
International Journal of Computer Assisted Radiology and Surgery (2022) 17:355–361
https://doi.org/10.1007/s11548-021-02539-2

ORIG INAL ART ICLE

Automatedmajor psoas muscle volumetry in computed tomography
using machine learning algorithms

Felix Duong1 ·Michael Gadermayr1 · Dorit Merhof1 · Christiane Kuhl2 · Philipp Bruners2 · Sven H. Loosen3 ·
Christoph Roderburg3 · Daniel Truhn1,2 ·Maximilian F. Schulze-Hagen2

Received: 22 February 2021 / Accepted: 24 November 2021 / Published online: 20 December 2021
© The Author(s) 2021

Abstract
Purpose The psoas major muscle (PMM) volume serves as an opportunistic imaging marker in cross-sectional imaging
datasets for various clinical applications. Sincemanual segmentation is time consuming, two different automated segmentation
methods, a generative adversarial network architecture (GAN) and a multi-atlas segmentation (MAS), as well as a combined
approach of both, were investigated in terms of accuracy of automated volumetrics in given CT datasets.
Materials andmethods The bilateral PMMwas manually segmented by a radiologist in 34 abdominal CT scans, resulting in
68 single 3Dmuscle segmentations as training data. Three different methods were tested for their ability to generate automated
image segmentations: a GAN- and MAS-based approach and a combined approach of both methods (COM). Bilateral PMM
volume (PMMV) was calculated in cm3 by each algorithm for every CT. Results were compared to the corresponding ground
truth using the Dice similarity coefficient (DSC), Spearman’s correlation coefficient and Wilcoxon signed-rank test.
Results Mean PMMV was 239±7.0 cm3 and 308±9.6 cm3, 306±9.5 cm3 and 243±7.3 cm3 for the CNN, MAS and
COM, respectively. Compared to the ground truth the CNN and MAS overestimated the PMMV significantly (+ 28.9% and +
28.0%, p <0.001), while results of the COMwere quite accurate (+ 0.7%, p� 0.33). Spearman’s correlation coefficients were
0.38, 0.62 and 0.73, and the DSCs were 0.75 [95%CI: 0.56–0.88], 0.73 [95%CI: 0.54–0.85] and 0.82 [95%CI: 0.65–0.90] for
the CNN, MAS and COM, respectively.
Conclusion The combined approachwas able to efficiently exploit the advantages of bothmethods (GANandMAS), resulting
in a significantly higher accuracy in PMMV predictions compared to the isolated implementations of both methods. Even
with the relatively small set of training data, the segmentation accuracy of this hybrid approach was relatively close to that of
the radiologist.
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Introduction

Radiological examinations are performed for specific clin-
ical purposes; however, especially cross-sectional imaging
depicts a variety of body regions, that are not of primary diag-
nostic interest. Machine learning algorithms facilitate the
development of “opportunistic imaging,”which is the process
of utilizing unexploited, but potentially meaningful informa-
tion in diagnostic imaging [1]. The volume of themajor psoas
muscle (PMM) has been identified to reflect the overall body
muscle mass to a certain degree and is fully recognizable on
abdominal CT scans [2, 3]; it is therefore an ideal muscle for
three-dimensional segmentations. This becomes of interest
in the assessment of sarcopenia, the age-related, progressive
and generalized reduction of skeletal muscle mass, which is
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a condition that has been linked as a major risk factor for
morbidity or mortality in multiple clinical conditions and
complex surgical procedures [4–8].

As the process of manual muscle segmentation is highly
time consuming and repetitive, it is destined to be automated
or at least semiautomated. In the past, several attempts have
been made to automate muscle segmentation based on CT
images with varying degrees of success [9–12]. In recent
research, convolutional neural networks (CNNs) have gained
popularity and exhibit state-of-the-art performances in clas-
sification, segmentation and detection of objects in image
processing [13]. However, state-of-the-art CNNs require a
large amount of training samples to achieve reliable perfor-
mance [9]. Among these, generative adversarial networks
(GANs) have attracted the interest of the scientific com-
munity due to their architecture of two competing neural
networks, a generator and discriminator, which can achieve
reliable outputs inmedical imaging [14]. In contrast to CNNs
and GANs, atlas-based approaches achieve better results
when only few annotated images are available. In the best-
case scenario, even a single labeled training image can be
sufficient to perform accurate automated segmentation. A
major strength of these methods is the precise global align-
ment, which means that objects-of-interest are generally
robustly identified. Furthermore, this approach can be eas-
ily applied to 3D image data without excessively increasing
complexity. However, particularly in cases of high inter-
patient variability, this technique often leads to inaccurate
segmentation of small details [10].

