due
to the often disordered-domain mediated, transient inter-
actions amongst them, which are currently highlighted by
the intense research on liquid condensates formed by RBPs
(29). The problem is further illustrated by a number of affin-
ity purification-mass spectrometry (AP-MS) studies. Here,
the removal of RNA led to the loss of many interacting pro-
teins (30–33), possibly due to the washing steps required
which may lead to loss of weakly and transiently interact-
ing RBPs. A major advance are recently improved in vivo
proximity biotinylation techniques (34,35). However, these
techniques cannot distinguish between direct and indirect
interactions among RBPs either.

To systematically search for direct RBP interactions,
we hence used high-throughput recombination Yeast two-
hybrid (rec-Y2H) matrix screening (36) to probe >1 mil-
lion interactions between 1054 proteins. Of those, 978
were mammalian RNA-binding proteins and 76 were
microtubule-associated proteins (MAPs). The MAPs (mi-
crotubule motor proteins, motor protein cargo adaptors
and other microtubule binding proteins) were added as the
spatial organization of the transcriptome is emerging as
an important aspect of gene regulation and we intended
to put extra emphasis on detecting new interactions be-
tween RBPs and the microtubule-based transport machin-
ery. Using an improved rec-Y2H analysis pipeline, which
increases sensitivity while keeping the same specificity (see
Methods), we detected 1,994 novel interactions and vali-

dated 422 previously reported interactions. We show that
binary RBP interactions detected by our screen can predict
co-binding of RNAs and even proximal binding of RBPs
at transcriptome-scale, likely revealing new functional RBP
complexes. RBPs that show significant binding in imme-
diate proximity relative to randomized samples often en-
gage in multiple interactions that can alter their pre-mRNA
binding region preference. This may indicate interaction-
partner dependent functionality switching of RBPs. We fur-
ther report new RBP–RBP networks along the essential
processing steps of RNA metabolism. Finally, we use our
screen to reveal how pathogenic mutations of splicing fac-
tors rewire their interaction networks, providing possible
explanations for the observed splicing defects.

MATERIALS AND METHODS

Screen library assembly and rec-Y2H screening

The rec-Y2H assay (36) was built based on Clontech’s Gold
Matchmaker Y2H system, in which a bait protein is fused
to the Gal4 binding domain and a prey protein is fused to
the Gal4 activation domain. Upon interaction of a bait and
a prey protein, the Gal4 binding and activation domain are
brought together and activate the expression of different re-
porter genes, allowing growth of yeast cells in media lack-
ing histidine (His) and adenine (Ade), and conferring re-
sistance to the toxic drug Aureobasidin A (AbA). For rec-
Y2H screening, Clontech’s vectors were modified several-
fold: (i) Gateway cloning site were added to allow batch
insertion of ORFs, (ii) homology regions were inserted to
allow recombination of the bait and the prey vector upon
co-transformation in yeast cells, to produce a fused vec-
tor (pFAB), (iii) a TRP1 auxotrophic marker was added
to the bait vector (pBWH) and a 2� origin of replication
was added to the prey vector (pAWH). This allows only
yeast cells with recombined bait and prey vectors to prop-
agate in media lacking tryptophan (Trp). Briefly, to screen
the RBPome library, a library of ORFs was batch cloned
by Gateway technology into the bait (pBWH) and the prey
(pAWH) destination vectors. Both libraries were linearized,
exposing homology regions, and co-transformed into yeast.
Transformed cells were split into a recombination-selection
(RS) and a recombination-interactions-selection (RIS) cul-
ture. Only those cells, in which recombination of a bait and
prey vector occurred to produce a fused vector (pFAB), can
grow in RS media lacking Trp. The RS culture serves as nor-
malization sample to correct for differences in strain fre-
quency and fitness effects. Interacting bait and prey pairs
bring together the Gal4 binding and activation domains,
activating transcription of the independent reporter genes
ADE2 and HIS3, allowing cells to grow in the RIS me-
dia, lacking Trp (for recombination selection), Ade and
His (for interaction selection). After growth, colonies from
the RS and RIS media were harvested by centrifugation,
and fused plasmid DNA (the pFAB library) was extracted.
Fused plasmid DNA preps were sheared by Covaris, circu-
larized and regions containing the fused 3′ends of interact-
ing ORFs were selectively amplified by PCR, introducing Il-
lumina compatible adapters and index sequences. The iden-
tity of the interacting pairs was analysed by paired-end next-
generation sequencing (MiSeq300). Detailed protocols for
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rec-YnH screening (both, rec-Y2H for protein-protein in-
teraction screening and rec-Y3H for protein-RNA interac-
tion screening) are published (4,36). Minor changes were
applied due to the larger size of the library screened in the
present study: the number of pENTR-ORF sub-pools to
build the screen library was adapted to cover the whole
library, with a maximum of 96 ORF clones in each sub-
pool. The number of yeast transformations was expanded
to 48 transformation per screen to account for a higher li-
brary complexity. Further, 12 Zymoprep™ Yeast Plasmid
Miniprep II columns were used to extract the yeast plasmid
DNA. 20 independent R1/R2 PCR reactions and 12 P5/P7
PCR reactions were done for each selection medium (RS
& RIS). The pENTR-ORF clones were either picked from
the Human Entry ORFeome v8.1 collection (transOMIC)
or cloned from a human or mouse brain cDNA library.

rec-Y2H data analysis

Raw paired-end reads (read 1 and read 2) from RS and RIS
conditions were analyzed with the rec-Y2H program from
GitHub (https://github.com/lionking0000/recYnH). As de-
scribed in (36), read 1 and read 2 were filtered, trimmed,
and finally mapped with reference protein sequences using
blastn. We calculated rec-Y2H interaction scores for H47
set and the large set as we previously described (avgIS).
In order to increase the detection sensitivity (Supplemen-
tary Figure S1G), we summed all raw paired-end reads be-
fore applying a noise filter and reconstructing the null ma-
trix. Then the noise-filtered signal was normalized by the
null matrix to generate the interaction score (sumIS) ma-
trix. To calculate the IS differences for the RBM10, SRRM3
and SRRM4 mutation data, we firstly calculated interaction
scores of each case and then subtracted the interaction score
of wild type proteins for each corresponding binding part-
ner. The interaction enrichment matrix was calculated by
the observed number of interactions between proteins that
belong to two classes divided by the number of interactions
from the randomly shuffled same number of protein pairs.
We used the same strategy to show the interaction enrich-
ment between proteins with identical subcellular localiza-
tion.

NanoBRET validation

pHTNW (Addgene #136403) and pNLF1W (Addgene
#136404) have been previously described (Yang et al. 2018).
ORFs of interest were cloned into pENTR vector by Gate-
way BP reaction and then transferred either to pHTNW
or pNLF1W by Gateway LR reaction (Thermo Fisher Sci-
entific) following the manufacturer’s protocol. LR reaction
were transformed into 10 ul of OmniMAX™2 competent
cells (Thermo Fisher Scientific). Positive clones were con-
firmed by restriction analysis using BsrGI enzyme and by
sequencing.

HEK293T cells were plated in 24-well plates at a den-
sity of 1.4 × 105 cells per well. Cells were transfected with
500 ng of pHTNW-ORF, 5 ng of pNLF1W-ORF, 0.75 �l of
Lipofectamine 3000 and 1 �l of P3000 Reagent (Thermo
Fisher Scientific). After 20 h, each transformation was re-
plated in four wells of 96-well plates at a density of 1

× 104 cells per well for duplicate control and experi-
mental samples (technical replicates), and PPIs were an-
alyzed with NanoBRET™ Nano-Glo® Detection System
kit (Promega) following manufacturer’s instructions. Each
transformation experiment was performed at least twice.
The corrected NanoBRET ratio was calculated according
to the manufacturer’s instructions.

