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Abstract: GRAS transcription factors are a kind of plant-specific transcription factor that have been
found in a variety of plants. According to previous studies, GRAS proteins are widely involved in
the physiological processes of plant signal transduction, stress, growth and development. The Jilin
ginseng (Panax ginseng C.A. Meyer) is a heterogeneous tetraploid perennial herb of the Araliaceae
family, ginseng genus. Important information regarding the GRAS transcription factors has not been
reported in ginseng. In this study, 59 Panax ginseng GRAS (PgGRAS) genes were obtained from the
Jilin ginseng transcriptome data and divided into 13 sub-families according to the classification of
Arabidopsis thaliana. Through systematic evolution, structural variation, function and gene expression
analysis, we further reveal GRAS’s potential function in plant growth processes and its stress response.
The expression of PgGRAS genes responding to gibberellin acids (GAs) suggests that these genes
could be activated after application concentration of GA. The qPCR analysis result shows that four
PgGRAS genes belonging to the DELLA sub-family potentially have important roles in the GA stress
response of ginseng hairy roots. This study provides not only a preliminary exploration of the
potential functions of the GRAS genes in ginseng, but also valuable data for further exploration of the
candidate PgGRAS genes of GA signaling in Jilin ginseng, especially their roles in ginseng hairy root
development and GA stress response.

Keywords: Panax ginseng; GRAS transcription factor; DELLA sub-family; Evolutionary analysis;
Gibberellin acid (GA); Stress response

1. Introduction

Ginseng is one of the most valuable medicinal plants in the Araliaceae family. Ginseng ingredients
include saponins, polysaccharides, volatile ingredients, proteins, vitamins, and other compounds. The
main active ingredient is ginsenosides. Asian regions, particularly China, Korea and Japan, are the major
growing areas of ginseng. The Chinese ginseng is mainly distributed in Jilin Province and is commonly
named as Jilin Ginseng. Ginseng has anti-thrombosis and anti-aging effects, prevents tumor angiogenesis
and has other functions [1,2]. In recent years, the study of ginseng has become a hotspot for research.
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Transcription factors (TFs) are important regulatory factors affecting growth and development,
physiological processes and regulation of the network in higher plants. Additionally, TFs are necessary
in the regulation and control of gene expression [3,4]. Under normal circumstances, transcription factors
are combined with other proteins or DNA sequences to perform their special functions. In recent years,
many transcription factor families have been discovered, such as the WRKY (WRKYGQK domain),
MYB (V-myb avian myeloblastosis viral oncogene homolog), AP2/ERF (Ethylene responsive element
binding factor), bZIP (Basic region/leucine zipper motif) and GRAS (GAI RGA and SCR) families [5–8].
GRAS TFs are named after the acronyms of three members that were initially identified, GAI
(GIBBERELLIN-ACID INSENSITIVE), RGA (REPRESSOR of gai1-3) and SCR (SCARECROW) [9,10].
Typically, the GRAS protein is composed of 400–770 amino acid residues [11,12]. GRAS proteins
possess a highly conserved sequence at the end of the carboxyl terminus which contains several
ordered motifs LHRI, VHIID, LHRII, PFYRE and SAW [13,14]. Among these conserved sequences,
the VHIID sequence, which is essential for the interaction between proteins, is located in the middle
of the leucine-rich LHR I motif and LHR II motif [15]. PFYRE and SAW may be associated with the
structural integrity of the GRAS family. There is a significant difference in the amino terminus motif
in the GRAS, which may determine the functional specificity of the GRAS proteins. In accordance
with the length and difference of amino terminus in Arabidopsis thaliana, the GRAS proteins were
divided into 17 sub-families [14]. The 17 sub-families were named as LlSCL (lilium longiflorum
scarecrow-like), PAT (phytochrome A signal transduction), DELLA (the DELLA motif containing
protein), HAM (hairy meristem), LS (lateral suppressor), SCL3 (scarecrow-like 3), SCR (scarecrow), SHR
(short root), DLT (dwarf and low-tillering), SCL32 (scarecrow-Like 32), SCL4/7 (scarecrow-like 4 and
7), NAP1 (nodulation signaling pathway 1), NSP2 (nodulation signaling pathway 2), RAM1 (reduced
arbuscular mycorrhization 1), RAD1 (required for arbuscule development 1), SCLA (scarecrow-like-A)
and OG-MIG1 (mycorrhiza-induced GRAS), respectively [9,16]. LISCL is involved in the regulation of
microspore occurrence in anther by binding with the meiosis-associated promoter [2]. According to
previous studies, the PAT of GRAS proteins has been involved in the early stages of photosensitive
phytochrom A signaling transduction [17]. According to the previous study, we found that the HAM
family was involved in the development of apical meristem and leaf axils of meristem tissue [18]. The
LS sub-family is mainly involved in the regulation of the axillary meristem and formation of tillers [19].
In addition, it was found that SCL3 control of GA homeostasis during root development is crucial.
The SCR and SHR are two different sub-families, but both generally participate in the growth of root
radial tissue by forming SCR/SHR complexes [20]. NSP1 and NSP2 genes regulate the expression of
the tumor factor and participate in biosynthesis of strigolactone [21]. Moreover, the SCL4/7 sub-family
can increase plant tolerance to salt and drought stress [22]. The main functions of the DLT genes are to
participate in the Brazilianno steroid signal in rice and to change the induced dwarfization and low
tillage phenomena [23]. According to reports, the RAM1 sub-family is involved in transduction of the
root signal [16]. The RAD1 and SCL32 genes are essential for inducing upon mycorrhization [3,24].
Meanwhile, the MIG1 proteins participates in regulating the change of cellular morphology during
the formation of plexus branches [25]. However, for SCLA sub-families, their functions have not
been discovered yet. The DELLA protein is a repressor which participates in the gibberellin signal
response [26]. GA is a plant growth regulator which can promote the growth and development of
plants and has important biological functions [27].