The aim of the study was to evaluate the performance of
automated PMM-segmentations based on given CT datasets.
As ground truth, manual segmentations of the bilateral PMM
were used for training and testing of each of the above meth-
ods: the GAN and the MAS as well as a combined approach
of both (COM).

Materials andmethods

Image processing and segmentation

Ethical approval for this retrospective study was granted by
the local institutional review board (EK 028-19). A total of
34 abdominal CT scans of patients with age between 20
and 80 years, acquired in the time between 01/2018 and
03/2018, were randomly selected from the hospital’s picture
archiving and communication system (PACS). Inclusion cri-
teria were venous contrast phase with a slice thickness of
5 mm. All CT examinations were performed in the Depart-
ment for diagnostic and interventional Radiology, University
Hospital RWTH Aachen, using either a 128-row multidetec-
tor CT scanner (SomatomDefinition Flash; SiemensMedical
Systems, Erlangen, Germany) or a 40-row multidetector CT

scanner (Somatom Definition AS 40; Siemens Medical Sys-
tems, Erlangen, Germany). Tube voltage was 120 kV with
a pitch of 0.6, and tube current was modulated according
to Siemens CareDose4D. Images were reconstructed using
filtered back projection. The anonymized CT-exams were
extracted from the PACS, and the bilateral PMMs were man-
ually segmented by a board-certified radiologist (6 years of
experience) using ITK-SNAP (www.itksnap.org), an open-
source software tool used to segment structures in 3Dmedical
images [15]. Therefore, a total of 68 single psoas segmenta-
tions were available. Per sample, the number of slices varied
between 76 and 139 with a scan matrix of 512×512 pixels.

CNN-based segmentation

For CNN-based segmentation, a 2D generative adversarial
network (GAN) architecture was applied to slices of the CT
scans exhibiting a state-of-the-art approach for (biomedical)
image segmentation [14]. This method consists of two adver-
sarially trained networks, namely a generator, converting the
input image into a segmentation mask, and a discrimina-
tor, assessing generated segmentation masks with respect to
their fit to the underlying real images. The employment of
a full 3D neural network approach that accesses an entire
CT dataset was constrained by the complexity of the deep
learning approach: The far greater amount of model parame-
ters leads to non-convergence or overfitting with only limited
training data available. To incorporate the intrinsic three
dimensionality of the data, the 2D neural network was fed
with information from the slice immediately above andbelow
the active slice. In the following, this is referred to as 2.5D.
Since the PMM in abdominal CT scans does not reach the
most upper and lower sections of the exam, slices 2 to (n-
1) were used for training purposes, as slices 1 and n share
only one adjacent slice each. In the following, this approach
is referred to as GAN. The loss formulation of the GAN
approach can be summarized as an added sum of LGAN and
L1 where LGAN forces the network to generate input–output
combination that are realistic, while L1 forces similarity on
pixel level. Expressed as formula, the losses can be formu-
lated as:

LGAN(G, D) � Ey
[
log D(x, y)

]
+ Ex[log(1 − D(x,G(x))]

LL1(G) � Ex,y
[‖y − G(x)‖1

]

with E being the expected value, G being the generator, D
being the discriminator, x being the input image and y the
output image. For the added sum, LL1 was weighted with a
factor of 10.0 and LGAN with a factor of 1.0.
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Training of the neural network

The training data were processed by concatenating each
respective slice with the adjacent slice above and below (in
z-direction). All 2D training and test samples were resized
to 256×256 pixels. Input to the neural network was hence
a matrix of size 256×256×3, which was subsequently fed
into the GAN [11]. The number of epochs was set to 50. We
used the U-Net [13] as generator and a PatchGAN as dis-
criminator network [14]. The Adam optimization algorithm
was applied based on the momentum term ß � 0.5, and the
initial learning rate was set to 2×10–4.