Prediction of domain-domain mediated interactions (DDIs)
and domain-disordered linear motif mediated interactions
(DDLIs)

The information about known protein-protein interaction
mediating domains was obtained from the 3did database
(37). As 3did uses Pfam accessions, we mapped the in-
put protein sequences into the Pfam domain names and
Pfam accessions. We used HMMER 3.3.2 (38) using the
Pfam 33.1 database (39) and defined Pfam domains using E-
value cut-off E ≤ 1e−15. The resulting dataset is provided
as Supplementary Table S3. Then we calculated the num-
ber of PPIs that have known DDI pairs. For the domain-
disordered linear motif mediated interactions, we obtained
Pfam accessions and the interacting short linear motif
(SLiM) sequence information from the ELM database (40).
To predict DDLIs, we first searched for SLiMs with regular
expressions in the input sequences. Then we filtered for in-
trinsically disordered regions (IDRs) within SLiMs which
were predicted using IUPred2A (41). To compare interac-
tions detected by rec-Y2H and random pairs, we randomly
compiled sets of 2416 pairs (same length as the list of in-
teraction pairs with sumIS ≥ 7.1) from the input protein
library (Supplementary Table S1). We repeated the random
sampling processes 100 times to calculate the average and
standard deviation. The two-tailed P-value was calculated
based on this null distribution.

Protein–RNA interaction data analysis

Interaction data for 94 RNA-binding proteins for which
eCLIP data were available and which were assayed in our
screen were obtained from the ENCODE Project’s data
portal in narrowPeak BED format (2,42) (see Supplemen-
tary Table S4 for sample accessions). We used the ‘repro-
ducible’ set of interactions (43), where a peak must be found
with precisely the same start and end coordinates in both
replicates in a given cell type to be included. Interaction
data were filtered using thresholds of P < 10–3 and ≥8-
fold enrichment over ‘SMInput’ (paired size-matched in-
put) (43). The genomic coordinates of the eCLIP peaks de-
scribed above were mapped to genes they overlapped with
from GENCODE release 27 (August 2017) (44). All plots
were generated using version 1.3.0 of the tidyverse pack-
ages (principally ggplot2 3.3.2) in R 3.6.0 (see https://github.
com/langbnj/rbpome for scripts). Other packages used were
reshape2 1.4.4, glue 1.4.1, broom 0.5.6, scales 1.1.1, Hmisc
4.4–0 and corrplot 0.84.

Positive controls were defined as RBP pairs which were
identified as direct interactors by at least two studies in
BioGRID release 3.5.185 (May 2020) (45). For this, stud-
ies using co-crystal structures, reconstituted complexes or
two-hybrid approaches were considered capable of report-

https://github.com/lionking0000/recYnH
https://github.com/langbnj/rbpome


Nucleic Acids Research, 2021, Vol. 49, No. 12 6705

ing direct interactions. The resulting controls were FMR1-
FXR2, HNRNPK-QKI, RBFOX2-QKI, SFPQ-NONO
and U2AF1-U2AF2.

Random RBP pairs were used as a negative control. For
this, we randomly chose two proteins out of the 94 RBPs
with available ENCODE eCLIP data to arrive at a unique
set equal in size to the interactions identified in our screen
(resampling without replacement).

RBP target set similarity quantification

To quantify the similarity of target sets between pairs of
RNA-binding proteins (Figure 2B and F), we employed the
Jaccard index (defined as the size of the intersection of the
two sets, i.e. RNA target genes bound by both RBPs, di-
vided by the size of their union, i.e. the total number of
RNA target genes bound by at least one of the RBPs). To
reduce redundancy and a potential bias towards genes en-
coding multiple alternative transcripts through alternative
splicing or initiation sites, this analysis was performed at
the gene level, as determined by peak overlap as described
above. We compared the Jaccard index values of the RBP
pairs whose interactions were identified in our screen to ran-
dom pairs (negative control as described above). We used
both a resampling P-value across 10,000 resamples and a
one-tailed Wilcoxon rank-sum test between the screen hits
and the pooled resamples to ascertain whether the observed
RBP pairs displayed higher target set similarity than ran-
dom pairs. For performance reasons, only one of these ran-
dom resamples is shown in the violin plots of Figure 2B and
C.

Conditional probability of co-binding

The conditional probability of co-binding was defined as
the probability p(A|B) of protein A binding a transcript
from a gene of interest, given protein B binding a transcript
from the same gene (Figure 2C and F). As for the target
set similarity above, this analysis was performed at the gene
level to reduce bias arising from the number of alternative
transcripts per gene. The statistical analysis was likewise
performed as above.

RBP binding distance measurement

To determine the distance observed between the binding
sites of a pair of RNA-binding proteins, we compared the
positions of the 5′ ends of all their peaks within a given
gene and used the overall per-gene minimum as a metric
of proximal binding. The 5′ end of an eCLIP peak is pre-
dicted to correspond to the site of the covalent cross-link
between an RBP and RNA (15) and should therefore be
the closest approximation of the actual interface. The cu-
mulative density functions (CDFs) for the positive control
(described above), identified interactors, and for 100 sets of
random RBP pairs (negative control, described above) were
plotted using the stat ecdf function of the ggplot2 R pack-
age (Figure 2D). Additionally, we generated control binding
distance datasets for each set by randomizing the positions
of the peaks within each target gene (i.e. maintaining both
peak number and gene lengths).

Calibration of proximity binding threshold using positive con-
trols and random binding data

In order to determine a threshold below which an RBP pair
binds in extreme enough proximity to indicate binding to-
gether as a complex, and to distinguish this from incidental
nearby binding, we used the five positive control RBP pairs
listed above as a gold standard. For these positive controls,
which are known to bind their RNA targets as complexes,
we determined the threshold on their cumulative density
function (CDF) where the difference between their binding
site distances and those observed among the random pairs
was maximized (≤54 nt, Figure 2E). For each set (positive
control, identified interactions and random RBP pairs), this
binding site distance difference (�) was calculated by sub-
tracting the binding site distance CDF for the randomized
positions (described above).

We introduced a maximum distance cut-off to reduce the
effect of gene lengths, which impose a maximum on the
binding site distances that can be observed in a given gene.
Since our randomized control sets maintain the number of
binding sites for each RBP-gene pair, shorter genes will al-
ways necessarily contribute shorter distances, while longer
genes will contribute longer ones. Supplementary Figure
S2B shows the gene length distribution for the RBP-gene
interactions in our dataset, indicating that very few RNA
genes involved in RBP-RNA interactions in our data are
shorter than 1000 nucleotides (these are mostly miRNA
genes). As shown in Supplementary Figure S2G, impos-
ing a maximum distance cut-off greatly reduces the bias in-
troduced by gene lengths, bringing the cumulative density
functions closer to the diagonal (i.e. an equiprobable distri-
bution of distances) the lower the threshold is. Above 1000
nt, the distribution of binding site distances increasingly de-
viates from the diagonal, displaying an increasingly steep
initial rise due to an overabundance of relatively short dis-
tances.

Test for significant adjacent binding

To determine whether a given pair of RNA-binding proteins
displayed closer binding than expected by chance, we gen-
erated violin plots showing the binding distances of a given
RBP in a pair relative to those of another (e.g. ‘FXR2 rela-
tive to FMR1’) (Figure 2G–I). For each binding site of the
reference RBP (e.g. FMR1) within a gene, we determined
the distance to the closest peak of the other (e.g. FXR2).
We generated a control dataset by randomizing the posi-
tions of the proteins’ binding sites within each target gene
(i.e. maintaining both binding site number and gene length
distribution). The ‘close proximity’ binding threshold of 54
nt is highlighted in the figures in order to visualize the frac-
tion of binding sites which may be bound by the pair as a
complex. Two statistical tests were used in concert to de-
termine whether the number of binding sites in close prox-
imity (≤54 nt) observed for a given pair (and pair orien-
tation) were significantly higher than for randomized peak
positions: a simple resampling-based test (100 resamples),
and a variant resampling-based test which used a one-tailed
Wilcoxon rank-sum test to compare each resample to the
observed data (P < 0.05) and used the number of successful
tests to arrive at the equivalent of a ‘resampling P-value’.
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This second test proved more stringent than the first and
tended to reject problematic pairs that had very few binding
sites overall, and whose low fraction of binding sites in im-
mediate proximity the first test had nonetheless considered
significant. Requiring both tests to be successful filtered out
all such problematic pairs. We decided to use this methodol-
ogy rather than discarding pairs without a minimum num-
ber of binding sites in immediate proximity, which would
have achieved a similar effect only at >670 sites.

