Nucleic Acids Research, 2005, Vol. 33, Database issue

D495-D497
doi:10.1093/nar/gki090

The Adaptive Evolution Database (TAED): a phylogeny
based tool for comparative genomics

Christian Roth, Matthew J. Betts, Par Steffansson, Gisle Seelensminde and

David A. Liberles*

Computational Biology Unit, BCCS, University of Bergen, 5020 Bergen, Norway

Received August 14, 2004; Revised and Accepted October 12, 2004

ABSTRACT

From 138 662 embryophyte (higher plant) and 348 142
chordate genes, 4216 embryophyte and 15452 chor-
date gene families were generated. For each of these
gene families, multiple sequence alignments, phylo-
genetic trees, ratios of nhon-synonymous to synon-
ymous nucleotide substitution rates (KJ/Ks),
mappings from gene trees to the NCBI taxonomy
and structural links to solved three-dimensional pro-
tein structures in the Protein Data Bank (PDB) with
Grantham-weighted mutational factors were all calcu-
lated. Of the ‘gene family trees’, 173 embryophyte and
505 chordate branches show K,/K; > 1 and are can-
didates for functional adaptation. The calculated
information is available both as a gene family data-
base and as a phylogenetically indexed resource,
called ‘The Adaptive Evolution Database’ (TAED),
available at http://www.bioinfo.no/tools/TAED.

INTRODUCTION

The Adaptive Evolution Database (TAED) was first presented
as a collection of branches from chordate and embryophyte
gene families with fast evolutionary rates mapped onto the
NCBI taxonomy (1,2). The original gene families were from
the Master Catalog and are proprietary (3). A new version of
TAED is now presented as a taxonomic shell together with a
gene family database. In addition to multiple sequence align-
ments and phylogenetic trees for all families of chordate and
embryophyte sequences, the ratio of non-synonymous to
synonymous nucleotide substitution rates (K,/K;) is provided
for each branch of every phylogenetic tree. This ratio, when
significantly greater than 1, is an indicator of positive selection
and potentially a change of function of the encoded protein.
With a gene tree to species tree mapping, the branches sig-
nificantly greater than 1 are collated together in a phylogenetic
context. The framework is expandable to incorporate other
genomic-scale information in a phylogenetic context.

Ultimately, the database is designed both to provide high-
quality gene families with multiple sequence alignments and
phylogenetic trees for chordates and embryophytes, and to
enable asking the question, “What makes each species unique
at the molecular genomic level?’.

METHODS

A total of 138 662 embryophyte and 348 142 chordate protein-
encoding gene sequences were extracted from GenBank 136
for embryophytes and GenBank 138 for chordates. Pseudo-
genes and genes with a protein length of less than 10 amino
acids were ignored. Independently, all-against-all BLAST
searches were calculated for the embryophyte and chordate
genes with an E-value cutoff of 1.0. For each hit, global PAM
distances were calculated using Darwin (4).

Gene families were prepared from this dataset using single
linkage clustering of genes annotated as complete, with pair-
wise PAM distances of 100 PAM units or less and where the
length of the shorter fragment divided by the longer fragment
was at least 0.9. After formation of these families, partial
sequences with matches to a family of not more than 100
PAM units were added back to existing families. Families
containing sequences from only one species were not consid-
ered further.

For each gene family, multiple sequence alignments were
calculated using POA (5) with its default Blosum 80 substitu-
tion matrix. For embryophytes, large families with poor qual-
ity alignment were subdivided until every sequence in a family
aligned with at least 85% of every other sequence in the
family. For chordates, such families were refined with com-
plete linkage clustering at PAM < 70. In the future, resulting
families where the most ancient node is a gene duplication
event will be subdivided until the most ancient node represents
a speciation event.

Phylogenetic trees were estimated by Bayesian inference
using MrBayes (6). Using the Jones amino acid matrix, 4
chains were calculated for 500 000 generations after a burnin
of 250000 generations. A majority rule consensus tree was
calculated from trees sampled every 100 generations after the
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initial burnin. In some cases, additional generations were run
to reach convergence and trees were only sampled after con-
vergence was reached.

A novel soft parsimony approach (7) was used to simulta-
neously root trees and map them onto the NCBI taxonomy.
Nodes with low posterior probabilities (<0.7) that conflicted
with the NCBI taxonomy were corrected according to the
NCBI taxonomy. Nodes that remained non-binary were ulti-
mately resolved using UPGMA as a last resort.

For each branch of every phylogenetic tree, K,/K, ratios
were calculated using a previously published method combin-
ing parsimony ancestral sequence reconstruction and a stan-
dard K, /K, estimation method (8). Branches were considered
significant if K, > K and at least two non-synonymous sub-
stitutions occurred along the branch.