Hence, the study of the GA biosynthesis pathway and signal transduction is a hot research topic at
present. Although these GRAS families have functional characteristics in the model plants, idiographic
functions of a large number of GRAS proteins have not been found.

In this study, the PgGRAS gene family was identified from the Jilin ginseng transcriptome database
and studied from aspects of evolution, function and expression to further understand the important role
of the PgGRAS family. Furthermore, tissue-specific expression patterns in Panax ginseng was investigated
by qPCR (Real-time quantitative PCR), and the expression patterns of gibberellin acid (GA) treatment
were detected. Since our study demonstrates that PgGRAS gene family participates in plant secondary
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metabolism, fundamental information for the further study on plant responses to GA is provided, and the
role of the GRAS gene family in the Gibberellin regulation pathway has been further verified.

2. Materials and Methods

2.1. Identification of GRAS Domain Genes in the Whole Transcriptome

The newest HMM model for the GRAS transcription factor gene family (PF03514.11) was
downloaded from the Pfam database (http://pfam.sanger.ac.uk/) [28]. Screening was performed in the
Jilin ginseng transcriptome using HMMER 3.0 [29]. The Jilin Ginseng database used in this experiment
is composed of 248,993 transcripts extracted from 14 tissues of 4-year-old ginseng [30,31]. Then, we
analyzed the amino acid sequences using NCBI CD-Search (http://www.ncbi.nlm.nih.gov/Structure/

cdd/wrpsb.cgi). Only sequences with the GRAS domain were thought to be the PgGRAS genes for the
next analysis. In order to further understand the properties of PgGRAS proteins, we used Protparam
(http://web.expasy.org/protparam/) to predict and analyze the chemical and physical properties of
PgGRAS proteins [32].

2.2. Conserved Motifs Analysis and Evolutionary Analysis of GRAS Genes

We used the NCBI ORF Finder (http://www.ncbi.nlm.nih.gov/orffinder/) to find the GRAS genes
with complete conserved domains. We made use of MEME (http://meme.nbcr.net/meme/) for conserved
motif analysis [33]. We downloaded the sequence of the OsGRAS domain protein from the Oryza
sativa genome database (http://rice.plantbiology.msu.edu/analyses_search_locus.shtml), the sequence
of SlGRAS domain proteins from the Solanum lycopersicum genome database (http://solgenomics.net/
search/locus) and the AtGRAS gene sequence from the Arabidopsis thaliana genome database (http:
//planttfdb.cbi.pku.edu.cn/). We constructed gene trees using the Maximum-Likelihood (ML) method
of MEGA 7.0 (http://mega.co.nz/) software with 100 bootstrap replications [34]. The final gene tree was
edited using the Evolview version 3.0 online web (https://www.evolgenius.info/evolview/#login) [35].

2.3. Gene Expression Pattern, GO Function Classification and Enrichment Analysis

In order to understand the expression pattern of genes, the expression patterns of genes were
further analyzed. The heatmaps were constructed using the TBtools version 0.6673 software [36].
Blast2go (https://www.blast2go.com/free-b2g-trial) software was used to annotate PgGRAS transcription
functions [37]. Then, Gene Ontology (GO) was used for further analysis of the annotation results. The
enrichment of the number of PgGRAS transcriptions classified into each subcategory was tested by the
Chi-square test method.

2.4. Network Analysis of PgGRAS Transcripts Genes

The R programming language and software (http://www.rproje ct.org/) was used to calculate the
correlation coefficient of Spearman. A gene co-expression network was constructed using BioLayout
Express 3D version 3.2 software [38].

2.5. Response of PgGRAS Genes to Different Concentrations of GA

Ginseng hairy roots were cultured in 1/2 MS liquid medium for 33 days with no hormones
added. Then, we obtained the secondary generation to cultivate as 1.0 g ginseng hairy root in 1/2 MS
liquid medium each bottle. The GA was added after 23 days of culture; that is, ginseng hairy roots
were cultivated by six gradients of GA concentration, which included 0.0 µM as control, 2.5, 5.0, 7.5,
10.0 and 15.0 µM (four repetitions per concentration gradient) [39]. At each treatment, each group
of treatments was repeated three times biologically. The result is three duplicate averages, and all
processing experiments were carried out in separate periods of time. The fresh weight and dry weight
of the hairy roots were weighed after 30 days with the untreated hairy root as the control. All these
samples were immediately frozen in liquid nitrogen and stored at −80°C until RNA extraction [40].
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For qPCR analyses, the total RNA extraction of ginseng hairy roots used the improved TRIzol
method based on the published manufacturer’s instructions. The quality and concentration of each
RNA sample was determined using gel electrophoresis and the ScanDrop 2000 spectrophotometer
(AJ, Germany). First-strand cDNA synthesis was performed using 2.00 µg of total RNA in a 20 µL
reaction volume, according to the manufacturer’s instructions for RNA purification with HiFiScript
gDNA Removal cDNA Synthesis Kit (ComWin, Beijing, China). The GADPH (GenBank Accession
No. KF699323.1) [41] of Panax ginseng was used as a reference gene. The qPCR of relative fluorescence
quantification was measured using the Applied Biosystems 7500 Real-Time System (ABI, USA) and
the Ultra SYBR Mixture Kit (Low ROX) (ComWin, Beijing, China). The designed primers (Table 1)
were used to detect the response of the PgGRAS genes under GA treatment using SYBR qPCR analysis.
The relative expression of the 4 PgGRAS genes were determined by the 2−∆∆Ct method [42] and all the
samples of biological replicates and technical replicates were repeated three times.

Table 1. Sequences of PgGRAS and GADPH gene primers used in this study.

