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Abstract

Objective—Tissue-specific gene expression is associated with individual metabolic measures. 

However, these measures may not reflect the true but latent underlying biological phenotype. This 

study reports gene expression associations with multi-dimensional gluco-metabolic 

characterizations of obesity, glucose homeostasis, and lipid traits.

Methods—Factor analysis was computed using orthogonal rotation to construct composite 

phenotypes (CPs) from 23 traits in 256 non-diabetic African Americans. Genome-wide transcript 

expression data from adipose and muscle were tested for association with CPs, and expression 

quantitative trait loci (eQTL) were identified by association between cis-SNPs and gene 

expression.

Results—The factor analysis identified six CPs. The CPs 1 through 6 individually explained 

34%, 12%, 9%, 8%, 6% and 5% of the variation in 23 gluco-metabolic traits studied. There were 

3994 and 929 CP–associated transcripts identified in adipose and muscle, respectively; CP2 had 

the largest number of associated transcripts. Pathway analysis identified multiple canonical 

pathways from the CP-associated transcripts. In adipose and muscle, significant cis-eQTL were 

identified for 558 and 164 CP-associated transcripts (q-value <0.01), respectively.

Conclusions—Adipose and muscle transcripts comprehensively define pathways involved in 

regulating gluco-metabolic disorders. Cis-eQTLs for CP-associated eGenes may act as primary 

causal determinants of gluco-metabolic phenotypes by regulating transcription of key genes.
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Introduction

Dysregulation of transcript expression in tissues is linked to the pathophysiology of obesity, 

insulin resistance, and type 2 diabetes (T2D) (1). Genetic and genomic components of these 

complex processes are often studied via quantitative endophenotypes. These traits are 

correlated, and pleotropy among gluco-metabolic endophenotypes has been reported. 

Several transcriptome-wide analyses identified association of gluco-metabolic traits (e.g. 

insulin sensitivity, body mass index, % fat mass, HDL-cholesterol) with expression levels of 

transcripts in human muscle, adipose, liver, pancreatic islet, and blood cells (2-5). These 

studies were successful in defining biological pathways and mechanisms involved in the 

pathophysiology of T2D and obesity (1;6). However, individual measures are often modestly 

correlated and may reflect only a portion of true underlying biological process. Thus, studies 

focused on single traits may not adequately capture differences in gluco-metabolic 

phenotypes between individuals similar in one trait but different in others. For example, two 

individuals may have the same BMI, but their % fat mass, waist-to-hip ratio (WHR) and 

insulin sensitivity can differ substantially so that each has a different overall metabolic 

status, translating into differences in disease predisposition (7;8). Approaches that test each 

endophenotype separately are also liable to reductions in statistical power due to multiple 

testing penalties. Thus, applying methods that combine correlated endophenotypes into 

composite phenotypes (CPs) capturing underlying gluco-metabolic constructs are likely to 

provide novel insight into pathophysiological and molecular processes involved in these 

disorders.

This study applied a factor analysis (FA)-based dimension reduction approach to combine 23 

glucose homeostasis, anthropometric and lipid quantitative traits into a set of uncorrelated 

gluco-metabolic dimensions or “CPs” in African Americans without diabetes. Using the CPs 

as outcomes, genome-wide transcript expression data from adipose and muscle tissue were 

analyzed to identify associated transcripts and biological processes that may molecularly 

define the gluco-metabolic CPs. The expression quantitative trait (eQTL) analysis integrated 

genome-wide transcript expression and genotype data to identify CP-associated transcripts 

whose expression levels are influenced by genetic variants.

Materials and Methods

Human subjects

This study was completed at the Wake Forest School of Medicine (WFSM) Clinical 

Research Unit, and approved by the WFSM Institutional Review Board. All participants 

provided written informed consent. The study utilized gluco-metabolic phenotype and 

multiomic data from 256 unrelated and non-diabetic individuals from the “African American 

Genetics of Metabolism and Expression” (AAGMEx) cohort (9). Participants were healthy, 

self-reported African Americans residing in North Carolina aged 18-60 years with a body 

mass index (BMI) between 18 and 42 kg/m2. A standard 75-g oral glucose tolerance test 

(OGTT) was used to exclude individuals with diabetes. Height, weight, waist and hip 

circumference were measured, body fat determined by bioelectrical impedance analyzer, and 

fasting blood drawn for DNA isolation and biochemical analyses at the screening visit. At a 

second visit, subcutaneous adipose tissue and skeletal muscle biopsies were collected under 
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overnight fasting condition (see supplementary methods). Frequently sampled intravenous 

glucose tolerance test (FSIGT) was performed to evaluate insulin sensitivity and secretion by 

minimal model analysis (10). Clinical, anthropometric, and physiological characteristics of 

the AAGMEx cohort have been described (9) and are shown in Table 1. Participants had a 

broad range of gluco-metabolic characteristics suitable for capturing the composite multi-

dimensional structure of these phenotypes.

Laboratory measures and physiological phenotypes

see Supplementary Methods

Gene expression analysis and genotyping

see Supplementary methods

Statistical analysess

Quality control—Quality control of phenotype, gene expression and genotype data has 

been reported (9;11) and briefly described in Supplementary Methods.