Network of RBPs binding in close proximity and potentially
as complexes

A network showing genes with eCLIP protein–RNA in-
teraction data from the ENCODE Project was generated
using Cytoscape 3.8.0 (Figure 3A). This network incorpo-
rated only those pairs which bound in close proximity (≤54
nt) more frequently than expected from randomized peak
positions, as determined using both tests described above
for at least one pair orientation (i.e. either RBP A binding
near RBP B, or RBP B binding near RBP A). Known com-
plexes with direct interaction evidence were obtained from
BioGRID 3.5.185. As above, studies using co-crystal struc-
tures, reconstituted complexes or two-hybrid approaches
were considered capable of reporting direct interactions.
Subcellular localization information was obtained from the
Human Protein Atlas (46) (dataset dated 17 December
2019).

Conversion of genomic binding coordinates to meta-mRNA
positions

Meta-mRNA plots were generated by using transcript an-
notation from GENCODE release 27 (44). To reduce bias
stemming from the number of known alternative transcripts
per gene, which can vary widely, we retained only the most
highly expressed protein-coding RNA transcript per gene.
This transcript was chosen using TPM (transcripts per mil-
lion) expression data collected as part of the ENCODE
Project (accessions ENCSR000CPE and ENCSR000CPH
for HepG2 and K562 cells, respectively) (42). Each eCLIP
peak falling within this most highly expressed transcript for
a given gene was assigned to an mRNA region using the
5′ end of the peak (see above for the rationale: the 5′ end
should be most representative of the interface). The regions
used were: 5′ UTR, first exon, first intron, internal exons,
internal introns, final exon, final intron, and 3′ UTR. Each
peak’s 5′ position was scaled to a range of [0, 1] within its
assigned region, allowing interpretation across transcripts
and genes of differing lengths.

Generation of meta-mRNA probability density profiles

Probability density profiles were generated using ggplot2.
To determine y-axis error ranges, we performed 1000-fold
resampling with replacement on the target genes in each
plot and plotted the 95% confidence interval around the
median (Figure 3C, E and G). In the probability density
plots, the within-region x-axis scaling mentioned above was
changed to a range of [0.1, 0.9] to more clearly demarcate

the boundary between regions, and to allow clear interpre-
tation of whether a probability density peak lies at the 3′ end
of one region or at the 5′ end of another.

Meta-mRNA correlation heat maps

Meta-mRNA probability density coordinates were ob-
tained using the R density function at a bandwidth of 1/320.
Correlation heat maps were then generated from Pearson
correlation coefficients via the R corrplot package (as men-
tioned above), with hierarchical clustering used as the or-
dering function.

Identifying known target sequence motifs for RBPs

We predicted known human RNA-binding protein motifs
within eCLIP peak regions using the FIMO program (47)
from the MEME Suite (48). Peak regions were extended
50 nt upstream from their 5′ end, following the reasoning
of Dominguez et al. that the 5′ end of the eCLIP peak
represents the UV cross-linking site between protein and
RNA, implying that the actual binding interface can be up-
stream of it (15). For the analysis in Supplementary Fig-
ure S4C, eCLIP peak regions were additionally extended
by ±150 nt in the 5′ and 3′ directions to capture more
motif hits. A comprehensive set of literature-derived motif
position weight matrices (PWMs) were obtained from the
ATtRACT database (49), Dominguez et al.’s RNA Bind-
N-Seq (RBNS) study (15), the RNAcompete study (7),
and the CISBP-RNA (7), RBPDB (50) and RBPmap (51)
databases. For RNAcompete and RBPmap, we used the
PWMs included with the MEME suite. Motif PWMs from
all other sources were reformatted to MEME’s format using
custom Perl scripts, so they could be used by FIMO. Known
motifs were available for a total of 29 RBPs (74 interacting
pairs). For FIMO, a uniform background sequence model
was used (equiprobable A, C, G, U) since inferring a back-
ground model for the peak regions, either for all or for indi-
vidual RBPs, resulted in very low motif hit rates, apparently
since motifs are often repeated within peak regions. We used
FIMO with a P-value threshold of 0.001. We did not use q-
values due to the variation in the number of binding sites be-
tween different RBPs, which is also evident between eCLIP
biological replicates (up to 10-fold) and therefore appears
in large part stochastic. We considered it unreasonable to
penalize eCLIP experiments that may have achieved higher
sensitivity and reported larger numbers of binding regions,
and considered FIMO’s P-values to be more comparable
between experiments than q-values.

Determining motif presence and count correlations

To determine whether known motif presence and absence
can be used as an additional quality measure for eCLIP
binding sites where both RBPs bind in close proximity (≤54
nt), we tested whether motif presence for RBP A in its bind-
ing region correlates with the presence of a known motif for
RBP B using Fisher’s exact test. Similarly, since there is fre-
quently more than one occurrence of a given motif in a bind-
ing region, we tested whether the number of predicted mo-
tifs is linearly correlated. For this, we used Wilcoxon rank-
sum tests (i.e. Spearman) and Pearson product-moment
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correlation tests. As visible in Figure 4B, all significant cor-
relations are positive.

Determining whether RBP sequence motif usage differs at co-
bound sites

To determine whether RBPs bind different sequence motifs
depending on their likely complex partners, we tested all
possible combinations of motifs for a given pair of RBPs.
For each RBP pair A-B and motif pair a-b, we identified
those binding sites where A and B bind within 54 nt (as de-
termined by the 5′ ends of their eCLIP peaks, and as de-
scribed above). We then counted the number of binding sites
of RBP A that contained motif a, where RBP B’s closest
binding site contained motif b. As a control, this number
was compared to a random sampling and pairing of RBP
A’s and RBP B’s binding sites, from target genes where only
RBP A or RBP B binds. We sampled the same number of
control sites as there were observed sites (with replacement).
Both numbers were converted to pseudocounts by adding 1,
and an enrichment ratio was calculated by dividing the ob-
served number of occurrences by the control. We thus cal-
culated a pseudocount enrichment ratio of motif pair a-b’s
occurrence at sites where RBPs A and B bind in proximity
(≤54 nt), and likely as a complex, compared to the back-
ground probability of observing motif pair a−b. To obtain a
confidence range for this motif occurrence ratio, as shown in
each box plot in Figure 4C, we then performed a 100-fold re-
sampling (with replacement) across both the observed and
control sets. Motif logos were generated from the PWMs
using meme2images from the MEME Suite.

Interaction network analysis for RNA metabolic processes

To generate the interaction networks sorted by RNA
metabolic step, screen hits above a cut-off of 7.1 were inter-
sected with lists of proteins belonging to different metabolic
steps. All protein lists were obtained from the Reactome re-
source, except for stress granule and processing body pro-
teins (RNA Granule Database) and cytoplasmic mRNA
transport (literature curated list). For the stress granule net-
work, the sumIS threshold was raised to 10 as otherwise the
network would have been too complex for graphical repre-
sentation. Networks were generated using Cytoscape V3.7.2
and the yFiles hierarchic-layout addon.

RESULTS

RBPome library assembly, screen, and validation

We assembled a screen library of 978 mammalian RBPs and
76 MAPs (Supplementary Table S1). The choice of pro-
teins was guided by published surveys of RBPs (1), their
functional importance, and by broad coverage of the im-
portant processes in RNA biology including splicing, trans-
port, translation, and stability control (Figure 1B). First, to
ensure precision of screening, we identified auto-activating
bait proteins (Supplementary Figure S1A) that can give rise
to false positives by running a rec-Y2H screen (Figure 1A,
see Materials and Methods) of the RBPome bait library
against the empty prey vector. Detected and already known
auto-activating proteins were removed from the bait library,

resulting in a final screen library (‘RBPome library’) of 1001
bait and 1054 prey proteins. To first benchmark the sam-
pling completeness of the RBPome library screens, a subset
library containing only 47 baits was assembled and screened
five times against the full prey library (‘H47 library’, Sup-
plementary Figure S1B, Supplementary Table S1). Such
a replication count saturates screens with this level of li-
brary complexity ((36), Supplementary Figure S1C), and al-
lowed us to build a reference set of interactions. The interac-
tion score cut-off value was defined by F1-scoring (Supple-
mentary Figure S1D, (36)) against known interactions (the
union of the BioGRID (45) and HIPPIE (52) databases).
Comparing the true positive rate of the H47 library screen
to randomized interaction matrices provided strong statis-
tical evidence for the accuracy of the obtained screen data
(Figure 1C). The RBPome-library screen was then bench-
marked against the H47-library reference set providing an
F1 score-based cut-off value of 7.1 (Supplementary Figure
S1E) and showing that we reached a plateau of optimal sen-
sitivity and specificity already after screening the RBPome
library 8−9 times (Figure 1D). In agreement with this, we
also reached a plateau of newly detected interactions (Fig-
ure 1E), as well as of sampling and pair complexity after
the same number of screen repetitions (Figure 1F). Over-
all, a large fraction of all input proteins (97.7% of baits and
98.1% of preys) were sampled in the screen (Supplementary
Figure S1F), which is reflected in the sampling complex-
ity of 58.2% and a pair complexity of 77.1% (Figure 1F).
This corresponds to 613 046 sampled interactions and 406
422 sampled unique interactions. As this sampling space is
much larger than in previous studies (36), we devised a new
interaction score calculation method (‘sumIS’, see Materi-
als and Methods) which increase sensitivity while maintain-
ing specificity (Supplementary Figure S1G). This is an im-
portant improvement of the rec-Y2H method as it now al-
lows screening large-scale libraries with this comparatively
low-tech and inexpensive technique (36).