Gene Name Forward Primer (5′-3′) Reverse Primer (5′-3′)

PgGRAS44-04 GGCAATAGAAATGGGAATAAGCGAA CTCTTGAGAATCGACAAGTACCAAC
PgGRAS48-01 TCGGACCTCAGTTACGTTGAC TTCCTCCATCGCGGTTACAAC
PgGRAS50-01 CTGCACAAATATAGCACCACCG ATTACCCCTTCCGACCAGAATG
PgGRAS68-01 GTGGAGGAACGGGTGATTGA TCCGGCAGAGTCGTCTACTA

GADPH GAGAAGGAATACACACCTGACC CAGTAGTCATAAGCCCCTCAAC

3. Results

3.1. Transcriptome-Wide Identification GRAS Gene Family in Ginseng

Although the GRAS gene family has been investigated in many studies, it has not been specifically
studied in Panax ginseng. In order to ensure the accuracy of the extracted sequence, two methods were
used to find the sequence in this experiment. Using the GRAS, the conserved domain (PF03514) has
been investigated as the inquiry sequence to search PgGRAS genes by the Hmmer method [29]. In
another way, the latest Hmm (PF03514.11) of the GRAS domain was used as a blast inquiry sequence
to search directly in the Jilin ginseng Transcriptome Database [30,31]. Exercising these two methods,
we searched the Jilin Ginseng Transcriptome Library and finally got 131 transcripts derivatives under
79 gene IDs (Tables S1 and S2). Only 59 of these transcripts’ derivatives were intact, of which five
PgGRAS genes pertained to the DELLA sub-family, namely PgGRAS44-04, PgGRAS48-01, PgGRAS50-01,
PgGRAS68-01 and PgGRAS19-01 of the PgGRAS genes in ginseng [43,44].

The transcripts’ sequence lengths of the PgGRAS genes are between 201 (PgGRAS15-01) to 3343
bp (PgGRAS65-02). Through the analysis of the physical and chemical properties of PgGRAS proteins,
we found that the molecular weights ranged from 431.00 to 87,107.53 Daltons (Da). There are also
significant differences in the theoretical PI values of predictions. The maximum theoretical PI value is
11.22 (PgGRAS75-01) and the minimum theoretical PI value is 4.37 (PgGRAS02-01). The hydrophilic
range of PgGRAS proteins are from −0.652 (PgGRAS69-04) to 0.684 (PgGRAS66-06) (Table 2). Only 12
PgGRAS proteins have hydrophilicity greater than 0, so it can be inferred that most PgGRAS proteins
are hydrophilic. There were 101 PgGRAS proteins in which the number of positive amino acids was
higher than that of negative amino acids, while in 25 PgGRAS proteins, the content of negative amino
acids was higher than that of positive amino acids. Additionally, there were five PgGRAS proteins
in which the number of positive amino acids was equal to the number of negative amino acids. It
is speculated that the number of positive amino acids is greater than the number of negative amino
acids in most of PgGRAS proteins. The data observation shows that most PgGRAS proteins are stable,
while there are still 22 unstable PgGRAS proteins, for the reason that its instability index is less than 40.
Based on these results, it could be concluded that there are great differences in physical and chemical
properties among PgGRAS proteins (Table 2).
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Table 2. Physical and chemical properties of PgGRAS 131 genes in this study.

Name Transcriptome ID Nucleic Acid
Length (bp)