Multi-atlas segmentation

Atlas segmentation [16, 17] refers to a technique in which
annotation masks are transferred from one image to another
using image registration methods. Multi-atlas segmentation
(MAS) [18] refers to a special kind of atlas segmentation
approach which makes use of several reference images. The
obtained annotation masks are finally merged to a single
mask, potentially increasing robustness of the respective
approach. For the purpose of this study, a dual-stage reg-
istration with annotated samples (atlases) was performed
using Elastix-toolkit [12]. In the first stage, the global align-
ment was corrected by means of linear transforms, followed
by correction of the local alignment by means of non-rigid
transforms. This approach works directly on the full 3D vol-
umetric data to encompass all global information. For this
stage, intensity-based affine registration utilizing the mean
squared error as loss metric was performed. For the sake
of efficiency, this stage was performed on multiple resolu-
tion stages (original resolution and downscaled by factor
eight, four, two and one). On the lowest scale, initial reg-
istration was performed. For the following scales, the output
from the previous scale was used as initialization. Gradi-
ent descent was used for optimization. For the second stage,
a B-Spline model was employed that utilized an adaptive
stochastic gradient descent optimizer to maximize mutual
information between target and source image. To achieve
robustness, the segmentations achieved with several atlases
were merged by means of priority voting. For that purpose,
the five best atlas registrations were assessed by considering
the minimized achieved energy (Fig. 1).

Combined segmentation approach

To exploit the advantages of both, the GAN and the MAS
approach, label maps for both approaches were computed
separately and combined in a post-processing step. We made
use of the fact that 3D atlas segmentation is generally glob-
ally accurate, but prone to inaccuracies with respect to small
details. First, the proposed borders of the masks obtained

by the MAS-based segmentation were extended (dilated) by
2 pixels to robustly cover the region of the psoas muscles,
however, with the downside of being an overestimation of
the PMMV. Secondly, these results were merged with the
outputs generated by the GAN, creating the final masks. In
detail, the two masks were combined by applying a voxel-
wise AND operator, i.e., a voxel was classified as “psoas
muscle” only if it matched in both methods, the extended
(dilated) multi-atlas mask and the rather precise mask gener-
ated by the GAN. In the following, this approach is referred
to as combined segmentation approach (COM).

Experimental details

For evaluation purposes, a fivefold cross-validation was
employed in which the dataset was stratified into an 80%
training set and a 20% test set, such that images of patients
used during testing had never been seen by the algorithm
during training. By cycling through the data in this manner,
test measures for all 34 patients were obtained. Segmenta-
tion performance of algorithms was measured using the Dice
similarity coefficient (DSC).Meanand standarddeviations of
PMMVs were calculated for each scan and every algorithm
and compared to the scores computed from the segmenta-
tions provided by the radiologist. PMMV was calculated
by multiplying the number of voxels within the segmen-
tation mask with the voxel volume. To determine whether
DSC scores differ significantly, median and 95% confidence
intervals, as well as the Spearman’s correlation coefficient
and the (paired) Wilcoxon signed-rank test, were employed.
The Wilcoxon test was chosen since the DSC scores of two
approaches are corresponding but not Gaussian distributed.
P values of<0.05 were considered statistically significant.

Results

34 CT examinations with a total number of 3887 slices were
available for the study, ranging from 76 to 139 slices per CT.
Mean PMMV over all patients was 239±70 cm3 based on
the radiologist’s segmentation, 308±96 cm3 for the GAN
(+ 28.9%, p <0.001), 306±95 cm3 for the MAS (+ 28.0%
p <0.001) and 243±73 cm3 for the COM (+ 0.7%, p �
0.33). Mean squared differences of the generated versus the
manually segmented PMMV and the corresponding Spear-
man’s correlation coefficient were 101.23 cm3 and 0.62 (p
<0.001) for the GAN and 130.62 cm3 and 0.38 for the MAS
(p <0.001), respectively. This indicates significantly differ-
ing deviations of the automated muscle segmentations from
the ground truth. The mean squared difference of the PMMV
and Spearman’s correlation coefficient of the COM versus
the radiologist was 30.83 cm32 and 0.73, respectively, which
demonstrated a robust alignment (p � 0.33). Scatter plots
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Fig. 1 Process of generating the segmentation masks with the multi-
atlas-based segmentation approach (MAS) and the additional dilation
used for the combined approach (COM). First, the 5 best registered
training samples were combined (a), and then, a threshold of n/2 was
applied (b). Each registered annotation was interpreted as a binary
image. By summing up all n binary images, voxel-values between zero