Finally, we validated the rec-Y2H screening results with
an independent approach. We chose the NanoBRET as-
say (53) as it differs in all key points from rec-Y2H screen-
ing (interaction detection in the cytoplasm of HEK293T
cells based on bioluminescence resonance energy transfer,
instead of detection in the yeast nucleus based on tran-
scriptional activation). We used modified NanoBRET bait
and prey vectors (Yang et al., 2018) and found that the
NanoBRET validation rate initially increased with higher
sumIS thresholds but remained consistently high already
from a sumIS value of 5, which even lies below the F1
score-based cut-off (Figure 1G). This resulted in an over-
all validation rate of 81.3% for interactions above the F1-
score based cut-off (Supplementary Figure S1H). Such a
high validation rate underlines that F1 scoring is a reli-
able tool for sumIS cut-off determination. However, as the
NanoBRET validation rate remains high until a sumIS
value of ∼5, we have included all interactions detected
above this value in the screen results table (Supplementary
Table S2). We still decided to work only with interactions
of sumIS ≥7.1 throughout this article to ensure maximal
accuracy. The strength of the interaction signals are corre-
lated between the NanoBRET and rec-Y2H assays, provid-
ing information on confidence and reproducibility of inter-
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Figure 1. RBPome library assembly, screen and validation. (A) Schematic of rec-Y2H matrix screening workflow. RBPome bait and prey libraries were
transferred in the respective screen vectors by batch Gateway cloning. After linearization, both vector pools are transformed together into yeast. After
selection for vector fusion by homologous recombination and protein interaction selection by growth on selection media, output libraries are prepared,
processed to produce NGS sequencing libraries, sequenced and interaction matrices are calculated. (B) Composition of the RBPome screen input library.
(C) Benchmarking of the H47-calibration library against the union of the HIPPIE and BioGRID databases. The interactions detected above F1 score
based cut-off (Supplementary Figure S1D) contained a significant higher fraction of known interactions than all random resamples. (D) Benchmarking
of the full RBPome library screens against the H47 calibration screen. After nine repetitions of the full RBPome library screen testing >1M possible
interactions, sensitivity and specificity are maximized. (E) Cumulative number of protein-protein interactions detected with each RBPome library screen.
(F) Pair and sampling complexity. Sampling complexity measures to which extent all possible interactions were sampled, which includes redundant pairs
in both possible orientations. Pair complexity measures whether a possible interaction was sampled at least once, irrespective of the orientation. (G) The
NanoBRET-validated rate sorted by categories. rec-Y2H scores were binned into seven different groups. Above the cut-off (IS = 7.1), more than 80%
of tested interactions were validated with NanoBRET. The validation rates were correlated with rec-Y2H interaction scores. (H) The enrichment matrix
of interactions shows the ratio of the probability that the interaction is observed among mRNA metabolic processes to the probability of the interaction
being randomly observed. (I) Fraction of new and confirmed interactions relative to their annotation in interaction databases and a human proteome-scale
interaction screen (HuRI).
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actions: NanoBRET MBU counts were higher among in-
teractions tested positive in rec-Y2H (Supplementary Fig-
ure S1I), and sumIS values were higher among interactions
tested positive in NanoBRET (Supplementary Figure S1J).
Computing an enrichment score for interactions detected
among and between RBPs participating in different RNA
metabolic processes (Figure 1H) shows that we detect an
enrichment of interactions between the same and related
processes (e.g., mRNA 3′ processing and nuclear export),
which support that the detected new complexes are likely of
physiological relevance. To further to test to which extent
our detected interactions are mediated by domain-domain
interactions (DDIs) or domain-disordered linear motif in-
teractions (DDLIs), we searched our screen input library
for known, interacting protein-protein interaction domains
and disordered linear motifs (Supplementary Table S3). Out
of the 2416 interactions detected at sumIS ≥7.1, 314 pairs
had known interacting PPI domains or disordered linear
motifs. For both, DDIs and DDLIs, we found that the frac-
tion of pairs with known domains and motifs is significantly
higher within screen hits compared to random-pairs con-
trols, and that the fraction of interaction domain and motif-
containing pairs increases with sumIS score (Supplemen-
tary Figure S1K and L). Overall, our RBPome interaction
screen adds 1994 new RBP interactions compared to avail-
able resources (here defined as the union of BioGRID, HIP-
PIE and HuRI (54) databases, Figure 1I). This and the high
orthogonal validation rate set our new dataset apart from
existing resources.

Direct binary RBP interactions predict combinatorial RNA
binding

We hypothesized that RBPs forming complexes in our rec-
Y2H screen should also show an increased tendency to
bind the same RNAs, or even to bind in proximity along
the primary sequence (Figure 2A), if they act as complexes
in vivo. To test this, we intersected the rec-Y2H screening
PPI data with published eCLIP data (43, Supplementary
Table S4) on RBP binding sites within RNAs. 94 of the
RBPs we screened had published eCLIP data available, and
rec-Y2H screening revealed 71 interactions between these
RBPs (Supplementary Table S2). This more than doubles
the number of pairs previously available (Supplementary
Figure S2A). All RBPs constituting these pairs are either
expressed in the same cell line or were detected by eCLIP
in that cell line, indicating expression (Supplementary Ta-
ble S5). As positive controls, we used 5 pairs of RBPs that
were detected in our screen and that had a least five indepen-
dent literature sources in BioGRID confirming direct inter-
action (U2AF1-U2AF2; FMR1-FXR2; HNRNPK-QKI;
RBFOX2-QKI and SFPQ-NONO). In most cases, these
pairs are also known to act as heterodimers and bind RNA
as a complex (27,55–57). As negative controls, we used ran-
domly generated sets of RBP pairs of the same size as the
screen hits. To quantify RNA target set similarity between
RBPs, we employed the Jaccard index (Figure 2B), and to
investigate whether an RBP of interests tends to bind given
the presence of another RBP, we calculated the conditional
probability of co-binding (Figure 2C) for all three groups of
pairs (positive, identified interactions, and random pairs).

To assess statistical significance, we calculated a resampling
P-value using 10 000 iterations of random pair sampling,
with the newly identified interactions always scoring higher
than random pairs for both (i.e. P < 0.0001). The pos-
itive controls scored highest in both cases. This analysis
clearly shows that on average, RBP pairs detected by rec-
Y2H screening share more RNA targets and have a signif-
icantly higher probability of binding given the binding of
their interaction partner than random pairs, thus providing
initial support to the hypothesis that RBPs we found to in-
teract indeed bind RNAs as complexes.