Amino Acid
Length

Molecular
Weight (Da) PI Average of

Hydropathicity

PgGRAS01-01 comp10366_c0_seq1 1634 431 431 5.45 −0.401
PgGRAS02-01 comp1049478_c0_seq1 338 34 3869.35 4.37 −0.2
PgGRAS03-01 comp1105291_c0_seq1 259 51 5983 11.01 −0.282
PgGRAS04-01 comp1121404_c0_seq1 312 85 9609.16 6.57 −0.085
PgGRAS05-01 comp1387617_c0_seq1 239 58 6767.62 4.87 −0.634
PgGRAS06-01 comp1596844_c0_seq1 258 78 8434.46 5.41 −0.145
PgGRAS07-01 comp17248_c0_seq1 210 68 7836.98 10.03 −0.35
PgGRAS08-01 comp17356_c0_seq1 2228 551 61,673.55 8.84 −0.377
PgGRAS08-02 comp17356_c0_seq2 2145 551 61,673.55 8.84 −0.377
PgGRAS09-01 comp1839771_c0_seq1 282 89 10,316.55 4.69 −0.321
PgGRAS10-01 comp19390_c0_seq1 258 54 6011.81 6.16 −0.369
PgGRAS10-02 comp19390_c0_seq2 221 39 4382.96 6.54 −0.292
PgGRAS11-01 comp2100322_c0_seq1 251 78 8584.94 4.6 0.306
PgGRAS12-01 comp212859_c0_seq1 2198 552 61,408.99 4.73 −0.291
PgGRAS13-01 comp22569_c0_seq1 1042 279 32,057.2 9.06 −0.142
PgGRAS14-01 comp2261495_c0_seq1 210 55 5954.67 5.22 −0.255
PgGRAS15-01 comp23356_c0_seq1 201 30 3357.14 10.31 0.023
PgGRAS16-01 comp25708_c0_seq1 865 266 29,992.15 5.74 −0.197
PgGRAS17-01 comp26247_c0_seq1 694 200 22,426.1 4.88 0.31
PgGRAS18-01 comp2660386_c0_seq1 202 39 4228.04 7.98 0.667
PgGRAS19-01 comp267650_c0_seq1 1725 353 38,544.56 5.69 −0.17
PgGRAS20-01 comp33784_c0_seq1 240 74 8432.86 8.8 −0.15
PgGRAS21-01 comp37210_c0_seq1 692 120 14,029.28 9.16 −0.512
PgGRAS22-01 comp38081_c0_seq1 1876 547 60,343.12 5.89 −0.362
PgGRAS23-01 comp40091_c0_seq1 956 229 24,803.16 4.85 0.083
PgGRAS24-03 comp418104_c0_seq1 1633 437 49,927.34 9.22 −0.45
PgGRAS25-03 comp44037_c0_seq3 782 72 8236.58 4.44 0.321
PgGRAS26-01 comp46234_c0_seq1 1723 527 60,102.48 4.61 −0.422
PgGRAS27-01 comp472334_c0_seq1 733 218 24,669.44 4.52 0.139
PgGRAS28-01 comp479040_c0_seq1 578 172 19,639.29 9.01 −0.61
PgGRAS29-01 comp50021_c0_seq1 652 129 14,932.18 6.19 −0.156
PgGRAS30-01 comp51501_c0_seq1 2097 523 59,299.2 5.99 −0.48
PgGRAS31-01 comp52182_c0_seq1 1105 244 26,552.45 4.9 −0.454
PgGRAS32-01 comp522134_c0_seq1 756 236 25,687.72 6.37 0.198
PgGRAS33-01 comp53859_c0_seq1 1411 358 59,615.92 5.74 −0.31
PgGRAS34-10 comp53978_c4_seq10 2272 541 59,954.61 5.71 −0.249
PgGRAS34-02 comp53978_c4_seq2 2346 536 40,253.29 6.61 −0.134
PgGRAS34-05 comp53978_c4_seq5 2194 541 59,615.92 5.74 −0.31
PgGRAS35-01 comp546436_c0_seq1 540 109 12,690.7 8.46 −0.376
PgGRAS36-01 comp54894_c0_seq1 2441 674 74,618.25 5.84 −0.396
PgGRAS36-02 comp54894_c0_seq2 915 198 22,784.94 −0.339
PgGRAS37-01 comp564672_c0_seq1 400 107 12,078.8 4.73 −0.128
PgGRAS38-01 comp572133_c0_seq1 458 141 15,201.03 5.07 −0.227
PgGRAS39-01 comp57286_c0_seq1 704 148 15,923.56 4.53 −0.376
PgGRAS40-01 comp578948_c0_seq1 309 91 10,079.48 11.16 −0.552
PgGRAS41-04 comp59054_c0_seq4 930 168 19,216.92 5.11 −0.066
PgGRAS42-02 comp59054_c1_seq2 345 76 8355.65 8.19 −0.095
PgGRAS43-01 comp59228_c0_seq1 2069 564 62,183.25 5.99 −0.521
PgGRAS44-04 comp59348_c0_seq4 1635 532 58,791.83 4.97 −0.15
PgGRAS45-01 comp59447_c0_seq1 1622 413 45,985.08 7.7 −0.094
PgGRAS46-01 comp61562_c0_seq1 2110 477 53,963.14 6.05 −0.161
PgGRAS47-01 comp61661_c3_seq1 2420 542 60,731.41 5.54 −0.335
PgGRAS48-01 comp62080_c0_seq1 2058 520 57,513.1 5.27 −0.128
PgGRAS49-01 comp62792_c0_seq1 2000 493 55,553.44 5.91 −0.126
PgGRAS49-02 comp62792_c0_seq2 2015 498 55,978.88 5.95 −0.114
PgGRAS49-03 comp62792_c0_seq3 1385 375 42,219.01 5.37 −0.177
PgGRAS49-04 comp62792_c0_seq4 1373 370 41,793.58 5.37 −0.194
PgGRAS49-05 comp62792_c0_seq5 1891 493 55,612.53 5.84 −0.129
PgGRAS49-06 comp62792_c0_seq6 1906 498 56,037.97 5.87 −0.117
PgGRAS50-01 comp62989_c0_seq1 2491 580 63,896.36 5.04 −0.243
PgGRAS51-01 comp63201_c1_seq1 1875 408 46,130.96 6 −0.103
PgGRAS51-02 comp63201_c1_seq2 2487 608 67,328.55 6.14 −0.225
PgGRAS52-01 comp63447_c0_seq1 1761 518 58,723.53 4.6 −0.275
PgGRAS52-02 comp63447_c0_seq2 1747 518 58,723.53 4.6 −0.275
PgGRAS53-01 comp63847_c0_seq1 2308 598 65,887.92 4.88 −0.277
PgGRAS54-01 comp64175_c2_seq1 3053 798 86,476.95 5.92 −0.284
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Table 2. Cont.

Name Transcriptome ID Nucleic Acid
Length (bp)