and n were obtained. Setting the threshold to n/2, voxels were only
classified as PMM if found in>50% (majority voting) of the registered
annotations. Subfigure (c) demonstrates the additional voxel dilation
operation, which was exclusively executed in the MAS application in
the COM

Fig. 2 Scatter plots of the psoasmajormuscle volume (PMMV)as deter-
mined by the GAN (left), MAS (middle), and COM (right) vs. the
radiologist. Left: Mean squared difference of the GAN-generated and
manually segmented PMMVwas 130.62 cm3, p <0.001. Middle: Mean
squared difference of the MAS-generated and manually segmented

PMMV was 101.23 cm3, p <0.001. Right: Mean squared difference of
the COM-generated and manually segmented PMMV was 30.83 cm3,
p � 0.33. GAN: generative adversarial network architecture; MAS:
multi-atlas-based segmentation;COM: combined approach ofMASand
GAN

of automated versus the manual segmentations are demon-
strated in Fig. 2.

Median DSC for the GAN, MAS and COM was 0.73
[95%CI: 0.56–0.88], 0.75 [95%CI: 0.54–0.85] and 0.82
[95%CI: 0.65–0.9], respectively. Performance of the COM,
as measured with DSC, was superior compared to both,
the respective isolated approaches, GAN and MAS (each p
<0.001). A statically significant difference between the DSC
of the combined approach with the radiologist’s segmenta-
tions was not detected (p � 0.3). Figure 3 shows exemplary
segmentation results of the radiologist (ground truth) in com-
parison to GAN, MAS and COM, as well as examples of
representative false positive and false negative segmenta-
tion results. Appendix 1 demonstrates a complete automated
PMM segmentation by the COM.

Discussion

We investigated the capability of three automated approaches
to segment the PMMV in 34 randomly selected abdominal
CT scans and compared the results to the manual segmen-
tations of a board-certified radiologist. For that purpose, we
applied a state-of-the-art 2.5D convolutional neural network
(GAN), using a generative adversarial network structure (U-
Net and PatchGAN), which was trained in a robust and
efficient way to limit the amount of required manually
annotated training data. We further evaluated a 3D multi-
atlas-based segmentation method (MAS) as a conventional
and rather robust image segmentation technique. Finally, the
combined approach of both methods was also evaluated.
The GAN identified the muscle boundaries quite effectively

123



International Journal of Computer Assisted Radiology and Surgery (2022) 17:355–361 359

Fig. 3 Exemplary segmentation results. The left column demonstrates
the ground truth (manual segmentation of the radiologist) in comparison
to results of the three automated approaches (GAN, MAS, COM). The
first row demonstrates examples for each approach of accurate psoas
major muscle (PMM) segmentations, and the bottom row demonstrates
false positive and false negative misregistrations of the PMM for each
approach. The GAN identified muscle boundaries quite effectively and
was generally strong in differentiating the muscle from the surround-

ing retroperitoneal fat. A weakness was the tendency to identify false
positive structures distant to the PMM (marked with *). In contrast,
the MAS was relatively robust in the identification of the global align-
ment of the PMM; however, muscle boundaries were delineated quite
inaccurately (marked with x). With COM, misregistrations of the MAS
were partially transferred (marked with +). GAN: generative adversar-
ial network architecture; MAS: multi-atlas-based segmentation; COM:
combined approach of MAS and GAN

and was generally strong in differentiating the muscle from
the surrounding retroperitoneal fat. While these fine details
have a minor contribution to the overall muscle volume, they
become of great importance for further analysis of muscle
texture or fat content, such as the intramuscular fat frac-
tion: even small misregistrations of the adjacent peritoneal
fat might influence further applications significantly [19]. A
weakness of theGANwas the tendency to identify false posi-
tive structures distant to the PMM (Fig. 3). These were easily
distinguishable by humans as being separate objects. A full
3D approach could not be learned in the investigated set-
ting due to availability of limited training data. We therefore
employed a 2.5D approach by incorporating three consecu-
tive slices as inputs to the GAN. In contrast, the MAS was
relatively robust in the identification of the global alignment
of the PMM, as compared to the GAN, which is a common
strength of the approach [20]. However, muscle boundaries
were delineated inaccurately, and muscle volume was gener-
ally overestimated, which is a relevant limitation.