Newly discovered RBP pairs bind RNAs in immediate prox-
imity

To test which RBP pairs bind in close enough proximity to
allow adjacent RNA binding as complex, we next analyzed
the distance of eCLIP-derived RNA binding sites for the
same three groups of RBP pairs (positive controls, identified
interactions, and random pairs) and generated cumulative
density functions (CDFs) for these (Figure 2D). As matched
controls, we included randomized binding positions within
the same set of RNAs for each group, thereby maintain-
ing the binding density, number, and length distribution of
RNAs (see Methods). We introduced a maximum distance
cut-off of 1000 nt to reduce the effect of gene lengths, which
impose a maximum on the binding site distances that can be
observed in a given gene and introduces artifacts in the dis-
tance distributions (Supplementary Figure S2B–G). Hence
a 1000 nt cut-off is a compromise allowing to test the largest
binding distance possible without distorting the outcome
of the analysis too much due to accumulating gene bound-
ary effects. The positive controls and the screen hits had a
considerably higher fraction of binding events at closer dis-
tances compared to random RBP pairs, with their CDFs
rising more quickly, while the matched controls with ran-
domized binding positions were close to a fully random dis-
tribution at the diagonal. To derive a characteristic binding
site distance threshold below which RBPs are most likely to
bind RNA as complexes, we determined the point of max-
imal difference between the observed binding site data and
the matched randomized controls. This was done by sub-
tracting the randomized density function from the observed
one (Figure 2E). For the positive controls, we found that a
binding site distance threshold of 54 nt produces the high-
est excess of observed co-binding events compared to those
expected by chance. When calculating this metric for the
identified interactions dataset, the optimal threshold was
only slightly higher at 73 nt. For the random pairs we cal-
culated a clearly higher maximal difference to randomized
binding data at 138 nt. Taken together, our analysis demon-
strates that RBP pairs detected with rec-Y2H screening have
an increased probability to co-bind RNA adjacently, which
is indicative of binding as a complex. Interestingly, several
of the random RBP pairs initially introduced as negative
controls scored highly in terms of their target set similar-
ity (Jaccard index), co-binding probability, and binding site
distances (Figure 2B and C). These are likely false-negatives
that rec-Y2H screening could not detect or detected inter-
actions that resampling generated by chance. To test this,
we analyzed 40 random pairs using NanoBRET. Indeed, we
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Figure 2. Protein–RNA interaction data provides support for complexes of RNA-binding proteins. (A) Binding sites of non-interacting pairs of RNA-
binding proteins (RBPs) may be distant from one another, while binding sites of interacting RBPs should be in proximity. (B) Interacting RBPs display
greater target set similarity than random RBP pairs, as measured using the Jaccard index of their RNA target sets. Violin plot medians are shown as a
vertical line, and significance at P < 0.001 is shown as three asterisks. (C) Interacting RBPs display a greater conditional probability of co-binding (RBP
A binding, given RBP B binding) than random RBP pairs. (D) Binding site distances tend to be smaller for interacting RBPs than for random RBP pairs,
and they tend to be far smaller than between randomly positioned binding sites within the same RNAs (dashed lines). (E) The difference between the
observed distances and the simulated distances between randomized sites within the same RNAs is maximized at ≤54 nt for positive control cases. This
suggests confident separation between cases of binding as a complex or as individual RBPs using this threshold. (F) Conditional probability of RBP–RBP
co-binding within ≤54 nt, plotted against the RNA target set similarity of the RBP pair. Each pair is plotted in both conditional probability orientations
(p(A|B), i.e. A given B, and p(B|A), i.e. B given A). (G) Probability density ‘violin’ plots showing observed binding sites compared to the expectation from
randomized positions (grey). Medians are indicated by vertical stripes. When investigating U2AF1 binding sites, U2AF2 is generally found binding very
closely to it (≤54 nt), demonstrating strong dependency of U2AF1 on U2AF2. (H) Similarly, when investigating FMR1 and FXR1 binding sites, FXR2
is generally found binding very closely to these (≤54 nt), indicating their dependency on it. However, the inverse is not true: when investigating FXR2
binding sites, the nearest FXR1 binding site can be distant, indicating independent binding by FXR2 (potentially with its alternative partner, FMR1). (I)
Among RBP–RBP interactions newly identified in our screen (orange), EWSR1 binding sites tend to be close to CSTF2T binding sites, indicating some
dependency on CSTF2T. Likewise, APOBEC3C binding sites tend to be close to LARP4 binding sites (≤54 nt), indicating a degree of dependency on
LARP4.
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detected 12 positive interactions (Supplementary Table S6),
suggesting that the difference to true negative pairs would
be higher than we calculated here.

To illustrate the most striking examples of detected RBP
complexes, we plotted their conditional probability (‘A
binding given B binding’) of co-binding within 54 nt against
their target set similarity (Figure 2F). Pairs falling into the
upper right portion of the plot have highly similar RNA
target sets, as well as a strong dependency of the left-hand
protein to be present where the right-hand one binds, i.e.
obligate co-binding. As an example, CSTF2T has a re-
markably high probability of binding adjacent to EWSR1
(CSTF2T|EWSR1). This indicates a strong dependency of
EWSR1 on CSTF2T to be present. The inverse is less true:
CSTF2T appears less dependent on EWSR1’s presence (see
EWSR1|CSTF2T). Meanwhile, pairs in the upper left por-
tion display lower RNA target set similarity while still dis-
playing high conditional probabilities of co-binding, i.e.
while the right-hand protein is highly dependent on the
other, the left-hand protein appears to bind additional tar-
gets, either independently or as part of other complexes.
Figure 2G–I illustrate the distribution of minimal bind-
ing site distances of four identified interactions classified as
known positive controls (Figure 2G and H) and two newly
detected pairs (Figure 2I). These cases show a remarkably
close median binding site distance ranging from 4–20 nt,
compared to their matched randomized binding site con-
trols, which show medians between 338–2830 nt. An excep-
tion is the FXR1-FXR2 pair which also shows a low con-
ditional co-binding probability (Figure 2F). Of note, these
asymmetries in conditional co-binding probability could
also at least partially result from differences in eCLIP data
quality.

In summary, this analysis shows that compared to ran-
domly generated RBP pairs, pairs detected by rec-Y2H
screening bind significantly more similar sets of RNAs, and
have a higher probability to bind their targets in proximity
at or below 73 nt, suggesting that they act as complex.

The choice of RBP complex partner directs the site of RNA
interaction

The biological functions of RBPs can be linked to the RNA
regions they bind, such as intron boundaries or the 3′ UTR
region (11). To which degree RBPs can adapt their function
depending on their combination in different complexes, is
an interesting and intensely debated question (17–19) (Sup-
plementary Figure S3A). To show an overview of RBPs
with strong evidence of binding adjacently to each other, we
first created a network of RBP pairs (Figure 3A) that bind
significantly more frequently in proximity (≤54 nt) relative
to randomized binding positions according to a combina-
tion of two resampling-based statistical tests. Out of the 71
screen hit RBP pairs for which eCLIP data was available, 53
showed significant proximity binding according to at least
one test (Supplementary Figure S3B and Supplementary
Table S7), and 30 showed significant proximity binding ac-
cording to both tests (Figure 3A). To investigate whether the
pre-mRNA region preference of proximity-binding RBP
pairs deviates from the preferences of the individual RBPs,
we computed meta-pre-mRNA profiles for mRNAs bound

by the individual RBPs (Figure 3B, left panel) and by a sub-
set of pre-mRNAs which are bound by RBP pairs in prox-
imity (Figure 3B, right panel). Clustering of both heatmaps
showed two distinct behaviors of RBPs. On one hand, there
are conservative, presumably uni-functional RBPs which
exhibit the same pre-mRNA binding profile alone and on
pre-mRNAs which they co-bind in proximity with an in-
teraction partner (Supplementary Figure S3C). Examples
are nuclear heterodimers such as U2AF1 and U2AF2 (Fig-
ure 3B-D) or the NONO-EWSR1-SFPQ-CSTF2T complex
(Figure 3A-B & Supplementary Figure S3D) which are in-
tron binders alone and on co-bound transcripts. On the
other hand, proteins such as PTBP1 alter their binding
profiles depending on the interaction partner. Alone or on
transcripts co-bound with the zinc-finger protein ZC3H8,
PTBP1 is a clear intron binder (Figure 3B, E & Supple-
mentary Figure S3E), while on transcripts co-bound with
PCBP1, intron and 3′UTR binding is equally strong (Figure
3E) and its individual binding profile correlates poorly with
the one found on co-bound transcripts (Figure 3F). While
the homologues PCBP1 and 2 have identical binding pro-
files on pre-mRNAs co-bound with IGFBP2 (Supplemen-
tary Figure S3F), PCBP1 exhibits diverse profiles depend-
ing on its many interaction partners (Figure 3G) and also its
interaction partners alter their profiles on RNAs co-bound
with PCBP1. HNRNPK, for instance, shows a strong pref-
erence for intron-binding, but on RNAs co-bound with
PCBP1 it shows a similar high density in 3′UTRs (Fig-
ure 3B and G). Both proteins bind C-rich sequences. How-
ever, while HNRNPK is mostly associated with pre-mRNA
processing and PCBP1/2 are also involved in translation
and mRNA stability regulation, the observed pre-mRNA
binding region preference shift of HNRNPK could indi-
cate that it also acts as complex with PCBP1 in 3′UTRs
to control later processes in the life of an mRNA. Because
PCBP1 shuttles between the nucleus and the cytoplasm, it
is conceivable that it encounters different interaction part-
ners in different compartments which redirect its activities.
Indeed, there is a higher transcript binding profile similarity
between PCBP1 and its nuclear interaction partners (HN-
RNPK and PTBP1) than among profiles with shuttling or
cytoplasmic RBPs. Overall, our analysis shows that there is
a widespread potential for RBPs to adjust their functions
depending on their complex partners (Figure 3H); when
comparing Pearson correlation values of pre-mRNA bind-
ing profiles for all RBPs with more than one interaction
(15), 9 RBPs form at least one complex which shows an
only moderate positive relationship (r≤0.7) to their individ-
ual binding profile. We expect that the analysis we developed
here will reveal the full breadth of this phenomenon as more
eCLIP data will become available in the future.