Amino Acid
Length

Molecular
Weight (Da) PI Average of

Hydropathicity

PgGRAS54-02 comp64175_c2_seq2 3085 795 86,246.77 6 −0.289
PgGRAS55-01 comp64629_c0_seq1 2043 541 60,690.52 6 −0.343
PgGRAS55-02 comp64629_c0_seq2 1746 470 52,338.84 5.57 −0.339
PgGRAS56-02 comp64837_c0_seq2 3009 578 64,507.79 5.87 −0.421
PgGRAS57-01 comp65004_c0_seq1 2924 612 66,846.76 6.69 −0.294
PgGRAS58-01 comp65321_c0_seq1 916 143 16,880.14 6.51 −0.483
PgGRAS58-11 comp65321_c0_seq11 1094 143 16,880.14 6.51 −0.483
PgGRAS58-13 comp65321_c0_seq13 1958 143 16,880.14 6.51 −0.483
PgGRAS58-17 comp65321_c0_seq17 1254 143 16,880.14 6.51 −0.483
PgGRAS58-18 comp65321_c0_seq18 1760 143 16,880.14 6.51 −0.483
PgGRAS58-20 comp65321_c0_seq20 1087 143 16,880.14 6.51 −0.483
PgGRAS58-03 comp65321_c0_seq3 928 143 16,880.14 6.51 −0.483
PgGRAS58-35 comp65321_c0_seq35 1123 143 16,880.14 6.51 −0.483
PgGRAS58-37 comp65321_c0_seq37 1109 143 16,880.14 6.51 −0.483
PgGRAS58-04 comp65321_c0_seq4 1009 143 16,880.14 6.51 −0.483
PgGRAS58-47 comp65321_c0_seq47 449 123 14,595.54 5.93 −0.464
PgGRAS59-01 comp65321_c2_seq1 435 131 15,178.62 9.23 −0.41
PgGRAS60-01 comp65331_c0_seq1 2630 765 87,107.53 6.06 −0.462
PgGRAS60-02 comp65331_c0_seq2 2791 765 87,107.53 6.06 −0.462
PgGRAS61-01 comp65403_c0_seq1 2066 575 64,422.68 5.09 −0.347
PgGRAS61-02 comp65403_c0_seq2 1021 294 33,240.21 6.03 −0.14
PgGRAS62-01 comp65479_c0_seq1 2282 522 57,819.13 5.79 −0.053
PgGRAS62-02 comp65479_c0_seq2 2265 443 48,548.35 5.63 −0.03
PgGRAS62-03 comp65479_c0_seq3 3176 546 60,663.43 5.11 −0.229
PgGRAS62-04 comp65479_c0_seq4 2137 443 48,548.35 5.63 −0.03
PgGRAS62-05 comp65479_c0_seq5 3135 546 60,663.43 5.11 −0.229
PgGRAS62-06 comp65479_c0_seq6 3025 380 42,404.63 5.49 −0.03
PgGRAS62-07 comp65479_c0_seq7 2984 380 42,404.63 5.49 −0.03
PgGRAS62-08 comp65479_c0_seq8 2154 522 57,819.13 5.79 −0.053
PgGRAS63-01 comp66169_c0_seq1 3313 754 84,839.24 5.61 −0.446
PgGRAS63-02 comp66169_c0_seq2 2999 754 84,839.24 5.16 −0.446
PgGRAS64-01 comp66380_c0_seq1 2230 470 52,786.49 5.91 −0.185
PgGRAS64-02 comp66380_c0_seq2 2291 465 52,285.89 5.94 −0.221
PgGRAS64-06 comp66380_c0_seq6 2305 465 52,285.89 5.94 −0.221
PgGRAS64-08 comp66380_c0_seq8 1013 317 35,871.94 6.17 −0.38
PgGRAS64-09 comp66380_c0_seq9 2259 470 52,786.49 5.91 −0.185
PgGRAS65-01 comp67093_c0_seq1 2855 753 84,264.99 5.32 −0.437
PgGRAS65-02 comp67093_c0_seq2 3343 753 84,264.99 5.32 −0.437
PgGRAS65-03 comp67093_c0_seq3 2904 753 84,264.99 5.32 −0.437
PgGRAS65-04 comp67093_c0_seq4 3054 753 84,264.99 5.32 −0.437
PgGRAS66-02 comp67249_c0_seq2 498 75 8053.39 9.22 0.505
PgGRAS66-06 comp67249_c0_seq6 484 50 5415.45 9.4 0.684
PgGRAS67-12 comp67428_c0_seq12 1917 569 63,367.08 5.03 −0.123
PgGRAS67-25 comp67428_c0_seq25 1299 349 39,076.4 6.35 0.106
PgGRAS67-26 comp67428_c0_seq26 1891 569 63,367.08 5.04 −0.123
PgGRAS68-01 comp67501_c0_seq1 2041 540 59,906.01 5.03 −0.188
PgGRAS68-02 comp67501_c0_seq2 1733 361 39,883.54 5.83 −0.057
PgGRAS69-01 comp67516_c0_seq2 2051 499 58,454.58 8.26 −0.651
PgGRAS69-02 comp67516_c0_seq3 2633 726 83,814.41 5.91 −0.623
PgGRAS69-03 comp67516_c0_seq4 2099 499 58,454.58 8.26 −0.651
PgGRAS69-04 comp67516_c0_seq6 2538 671 77,840.89 6.02 −0.652
PgGRAS70-01 comp67518_c0_seq1 1172 123 14,161.05 6.28 −0.407
PgGRAS70-02 comp67518_c0_seq2 1081 129 15,078.18 7.63 −0.416
PgGRAS70-03 comp67518_c0_seq3 1415 123 14,161.05 6.28 −0.407
PgGRAS70-04 comp67518_c0_seq4 1055 129 15,078.18 7.63 −0.416
PgGRAS70-08 comp67518_c0_seq8 1298 129 15,078.18 7.63 −0.416
PgGRAS71-01 comp708716_c0_seq1 492 86 9590.63 5.49 −0.316
PgGRAS72-01 comp726689_c0_seq1 415 119 12,725.35 5.31 −0.224
PgGRAS73-01 comp753553_c0_seq1 363 78 7635.45 6.04 0.026
PgGRAS74-01 comp762664_c0_seq1 618 192 23,111.62 8.81 −0.505
PgGRAS75-01 comp774347_c0_seq1 439 60 7033.28 11.22 −0.522
PgGRAS76-01 comp866028_c0_seq1 430 68 7436.13 6.93 −0.503
PgGRAS77-01 comp876245_c0_seq1 1036 209 23,803.37 6.09 −0.293
PgGRAS78-01 comp913576_c0_seq1 443 58 6237.18 5.4 −0.084
PgGRAS79-01 comp933760_c0_seq1 420 132 14,868.61 5.93 −0.413
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3.2. Conserved Motif Analysis and Systematic Analysis of PgGRAS Gene Family

By analyzing these results, we have obtained 131 transcripts’ sequences of GRAS genes in ginseng.
For the sequence-structure study, we used the NCBI ORF Finder to search for the ORFs of 131 transcripts.
We found that 59 transcripts had a complete ORF. However, the GRAS gene family has a unique
conserved domain, in addition to other motifs. Additionally, there are five main motifs in conserved
domains. The GRAS gene family has 20 motifs found throughout the literature (Figure 1a) [45].
Applying MEME for the analysis of these conserved motifs, we found that most of the transcripts have
similar conserved motifs. The stability of the conserved domain is proven in Figure 1b.
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Figure 1. Analysis of conserved domains of PgGRAS proteins. (a) Conserved domains inferred from
PgGRAS protein sequences are highlighted by MEME software. (b) Maximum-likelihood tree of
PgGRAS proteins is shown on the left. Simultaneously display different subfamilies with different
colors. Using different color motifs to reveal the conserved domain of the corresponding protein on
the right.