Sequences at nodes immediately preceding branches with
K.J/K; > 1 were blasted against the Protein Data Bank (PDB)
(9), and BLAST hits with E-values < 1 were used to calculate
pairwise PAM distances. When a hit within 70 PAM units was
found, the structure was linked to the family. For mutations
occurring along the high K,/K branch, all transitions along the
most parsimonious pathway were multiplied probabilistically
with the Grantham matrix (10) score of the physicochemical
severity of the transition. The temperature factor column of the
PDB structure was annotated with this number for each posi-
tion, normalized by the highest possible value (215, represent-
ing a Trp to Cys substitution with a probability 1).

The database is set up for periodic updating.

RESULTS

A total of 4216 embryophyte and 15452 chordate gene
families were generated and are available online at http://
www.bioinfo.no/tools/TAED. Of these, 4211 embryophyte
and 14772 chordate families have been fully processed at
the time of submission. These families contain multiple
sequence alignments, phylogenetic trees, ratios of non-
synonymous to synonymous nucleotide substitution rates
(KJ/K) calculated for each branch of every phylogenetic
tree and, where available from the PDB, structural information
including calculated Grantham-weighted mutational factors
for each amino acid along branches where K,/K; > 1. Of
the missing families, several are large families from the chor-
date immune system. The embryophyte families vary in size
from 2 to 1701 members, while the chordate families vary in
size from 2 to 14001 members (the largest chordate gene
family currently in the database has 256 members). Both taxo-
nomic groupings show a power-law distribution of sizes.
Embryophyte gene families had significant K,/K ratios ran-
ging from O to 7.79. The most positively selected branches are
drought induced aldehyde dehydrogenase in the common ice
plant and fructose-1,6-bisphosphatase in the lineage leading to
tomato. Chordate gene families had significant K,/K ratios
ranging from O to 13.18. The most positively selected branch
in chordates was neuronal apoptosis inducing protein in
rodents. Overall, 173 branches of 116 gene families had
K./Ks > 1 in embryophytes and 505 branches of 381 gene
families had K,/K > 1 in chordates. Of these, 79 embryophyte
protein branches and 139 chordate protein branches had solved
three-dimensional structures for close homologs.

Intriguingly, the distributions of K,/K, ratios across
branches were somewhat multiphasic for both embryophytes
and chordates and future modeling will determine if this is
significant. Also interesting is that the percentage of positively
selected branches of gene family trees has gone down as the
database has grown [compared with (1)]. Possible explana-
tions include the trivial explanation of missing chordate
immune system gene families, but also less random sampling
of genes through genomic sequencing, more conservative
family building, and better articulation of trees reducing the
number of substitutions along any branch. This last point is
coupled with the fact that small numbers of mutations can
significantly alter protein function (11) and that K/K > 1
can be too conservative a test to detect this, especially
along short branches (12,13). For this reason, other tests
will also be applied in the future.

Among the positively selected genes are some cases that
have been previously characterized in the literature. These
include chitinases (14) and self-incompatibility proteins (15)
from embryophytes and olfactory receptors (16), primate
leptin (13), snake venom phospholipase A2 (17) and mamma-
lian defensins (18) from chordates.

DISCUSSION AND FUTURE DIRECTIONS

TAED is an expandable resource for functional genomics and
molecular evolution research. At the first level, it provides
high-quality gene families with multiple sequence alignments
and Bayesian phylogenetic trees annotated with K,/K values
and searchable by text. On top of this, a phylogenetic context
enables one to examine molecular events occurring along the
same lineage of species divergence in evolutionary history.
This should enable a fuller understanding of the molecular
basis for phenotypic divergence along such lineages.

In the future, the database is expandable to include many
additional features. Other types of analysis on the gene family
dataset, including maximum-likelihood K,/K estimation (19),
various likelihood ratio tests (20) and other methods that
examine amino-acid-based properties of evolution (21) can
be included.

The sequence data can be overlaid on metabolic and protein
interaction datasets [e.g. the KEGG database (22)] to under-
stand how proteins with rapidly evolving sequences relate to
each other in a biological context. This can even be extrapo-
lated to the protein structural level, given the mapping onto
known three-dimensional structures.

Finally, coding sequence evolution is only one part of the
molecular evolution of genomes driving phenotypic diver-
gence. Changes in gene content (23), and phylogenetic recon-
structions of changes in gene expression and alternative
splicing data (24) can indicate where other significant
lineage-specific changes have occurred. Altogether, phyloge-
netic indexing of genomic data presents a powerful approach
to understanding the evolution of function in genomes.

VISUALIZATION OPTIONS AND COMPUTATIONAL
REQUIREMENTS

Two options are available for visualization. For the first, a
simple web interface is all that is required. The gene families


http://

are accessible through several search functions. The gene
families with branches significantly greater than one can be
obtained through their taxonomic index with a mapped tree in
a Java applet. Gene families then display structural, phyloge-
netic and multiple sequence information.

A second viewer is also available. The tree viewer requires
Java 1.3 (or higher) and the protein structural viewer requires
Java 1.3 (or higher) and a Java 3D plugin. The download and
installation instructions for this viewing option are available
on the TAED website.
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