RBP complexes prefer specific di-motifs

For many RBPs, multiple possible sequence motifs have
been reported, and these can sometimes differ significantly
(49). We speculated that RBPs might use different motifs
depending on the complex partner they bind RNA with.
In this way, combinations of different motifs at the correct
spacing could guide the specific binding of RBP complexes.
To test this idea, we asked two questions (Figure 4A): (i) Do
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Figure 3. The choice of RBP complex partner directs the site of RNA interaction. (A) Network graph of RNA-binding proteins with eCLIP protein–RNA
interaction data. Only pairs with strong statistical support (see Methods) for significant binding in proximity within 54 nt in at least one pair orientation
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we detect different motifs within eCLIP peaks where RBPs
bind without a specific interaction partner than in regions
where the two RBPs bind adjacently? (ii) Do RBPs prefer
different motifs depending on the interaction partner with
which they bind adjacently (within 54 nt)?

For each RBP pair with known motifs, we first assessed
whether the presence of any known motif for one RBP
within its binding region correlates with motif presence for
the adjacent RBP in its own binding region using Fisher’s
exact test. Since we observed that many binding regions
contain multiple copies of a given motif, we also tested
whether the overall numbers of motifs within binding re-
gions are correlated for a given RBP pair. We find that
for 13 out of 33 interacting RBP pairs with known motifs
that bind adjacently, motif presence as well as motif count
are significantly correlated at adjacently bound sites (Fig-
ure 4B). While motif proximity is associated with an in-
crease in the number of detected protein-protein interac-
tions in our screen, a much larger fraction of RBP pairs with
adjacent motifs do not interact. Only a small fraction of
RBP pairs with a high fraction of proximal motifs (≤54 nt)
were found to directly interact (Supplementary Figure S4B,
Supplementary Table S8). This underlines that the genera-
tion of false positive direct interactors through a potentially
bridging RNA is an unlikely scenario. While it is tempting
to speculate about indications about competitive binding
based on overlapping eCLIP binding sites, we note that the
position of RBP binding motifs frequently deviate from the
eCLIP binding sites (Supplementary Figure S4C). Due to
a resulting uncertainty on where the RBP exactly binds, we
only discuss proximity binding in this study.

Next, we investigated motif pair combinations, i.e.
whether specific known motifs tend to occur together when
two RBPs bind adjacently. We compared these motif pair
frequencies to a background in eCLIP peak regions of genes
where only one of the two interacting RBPs binds (Figure
4C). For nine RBP pairs with significant evidence of co-
binding in proximity (Figure 3A), we find that certain motif
combinations are at least 3-fold enriched at co-bound sites.
For each RBP, the most enriched motif is shown, with a
single representative being chosen in case of ratio ties (see
Supplementary Figure S4A for an extended version show-
ing all top-enriched motifs including ties). When compar-
ing the motif of choice of the same RBP when it is in com-
plex with different interaction partners (Figure 4C), we find
that the preferred motifs deviate strikingly (e.g. NONO with

EWSR1 versus NONO with SFPQ, or PCBP1 with either of
HNRNPK, RBFOX2, or IGF2BP2). This analysis shows
that RBPs use different motifs when they bind adjacently
compared to binding in isolation, and also that the sequence
motif preference of at least some RBPs may depend on their
specific interaction partner. We expect that the depth of this
analysis will be extended significantly as more eCLIP data
becomes available and more motifs are discovered. Of note,
proximity of RBP binding motifs does not predict the detec-
tion of protein-protein interactions by rec-Y2H screening.

rec-Y2H screening reveals new RBP networks along the life
of an mRNA

To next illustrate how rec-Y2H screening contributes to the
understanding of different processes of mRNA metabolism,
we created interaction networks filtered by RBPs belong-
ing to different processes (Supplementary Table S9), based
on the Reactome database (58). Processes not listed in Re-
actome were based on other databases (59) or a literature-
curated list of involved proteins as in the case of cytoplas-
mic mRNA transport. A limitation of Y2H-based screens
is that all screened proteins are fused to nuclear localization
sequences, which can produce false-positive interactions be-
tween proteins that naturally would not be present in the
same compartment. Therefore, we first tested which frac-
tion of interactions were detected between proteins of the
same compartment (nucleus, cytoplasm), and found that
screen hits have significantly higher interactions between
RBPs of the same compartment compared to randomly
generated pairs (61.6% versus 21.6%) (Supplementary Fig-
ure S5A). Of note, as only primary locations annotated in
the Human Protein Atlas (46) were used, even some in-
teractions between proteins classified differently could be
meaningful due to e.g. shuttling activity. Our analysis re-
vealed intriguing new interactions along many important
steps of an mRNA’s life. For all classes of RBPs we con-
firm known interactions and we discover new interactions,
with the highest fraction of new interactions identified for
processes taking place in the cytoplasm such as cytoplas-
mic mRNA transport and stress granule formation (Fig-
ure 5A). For other nuclear processes such as splicing (Fig-
ure 5B and Supplementary Figure S5B and D), with the
exception of the minor splicing pathway (Supplementary
Figure S5C), we have a higher ratio of confirmed interac-
tions, potentially because these processes are well investi-

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
are shown. Subcellular localization is indicated by gene symbols framed either by a continuous border (nuclear proteins), a dotted border (shuttling, i.e.
sometimes nuclear), and no border (always cytoplasmic). Interactions newly identified in our screen, and the proteins newly joined by them to the network,
are highlighted in orange. (B) Hierarchically clustered heat maps showing the mRNA region preferences of the individual RBPs (left) and the RBP pairs
from the panel A network (right), based on published eCLIP data. For pairs, only binding sites in proximity close enough to be indicative of binding as
a complex (within 54 nt) were included. The color coding is maintained for each RBP, and manually added lines tracing individual RBPs to certain pairs
indicate cases where the pair shows a binding region pattern that is considerably different from the individual protein. (C) Probability density estimate
plots showing the underlying data for the panel B heat map for U2AF1 & U2AF2. Genomic coordinates were mapped to pre-mRNA regions by using the
architecture of the most highly expressed transcript for each gene, averaged across the two eCLIP cell lines. U2AF1 only binds independently of U2AF2
at a small fraction of sites (342 sites), and the mRNA region preferences of the complex mirror those of U2AF2 (binding in introns, and particularly at
their 3′ end). (D) Pairwise binding profile correlation plots (Pearson’s r) of the examples shown in panel C. Each axis shows the probability density estimate
for either an individual RBP or that of the pair in proximity. (E) Probability density plots of eCLIP profiles of pre-mRNAs bound by PCBP1 or PTBP1
alone and in proximity. (F) Pairwise binding profile correlation plots of the examples shown in panel E. (G) Probability density plots of different subsets of
pre-mRNAs bound by PCBP1 in proximity with alternative co-binding partners (putative complexes). (H) Pearson correlation coefficients of pre-mRNA
binding profiles. Only RBPs with more than one detected interaction partner are shown. The colored dots show the Pearson correlation values of the
pre-mRNA binding profiles of RBP pairs versus the profile of the individual RBPs shown along the x-axis.