In order to help with PgGRAS classification and decipher the evolution history of the PgGRAS gene
family in ginseng, we built two evolutionary trees and applied 67 genes (Ginseng and Arabidopsis)
(Figure 2a; Tables S2 and S3) and 172 genes (Ginseng, Arabidopsis, Tomato and Rice) (Figure 2b;
Tables S2 and S3), respectively [46,47]. As shown in Figure 2, we identified a total of 15 sub-families
of the GRAS genes. For ginseng, we identified nine PgGRAS genes in the PAT sub-families, six in
the LISCL sub-family, five in the DELLA sub-families, two in the HAM sub-family, two in the SHR
sub-family, two in the NSP2 sub-families, one in the SCL3 sub-family, one in the DLT sub-family, one
in the NSP1 sub-families, one in the SCL4/7 sub-families, one in the RAM1 sub-family, one in the
SCR sub-family and one in the PG1 sub-family (Figure 2a). The LLSCL sub-family has 13 members,
and six PgGRAS genes (PgGRAS08-1, PgGRAS24-03, PgGRAS60-01, PgGRAS63-01, PgGRAS65-01
and PgGRAS69-01) are highly homologous to AtSCL9 (AtGRAS27) and may be associated with
the regulation of the occurrence of microspores in meiosis [48,49]. The PAT sub-family has 15
members, nine of which (PgGRAS12-01, PgGRAS22-01, PgGRAS34-02, PgGRAS47-01, PgGRAS55-01,
PgGRAS56-02, PgGRAS57-01, PgGRAS61-01 and PgGRAS62-01) have a high degree of similarity to
AtPAT (AtGRAS30) [50]. Based on previous studies, it was found that the Arabidopsis GRAS protein
PAT was involved in the early stage of photosensitive pigment a signal transduction. These nine
members may have similar functions. It has been reported that the HAM and LS families are involved
in the development and regulation of axillary birth tissue, the apex meristem and leaf axils meristem
of tiller formation, respectively [49]. The HAM sub-family consists of six members (PgGRAS49-01,
PgGRAS51-01, AtGRAS15, AtGRAS22, AtGRAS23 and AtGRAS26) and the LS sub-family consists of
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one member (AtGRAS7). The SCR and SHR sub-families are critical to the growth of radial tissue
during the development of roots and buds. A total of three members (PgGRAS01-01, PgGRAS30-01 and
PgGRAS54-01) of the GRAS gene family belong to the SCR and SHR families and may be associated
with the development of roots and buds [48].
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state balance; the sub-family DELLA consists of 10 members (PgGRAS68-01, PgGRAS19-01, 
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Figure 2. Evolutionary tree of the PgGRAS protein. (a) PgGRAS proteins were divided into 15
subfamilies according to the classification of Arabidopsis thaliana by using the maximum-likelihood
(ML) method. Green, Arabidopsis thaliana. Red, Panax ginseng C. A. Meyer. (b) Evolutionary analysis of
GRAS proteins in using the maximum-likelihood (ML) method to construct an evolutionary tree of
Solanum lycopersicum, Panax ginseng C. A. Meyer, Oryza sativa and Arabidopsis thaliana. Members with
the same color of the clade belong to the same subfamily. Members with the same color on the outer
circle are of the same species. Black, Solanum lycopersicum. Red, Arabidopsis thaliana. Yellow, Oryza
sativa. Blue, Panax ginseng C. A. Meyer.

The RAM1 sub-family contains only one ginseng gene (PgGRAS33-01), and the RAM1 protein
is involved in inducing many AM (Arbuscular mycorrhiza)-related genes. Through the above, we
can boldly infer that the GRAS gene is likely to be involved in the related process of AM. The SCL3
sub-family has two members (AtGRAS5 and PgGRAS45-01) and one member in ginseng.

The DLT genes were involved in the brassinosteroid (BR) signaling, but only one gene
(PgGRAS36-01) belongs to the DLT sub-family in ginseng [51]. NSP1 and NSP2 regulate the expression
of genes associated with strigolactone biosynthesis, so that the root can be stimulated to mycorrhization
by affecting hormones and their derivatives [3]. After analysis, it was found that three ginseng genes
(PgGRAS26-01, PgGRAS43-01 and PgGRAS52-01) belong to the NSP1 and NSP2 sub-families. Three
genes (AtGRAS20, AtGRAS33 and PgGRAS53-01) were observed in the evolutionary tree belonging
to the SCL4/7 subfamily, which may be involved in the resistance system in the plant [2]. However,
the SCL32 subfamily contains only two members (AtGRAS19 and AtGRAS34) of the Arabidopsis
thaliana, and there are no members of the SCL32 sub-family in the Panax ginseng. There was a unique
subfamily found, namely PG1 (PgGRAS67-12), in ginseng (Figure 2a). As is known, the GRAS gene
family has a subfamily DELLA that is involved in gibberellin signal responses and steady-state
balance; the sub-family DELLA consists of 10 members (PgGRAS68-01, PgGRAS19-01, PgGRAS50-01,
PgGRAS44-04, PgGRAS48-01, AtGRAS10, AtGRAS3, AtGRAS28, AtGRAS16 and AtGRAS9), among
which five members are from ginseng (Figure 2a). By understanding the DELLA sub-family, we can
further study its influence on GA and speculate on its role in GA pathway [52].