Guidance of the 3D multi-atlas approach can potentially
correct false positive detections of the GAN while main-
taining the benefit of better accuracy in recognition of the
muscle margins and border regions [21]. As expected, com-

bining the accuracy of GAN-based methods in depicting
small details and muscle margins and the robustness of
the MAS was highly effective in this scenario. Taking into
account that only 34 CT scans were used to train the algo-
rithms, our results demonstrate the efficiencyof the combined
approach by exhibiting a relatively high accuracy of psoas-
recognition, as expressed by the Dice coefficient of 0.82
[95%CI: 0.65–0.90]. In contrast to the isolated procedures
(GAN, MAS), no significant difference was found regarding
predictions of the COM versus manual segmentations of the
radiologist. Thiswas also reflected in themore accurate deter-
mination of PMMV. While the automatically determined
PMMV for both isolated approaches (GAN and MAS) sig-
nificantly overestimated the PMMV (+ 28.9% and + 28.0%,
each p <0.001), PMMV of the combined approach was com-
parable to the manually segmented volumes (+ 0.7%, p �
0.33). Thus, the automatic volume extraction of the presented
combined approach resembled that of a human reader most
closely.

It should be noted that there are of course other promis-
ing machine learning algorithms that allow psoas muscle
segmentation, possibly with similar or even more accurate
results, that were not investigated in this study. One exam-
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ple is SimCLR, a framework for contrastive learning [22].
Several other candidate approaches for deep learning-based
segmentation have been proposed in the recent past [13, 23,
24]. Even though each method has advantages for certain
settings, we decided to make use of the well-studied U-Net
architecture [13] in an adversarial setting [14] to emphasize
on learning shape priors. Regarding the combination of the
two methods, another option would be given by an earlier
fusion. The output of theMAS-based approach could also be
used as input for the neural network. Since this would intro-
duce several additional degrees of freedom, we chose the
straightforward combination at the end of the pipeline. The
results of the present study demonstrate the usefulness of a
combination of two different approaches: a machine learning
method and a traditional image segmentation method. In the
end, this hybrid approach was able to achieve a high degree
of precision compared to the manual segmentations of the
radiologist.

There are some limitations of this study that need to be
addressed. First, the relatively low number of CT scans made
it difficult to robustly train a three-dimensional neural net-
work, which is why a 2.5D approach was applied. However,
the aim of this pilot study was to assess whether the proposed
methods can be used in principle for the purpose of psoas
muscle volumetry. Secondly, the retrospective selection of
34 randomly assigned CT scans from a single institutionwith
an age distribution of 20–80 years might cause an underlying
selection bias and thus could render the algorithms inappli-
cable to anatomical variants in certain patients. In addition,
segmentations were not performed by multiple individuals,
so inter-observer variability could not be determined. On
the other hand, the fact that all segmentations were per-
formed by the very same board-certified radiologist with
6 years of experience and that CTs were performed using
uniform examination protocols may at least partially com-
pensate for some of these limitations. Of course, a further
validation in a dedicated test set is required for future stud-
ies.

Conclusion
In conclusion, we demonstrate a promising dedicated
approach to generate automated psoas major muscle vol-
umetry with reasonable results, compared to manual seg-
mentations of the radiologist. The fusion of a state-of-the-art
deep learning approach with a robust conventional multi-
atlas-based segmentation technique showed improved accu-
racy compared to both individual methods. Validation on
a larger data set is currently ongoing. This approach could
provide automatedmuscle volumetry for opportunistic imag-

ing approaches in future studies, such as for the automated
detection of sarcopenia.
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