6714 Nucleic Acids Research, 2021, Vol. 49, No. 12

Figure 4. RBP-pair di-motif preference. (A) Motivation for this analysis. (B) Correlation of motif presence/absence (Fisher’s exact test) and motif counts
(Spearman and Pearson) at co-bound sites, i.e. where interacting RBPs bind in proximity (≤54 nt). RBP pairs for which all tests are significant at P <

0.05 are labelled. The Fisher test indicates whether having a motif at all is correlated between the two RBPs, and it takes precedence for the color coding.
Blue dots: all tests significant, dark grey dot: insignificant motif count correlation, light grey: insignificant motif presence correlation. (C) For each RBP
pair, the preferred combination of motifs for RBP A (left) and RBP B (right) when both bind in proximity is shown as a sequence logo. The box plots
show the pseudocount ratio indicating how frequently a given motif combination occurs when two RBPs bind in close proximity as compared to an
independent-binding background derived from target genes where only one of the RBPs binds.
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A B

C D

F

E

Figure 5. New interactions along the life of an mRNA. (A) The matrix illustrates the ratio of confirmed and new interactions detected among proteins
belonging to the respective mRNA metabolic processes. (B−F) The process classification is based on the Reactome database with the exception of stress
granules which were defined based on the RNA Granule Database and cytoplasmic transport, which is based on literature-curated information. For the
selection of the proteins involved in cytoplasmic mRNA transport (E), all motor proteins and microtubule binding proteins were included along with all
RBPs which were related to cytoplasmic mRNA transport in the literature. For the definition of stress granule and processing body constituents all proteins
classified as tier-1 at the RNA Granule Database were chosen. Due to the amount of detected interactions, only interactions above a sumIS of 10 are shown
in (F). A full list of interactions in stress granules can be found in Supplementary Table S9.
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gated already. The newly detected interactions between the
major EJC component MAGOH, the 3′end processing hy-
drolase NUDT21 and the components of the cleavage fac-
tor Im complex (CPSF7, Figure 5C) could hint towards a
new link for the coordination of nuclear export, translation
regulation and mRNA processing. Concerning nuclear ex-
port (Figure 5D), we detected new, direct interactions be-
tween the principal mRNA export factor NXF1 and sev-
eral SR proteins. These interactions are considered tran-
sient and stabilized by RNA as indicated by their RNAse
sensitivity (28). The fact that we do detect these interactions
is a good indication that our methods can detect weaker,
dynamic interactions that are lost by RNAse treatment dur-
ing AP-based techniques. A major open question of mRNA
metabolism is how mRNPs are coupled to cytoplasmic,
microtubule-based motor proteins. Apart from a few recon-
stituted complexes (60–63), data on RBP-motor coupling
are mostly based on pull-down experiments (30,32,64–65)
which can only inform about physical but not necessar-
ily direct interactions. Here we show that two factors that
have been previously indirectly connected to cytoplasmic
mRNA transport (NXF1 (66), the TSN-TSNAX complex
(67,68)) indeed directly interact with kinesins and a myosin
(TSNAX), or in the case of NXF1 even with dynein cargo
adaptors (BICD2) and microtubule plus end tracking pro-
teins such as MAPRE3 (EB3) (Figure 5E). The detected
new interactions of NXF1 are at first surprising as NXF1
is thought to rapidly re-enter the nucleus after mRNA ex-
port (69) and could hence not have a function in cytoplas-
mic mRNA transport; however NXF1 has recently been de-
tected in cytoplasmic polysomal fractions (70) and in the
neurite fraction of induced neurons (71), which opens the
possibility that NXF1 guides the journey of some mRNAs
further through the cytoplasm. Lastly, while the composi-
tion, biophysical and biochemical processes of stress gran-
ules and processing body formation is intensely studied,
the direct molecular interactions between their constituents
are poorly understood. Here we provide a first direct in-
teraction network of proteins found in stress granules, pro-
cessing bodies or both (Figure 5F), identifying 92 new in-
teractions among these proteins. We have used only tier-
1 proteins (59) and show only interactions above a sumIS
threshold of 10, for reasons of presentability. All detected
interactions among stress granule (tier-1) and processing
body proteins are listed in the Supplementary Table S9. In-
terestingly, newly identified interactions connect the m6A-
reading proteins in YTHDF1 and 3 to core components of
stress granules as QKI and RBFOX2. This is of high in-
terest as recently it was found that m6A-modified mRNAs
are enriched in stress granules and that YTHDF1 and 3
are essential for their formation (72). Regarding factors in-
volved in rRNA processing (Supplementary Figure S5E),
we detect new interactions between exosome components
(EXOSC7/8) and ribosomal subunits (RPL0/3/21/RPS28)
which indicates that direct interactions between ribosomal
proteins and these exosome components could play a role
in rRNA processing. Finally, all but one of the detected in-
teractions involved in regulation of mRNA stability (exo-
some and LSM complexes) were previously known (Supple-
mentary Figure S5F), which illustrates that rec-Y2H screen-

ing can precisely capture the architecture of protein com-
plexes; the only new interaction detected between PABPC1
and EXOSC8 could point towards a function of PABPC1
in recruiting the exosome complex to the mRNA 3′end. A
Cytoscape (73) file with all interactions detected above the
sumIS thresholds of 4.5 or 7.1 and NanoBRET validations
is provided (Data S1), which allows to explore more subnet-
works of interest.

Cancer-associated RBM10 mutations impair interactions
with splicing factors

Taking advantage of our RBPome-scale screening library,
we next decided to test if and how disease-relevant mu-
tations in splicing factors affect the topology of splicing
networks. To increase confidence in mutant screening re-
sults, which often resulted in a reduction or increase of in-
teraction scores, we had included all mutants in both the
full RBPome library and the H47 library screen. Compar-
ing both screen matrices showed that the results of both
screens (Supplementary Table S10) are highly similar (Sup-
plementary Figure S6A and B) and that even the direction
in which interaction scores change in response to mutations
are significantly correlated (Supplementary Figure S6C).
We included mutants of the tumor suppressor RBM10 in
our screen library affecting different regions of the protein
(Figure 6A). The V354E and Y580F mutants were origi-
nally detected in lung cancer patients (74,75) and the V354E
mutation was shown to abolish NUMB alternative splic-
ing activity of RBM10 (75). Correct NUMB splicing leads
to exon skipping and the production of a NUMB vari-
ant which prevents notch-receptor accumulation, a criti-
cal event promoting lung-cancer progression (76). Inter-
estingly, the V354E mutation is not affecting the RNA-
binding ability of RBM10 (77). This is surprising as the
mutation lies in the second RRM domain of RBM10 (Fig-
ure 6A). We hence hypothesized that this mutation must
impair the ability of RBM10 to form functional com-
plexes with other components of the splicing machinery,
which then causes the observed perturbation in alternative
splicing. This is not too unlikely as RRM domains were
shown before to mediate protein-protein interactions (78).
To test this hypothesis, we included two more RRM2 mu-
tations (I316F & R343G), predicted by FoldX (79) to dis-
rupt the folding of the RRM2 domain, into our screen li-
brary. This is expected to have similar effects on RRM2-
mediated protein interactions (Figure 6B). Our analysis
shows that the V354E mutation leads to a striking loss
of interactions with three key alternative splicing factors
(DDX17, PTBP1 & 2), the NEXT component RBM7, the
U1-snRNP component SNRNPA and two RBM12 vari-
ants (Figure 6C–E). An effect of PTBP2 on alternative
NUMB mRNA splicing is known (80), which possibly hints
towards a joint function of RBM10 and PTB2 in this pro-
cess. The two control mutations that disrupt RRM2 fold-
ing had remarkably similar effects on RBM10 interactions
(Figure 6C and E), supporting the idea that the RRM2 do-
main of RBM10 coordinates health relevant splicing events
through its protein-protein interactions with other splicing
factors.
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Figure 6. RBM10 RRM-domain mutations disrupt splicing networks. (A) Schematic representation of the RBM10 domain architecture and mutants
tested. (B) Interaction matrix of wildtype RBM10 and mutants. Upper panel: Interaction score (sumIS) of all tested combination. ND (grey) represents
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SRRM3 and SRRM4 have similar but not identical interac-
tion networks