According to the ML evolutionary tree, it can be seen that the genes of Panax ginseng, Arabidopsis
thaliana, Solanum lycopersicum and Oryza sativa are mainly distributed in 13 sub-families (Figure 2b).
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No genes of ginseng were found in the SCLB sub-family. These results suggest that the origin of the
PgGRAS gene family was before the separation of monocotyledons and dicotyledons [9,53].

3.3. Network Analysis of Gene Expression in PgGRAS Gene Family

By means of the analysis of gene family genes, it can be said that there are great differences in
expression and differentiation among functions of the family members of the gene. In order to observe
the network of interactions among genes, we selected 131 transcripts expressed in 14 tissues from 42
farmers’ ginseng cultivars. Figure 3 shows a network of expression interactions among 131 transcripts
(Figure 3a). These results show that with the functional differentiation of the PgGRAS gene family, the
expression of its gene members is also different [54]. This phenomenon is not only observed within the
gene family, but also sub-families. For the sake of checking whether the interaction among genes is
associated with expression activities to some extent, we randomly sampled as the negative control the
transcripts of 14 tissues of 4-year-old ginseng. Then, 131 PgGRAS transcripts tend to have associated
expression and form a co-expression network (Figure 3b). These results show that the function and
expression of the gene members of the PgGRAS gene family have been significantly differentiated.
However, they do maintain a slight link between relevant expression and functional cooperation [55].
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4-year-old ginseng roots of 42 ginseng farmers’ cultivars. Different color balls indicate the PgGRAS
genes selected from different clusters of the PgGRAS gene family.

3.4. Expression Analysis and Functional Evolution of PgGRAS Gene Family

In order to further understand the expression of PgGRAS genes in ginseng, we used the selection
of 131 ginseng transcripts for analysis: we analyzed the expressions of 131 transcripts and drew the
heatmaps in the roots of 5-, 12-, 18- and 25-year-old ginseng plants. Fourteen tissues samples were
taken from a 4-year-old ginseng plant; the 4-year-old roots of 42 genotypes were collected from 42
farmers and the expression profiles (Figure 4a–c and Table S4). At least 85 transcription profiles were
found in 131 transcripts. At least 85 of 131 transcripts were expressed, and a number of PgGRAS genes
had similar expression patterns. Heatmaps indicated that lots of PgGRAS genes not only had similar
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expression patterns, but also interactions. It is further shown that there is a network of interactions
among genes to control gene expression. In order to improve the understanding of the functional
relationships among gene sub-families, we used the Gene Ontology (GO) terms to analyze gene
functions. According to the results, we found that 131 transcripts are divided into three main GO
function categories—Biological Processes (BP), Molecular Function (MF) and Cellular Components
(CC) [56]. Most of these transcripts have three functions at the same time, with only 15 genes having a
single function (Figure 5a). These three terms have eight subcategories in Level 2—BP includes cellular
process, biological regulation, metabolic process, signaling, multicellular organismal process, regulation
of biological process, response to stimulus, developmental process and single-organism process; MF
includes transcription factor activity, protein binding, binding and nucleic acid binding transcription
factor activity; CC includes cell parts, cells and organelles. For more information about this study, the
enrichment analysis was carried out. An enrichment analysis revealed that 11 subcategories in 15
subcategories were significantly enriched (p ≤ 0.01) in comparison with total transcriptome transcripts
(Figure 6). Then, we performed a functional analysis of 131 PgGRAS genes that were found to have
intact conserved domains (Figure 5b–d and Table S5). These results indicate that the gene function of
each type of PgGRAS family had differentiated as they evolved.
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Figure 4. Relationship of the PgGRAS gene with their expression activities. (a) The expression spectrums
of the 131 PgGRAS transcripts in 14 tissues of a 4-year-old ginseng plant. (b) The expression spectrums
of the 131 PgGRAS transcripts in 5-, 12-, 18- and 25-year-old ginseng plants. (c) The expression
spectrums of the 131 PgGRAS genes in 4-year-old roots of 42 ginseng farmers’ cultivars. The shades of
color represent a relatively higher or lower level of expression.
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significant (p ≤ 0.01). 

3.5. Analysis of PgGRAS Genes Expression under Different Concentrations of GA 

Plant hormones play an important role in the growth and development of plants, and GRAS 
transcription factors play an important role in the pathogenesis of metabolism and biosynthesis in 
plant growth [57,58]. Firstly, the growth and development of ginseng hairy roots treated with 
different concentrations of GA were measured. The fresh weight and dry weight of all the treatments 
reached their peak at the GA concentration of 10 μM, but were still less than those of control group 
(Figure 7). GRAS transcription factors are also involved in plant growth metabolic and biosynthetic 
pathways. After previous analysis, it was identified that PgGRAS44-04, PgGRAS48-01, PgGRAS50-01, 
PgGRAS68-01 and PgGARS19-01 belong to the DELLA sub-family, thus, it is speculated that it has 
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Figure 5. Functional categorization of the PgGRAS gene transcripts by Gene Ontology (GO). (a) Venn
diagram of the functional categorization of the PgGRAS transcripts. Biological processes (BP), molecular
function (MF) and cellular components (CC). (b) Variation of the functional categories of the PgGRAS
transcripts among 14 tissues of a 4-year-old ginseng plant. (c) Variation of the functional categories
of the PgGRAS transcripts among 5-, 12-, 18- and 25-year-old ginseng plants. (d) Variation of the
functional categories of the PgGRAS transcripts among 4-year-old roots of 42 ginseng farmers’ cultivars.
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3.5. Analysis of PgGRAS Genes Expression under Different Concentrations of GA