As a second example, we investigated the interaction net-
work of the SRRM3 and 4 splicing factors. Both proteins
are orthologues with 30% sequence identity (81) and have
partially redundant function in alternative splicing of mi-
cro exons. While the interactome of SRRM4 has been well
studied by AP-MS (82), it is not understood to which ex-
tent SRRM3 and SRRM4 share interactors. Also, to date
there is no evidence for direct interactors of the two pro-
teins and to which extent they depend on the eMIC domain
(Figure 6F), which has been identified as a crucial hub, me-
diating protein interactions with early spliceosome factors
(81). Our data reveal a direct interaction between SRRM3
and SRRM4, suggesting a potential for heterodimerization.
This interaction is not detected for the eMIC-fragment of
SRRM3 (Figure 6G–K), indicating that heterodimeriza-
tion does involve the eMIC domain of SRRM4 but not
of SRRM3. SRSF11 and RNPS1 were identified as im-
portant interactors of SRRM4 via AP-MS. All three fac-
tors are crucial for neuronal microexon-splicing, and co-
incubation of these factors with SRRM4 increases their
affinity to RNA (82), suggesting cooperative binding. Our
screen now shows that these factors can indeed directly in-
teract and that these interactions do not depend on the
SRRM4 eMIC domain. While seven out of 15 interactions
detected both for SRRM3 and 4 are shared (Figure 6I),
most of these interactions were not found to depend on the
c-terminal eMIC domain (Figure 6I–K). Of note, in the case
of SRRM4, introduction of two loss-of-function mutants
(81) inside the eMIC domain caused a complete loss of the
SRRM4 interactions and all other interactions including
SRRM3, while this effect was less pronounced in the case
of SRRM3 (Figure 6G and H), which indicates a functional
diversification of the eMIC domains in SRRM orthologues.

DISCUSSION

RBPs are a large class of proteins that regulate the basic
aspects of RNA metabolism. However, their potential to
form complexes with distinct functions has not been ex-
plored systematically. In this study, we focused on the dis-
covery of direct interactions among mammalian RBPs and
found a wealth of novel high-confidence interactions, which
are a useful resource to understand how RBPs act together.
We further improved the analysis pipeline of the rec-Y2H
screen to enable screening of large-scale libraries. This is a
significant advance, as relative to other large-scale matrix

screening methods, rec-Y2H is comparatively resource ef-
ficient (36). Even though strict demonstration of a direct
interaction requires in vitro experiments with purified pro-
teins, we explicitly use our Y2H-based technique for the
discovery of direct protein-protein interactions as the qual-
ity of binary data in High Troughput-Y2H (HT-Y2H) in-
teractome maps has been extensively assessed by using or-
thogonal assays and comparisons to reference sets of pairs
(54,83). Also for the specific case of detecting RBP-RBP in-
teractions, Y2H screens were used before (84). Here, co-IPs
in the presence of RNase were used to validate RBP inter-
actions, and the obtained validation rates were essentially
comparable to the validation rate of literature interactions.
This demonstrates that false positives caused by a potential
‘bridging’ endogenous RNA are unlikely, as already indi-
cated by our analysis of the relation of RBP binding motif
proximity and protein-protein interaction detection rate by
rec-Y2H (Supplementary Figures S2H and S4B).

The RNA binding motifs of many RBPs are short and
common, suggesting that combinatorial RNA recognition
by RBP complexes would be an elegant mechanism to
increase affinity, specificity and the regulatory potential.
RBPs interacting in rec-Y2H screening do not only show
an increased tendency to bind the same RNAs, they also
bind these RNAs in much closer distance compared to
both, randomly generated RBP pairs or randomized bind-
ing positions. This indicates that interacting RBPs bind the
same RNAs as a complex, potentially carrying out spe-
cific functions of RNA metabolism together. We do detect
that a major fraction of RBPs can alter their mRNA bind-
ing region preferences depending on their interaction part-
ner (Figure 3H), perhaps indicating that one of the part-
ners directs the complex towards certain targets. It is pos-
sible that complexes could enable binding of different, po-
tentially lower-affinity motifs. This is highly intriguing as
it indicates that a significant fraction of multi-functional
RBPs exist that show context-dependent activities. RBP co-
binding is likely guided by specific motifs, placed at the right
distance. Indeed, we find that sometimes specific motifs are
preferred when RBPs bind adjacent to a specific interac-
tion partner, and that these appear to differ for different
partners (Figure 4C). We propose that the motif choice by
two interacting RBPs composes novel di-motifs that might
have a widespread function in guiding specific RBP-RNA
interactions––an idea we will be able to test as more eCLIP
data becomes available.

It could be considered possible that a fraction of
proximity-binding events are not co-binding events but
rather indication of competition. Our PPI data, however,

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
the non-detected cases which can either indicate a complete loss of interaction (true-negative) or false-negatives caused by incomplete library sampling
(false-negative). Middle panel: Difference of interaction score between wildtype and mutants. A reduced interaction score is shown in red, an increased
interaction score in blue. Lower panel: cut-off filtered representation of the matrix shown in the upper panel. Only interactions scoring higher as the F1-
score determined cut-off of 7.1 are shown. (C) Crystal structure of the RBM10 RRM2 domain. The three mutations affecting this domain are highlighted
in red and the FOLDX-computed delta free energy for domain destabilization is shown for each mutant. A positive change of Gibbs free energy indicates
mutations that are more likely to destabilize the structure. (D) Interaction network of wildtype RBM10 showing only interactions above cut-off. (E)
Interaction networks of RBM10 mutants with the same topology as the wildtype network shown in (D). Lost interactions are shown in red and gained
interactions are shown in blue. Not detected interactions are shown in grey. (F) Schematics of the domain architecture of SRRM4 and mutants tested in our
screen. (G) Interactions matrices showing detected direct interactors of SRRM3 and mutants. Upper, middle and lower panels as in (B). (H) Interactions
matrices showing detected direct interactors of SRRM4 and mutants. Upper, middle and lower panels as in (B). (I) Interaction network showing the
common and individual interactions of the paralogs SRRM3 and 4. (J, K) The network topology is the same as in (I). The color of the connecting lines
indicates gain or loss of interaction score relative to the wildtypes.
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clearly shows that the regarded RBPs form complexes and
the precision of our PPI data is backed up through vali-
dations with an independent method. To our knowledge,
there is no known mechanism for competition of RBPs
for RNA binding that involves direct interactions of RBPs.
Further, deviations of the position of RBP binding motifs
from the eCLIP crosslinking sites (Supplementary Figure
S4C) add uncertainty to the actual RBP binding position,
which make predictions about competitive binding difficult.
Finally, the number of detected binding sites varies up to
10-fold between eCLIP replicates, which makes statements
about the apparent absence of binding in a replicate or cell
line uninformative. We hence assume that adjacent bind-
ing of interacting RBPs is an indication for co-binding. Of
note, we focus only on one possible scenario for combina-
torial RNA recognition––direct RBP interaction and RNA
binding as a complex at adjacent binding sites. Certainly,
RBP complexes do not necessarily need to bind in proxim-
ity along the primary sequence; RNA looping could allow
all kind of distances between binding sites of two interact-
ing RBPs. However, adjacent binding along the primary se-
quence makes physical proximity highly likely, which is why
we have only considered this simple case. Predicting or us-
ing data on RNA secondary structures would at this stage
add too much uncertainty, but should be reconsidered as
more eCLIP data becomes available. Furthermore, cases ex-
ist, also for DNA-binding transcription factors, in which
protein-protein interactions are weak in solution but bind-
ing to their substrate increases these interactions (23,25).
We are likely not detecting many of these cases, even though
the overexpression of proteins in our Y2H assay can lead
to the detection of weaker interactions as exemplified by
the weak interactions between NXF1 and SR proteins we
detect. Furthermore, we showed that rec-Y2H sensitively
identifies protein interaction-network changes upon a single
amino acid change. Hence this method can help to identify
the functional consequences of protein mutations in com-
plex diseases in the future.

Currently, eCLIP data exist for only 150 of the around
1400 known mRNA-interactome proteins (1), while our
RBPome screen covers about 80% of the known mam-
malian mRNA interactome with at least twice confirmed in-
teractions. Hence, as more eCLIP data will become available
in the future, the analysis pipeline developed here can be
used to significantly extend the breadth of this study to gen-
erate related PPI – eCLIP datasets predicting combinatorial
RNA binding at RBPome and transcriptome scale. We ex-
pect that this will significantly help to understand principles
underlying protein-RNA interactions, RNA metabolism
and gene expression.
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