Plant hormones play an important role in the growth and development of plants, and GRAS
transcription factors play an important role in the pathogenesis of metabolism and biosynthesis
in plant growth [57,58]. Firstly, the growth and development of ginseng hairy roots treated with
different concentrations of GA were measured. The fresh weight and dry weight of all the treatments
reached their peak at the GA concentration of 10 µM, but were still less than those of control group
(Figure 7). GRAS transcription factors are also involved in plant growth metabolic and biosynthetic
pathways. After previous analysis, it was identified that PgGRAS44-04, PgGRAS48-01, PgGRAS50-01,
PgGRAS68-01 and PgGARS19-01 belong to the DELLA sub-family, thus, it is speculated that it has the
function of responding to gibberellin. After detection, the expression levels of these five genes were
different under different concentrations of GA treatment. PgGARS19-01 was not detected in the qPCR
assay. Hence, no further analysis was performed. Here, we found that three genes—PgGRAS44-04,
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PgGRAS48-01 and PgGRAS50-01—all reached their peaks of expression at 10.0 µM among treatments
with different concentrations of GA (Figure 8a–c). The expressions of these three genes were gradually
upregulated until GA reached the concentration of 10.0 µM, from which the expression levels decreased
(Figure 8a–c). The expression level of PgGRAS68-01 began to gradually decline after the concentration
of 7.5 µM (Figure 8d). The results show that PgGRAS44-04, PgGRAS48-01 and PgGRAS50-01 had
similar expression patterns. PgGRAS44-04, PgGRAS48-01, PgGRAS50-01 and PgGRAS68-01 all had
different responses to exogenous GA addition. It is further demonstrated that the PgGRAS gene family
can be applied to GA stress response.
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4. Discussion

4.1. Function and Analysis of GRAS Transcription Factor Family

Since transcription factors play a very important role in plants, a large number of TFs are analyzed
in many species [59]. However, the analyses of the GRAS gene family have been performed far less
than those of other transcription factor families, and the study of the GRAS gene family in ginseng
has not been reported until now. In this study, 131 transcripts of 79 genes from the Jilin ginseng
transcriptome data of Panax ginseng were analyzed. The number of genes isolated from plants such as
Solanum lycopersicum (53) and Oryza sativa (60) was similar, but higher than that of GRAS in Arabidopsis
thaliana (34). The identification of these genes can further fill the gap of ginseng resources in GenBank.
According to the gene tree, it can be observed that the PgGRAS gene family has been well clustered with
the GRAS genes of Arabidopsis thaliana, Oryza sativa and Solanum lycopersicum. These results suggest
that the origins of the PgGRAS gene family can be traced back to the division between monocotyledons
(Oryza sativa) and dicotyledons (Arabidopsis thaliana, Solanum lycopersicum and Panax ginseng).

Through the functional analysis of PgGRAS, we found that the functions of the PgGRAS gene
family have been largely differentiated. On the same level (Level 2), the PgGRAS gene family was
categorized into at least eight GO functional subcategories and distributed across all three major
GO functions, namely Biological Processes (BP), Molecular Function (MF) and Cellular Components
(CC). There were great differences among the functions of the members of the PgGRAS gene family.
However, according to the analysis, it was found that there were similar expression patterns among
family members. Therefore, we can confirm that there is a network of co-expression among PgGRAS
genes. Notwithstanding this, the function and expression activity of the PgGRAS genes have been
greatly diversified. Most genes tend to have related expressions, and they also form a co-expression
network, even if the correlation is limited. This indicates that members of the gene family maintain
functional coordination or interaction to a certain extent. The formation of numerous mutual networks
within the gene family provides a series of evidence for this inference, and it further confirmed the
functional differentiation among members of the PgGRAS gene family.

4.2. Response of DELLA Sub-Family to Gibberellin and Its Effect on Ginsenosides

Expression analysis by qPCR revealed that four PgGRAS genes were involved in the GA regulatory
pathway. According to previous reports, many families of transcription factors are involved in the
regulation of hormones, and GA is involved in many aspects of plant growth and development, such
as seed growth and development, stem elongation and flower development. After the comprehensive
analysis of all the qPCR data (Figure 8), we found that four genes belonging to the DELLA sub-family
(PgGRAS44-04, PgGRAS48-01, PgGRAS50-01 and PgGRAS68-01) had significant changes in response to
GA expression levels, suggesting that these genes could be involved in GA signaling and stress response.

GA as a plant hormone (gibberellin) is mainly synthesized in fruits or seeds, elongated stem ends
and root organs of higher plants. Additionally, it promotes the germination of plant seeds, breaks
dormancy and promotes stem and root growth. In addition, studies have found that GA and jasmonic
acid (JA) interact with each other, which can play a synergistic role in plant development and an
antagonistic role in plant defense. Predictions from other species indicate that GRAS proteins are
an important component of the GA signaling pathway. In Arabidopsis, the DELLA protein acts as a
repressor for GA response to plant growth [60,61]. Since studies have shown that the exogenous addition
of JA can promote the content of ginsenosides in ginseng, it is speculated that there is a relationship
between the synthesis of GA and ginsenoside content. The analysis of bioinformatics provides a basic
information for studying the molecular regulation of GRAS proteins during ginseng development.
This study provides ideas for future studies for the interaction between GA synthesis and the signal
pathway and GA and ginsenoside synthesis in ginseng, and further improves ginseng resources.
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5. Conclusions

In this study, 59 GRAS genes (PgGRAS) are found in Jilin ginseng and divided into 13 sub-families.
These 59 PgGRAS genes have a correlation of expression and form a co-expression network to function.
We identified that four PgGRAS genes belonging to the DELLA sub-family (PgGRAS44-04, PgGRAS48-01,
PgGRAS50-01 and PgGRAS68-01) had significant changes in expression levels in response to GA. The
result of qPCR suggests that these genes can be involved in GA signaling and stress response. In
summary, our results provide valuable data for further exploring the candidate PgGRAS genes of GA
signaling in ginseng, especially their roles in ginseng hairy root development and stress response.
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categorization of the PgGRAS gene transcripts.
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