Composite Phenotype (Factor) analysis—Values of the 23 gluco-metabolic traits 

likely reflect latent constructs with shared variation. To capture the various dimensions of 

the gluco-metabolic traits reflecting these latent constructs, a factor analysis based on the 

covariance matrix was computed using principal component extraction and varimax rotation 

via ‘PROC FACTOR’ in SAS; varimax rotation generates orthogonal (independent) factors, 

denoted here as CPs. All factors with eigenvalues >1.0 were retained and the proportion of 

variance explained was recorded. From these factors, each representing a latent construct, 

the factor loadings with an absolute value >0.4 were retained (i.e., <-0.4 or >0.4) and a 

linear combination (i.e., weighted mean) of these loadings computed (Table 1). The resulting 

scores for factors 1–5 were natural logarithm transformed, standardized (i.e., subtracting the 

mean and dividing by the standard deviation) and remaining outliers were winsorized (see 

supplementary methods). Factor 6 did not require natural logarithm transformation and was 

standardized and winsorized. Thus, the resulting CPs approximately follow a standard 

normal distribution and were used in subsequent analyses. These six CPs represent six 

unique dimensions of the gluco-metabolic domain.

To test for an association between the CPs and expression levels, a linear regression model 

was computed where the standardized CPs were modeled as the outcome and the log2 of the 

transcript expression was the predictor of interest. Models included age, gender, and African 

ancestry proportion as covariates. Admixture estimates were computed using the program 

ADMIXTURE (12). Expression of a transcript associated with a CP at uncorrected-p<0.001 

was considered for subsequent analyses (e.g., pathway analysis).

cis-eQTLs—For transcripts associated with one of the six CPs, a cis-eQTL analysis (i.e., 

within ±500kb around the respective transcript expressed in ≥90% of participants) was 

computed. For each transcript associated with a CP, a linear regression was computed with 

the log2 transformed expression value as the outcome and an additive genetic model for the 

SNP as implemented in the R-package MatrixEQTL (13), with age, gender, and African 
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ancestry proportion as covariates. Cis-eQTLs with a false discovery rate (FDR)-corrected p-

value (Q-value) <0.01 (or 1.0%) were considered significant.

Bioinformatic analysis

see Supplementary methods

Results

Composite phenotypes in AAGMEx cohort

The factor analysis identified six orthogonal CPs (eigenvalues>1.0) that cumulatively 

explained 74% of the variation in these 23 gluco-metabolic traits (Figure 1A, B). Factors 1 

through 6 individually explained 34%, 12%, 9%, 8%, 6% and 5% of the variation. The factor 

loadings are reported in Figure 1C, and loadings with absolute values greater than 0.4 (i.e., 

<-0.4 and >0.4) are highlighted in Table 1.

Factor 1 (CP1) exhibited positive loadings for weight, BMI, waist measurement, hip 

circumference, % fat mass, and acute insulin response (AIRG), and negative loadings for 

insulin sensitivity (SI) and HDL-cholesterol. Factor 2 (CP2) exhibited positive loadings for 

fasting and 2hr insulin, fasting and 2hr glucose, HbA1c, and negative loading for OGTT 

derived insulin sensitivity (Matsuda ISI). Factor 3 (CP3) was defined by positive loadings 

for waist-to-hip ratio, serum triglyceride (TG), TG-rich very low density lipoprotein 

(VLDL)-cholesterol and AIRG, and negative loading for HDL-cholesterol. Factor 4 (CP4) 

captured a cholesterol dimension independent of the TG-based Factor 3, with positive 

loadings for total and LDL cholesterol. Factor 5 (CP5) exhibited positive loadings for SI, 

disposition index (DI), and glucose effectiveness (SG). Factor 6 (CP6) was defined by 

positive loadings for height and fasting glucose and negative loadings for % fat mass and 

AIRG. Thus, the six CPs partitioned traits into complex constructs.

Transcripts associated with gluco-metabolic CPs

Expression levels of 3994 transcripts in subcutaneous adipose tissue were significantly 

associated (uncorrected-p<0.001) with at least one of the six CPs (Table S1). CP1 was 

associated with expression level of 1925 transcripts in adipose (Table 2). Transcripts most 

strongly associated included ORM1-like protein 3 (ORMDL3/ORMDL sphingolipid 

biosynthesis regulator 3), transmembrane 7 superfamily member 2 (TM7SF2), and 

thymocyte nuclear protein 1 (THYN1). In humans, the ORMDL3 gene shows highest 

transcript level expression in liver and adipose tissue. The ORMDL3 expression in adipose 

was positively associated with insulin sensitivity (SI, β=0.77, p=7.01×10-8) and negatively 

associated with BMI (β= -0.86, p=5.50×10-24) in this cohort, and was replicated in an 

independent study in Caucasians (METSIM cohort, BMI β= -0.429, p=6.79×10-36) (14). In 
vitro studies in human and mouse cells suggest that downregulation of ORMDL3 increase 

ceramide, a sphingolipid metabolite involved in inflammatory processes, and potentially 

involved in pathophysiology of obesity, insulin resistance and asthma (15). Among the 1925 

transcripts associated with CP1, 161 were uniquely associated (at p<0.001 threshold), while 

1764 were also associated with some of the other CPs (Figure 2). Compared to CP1, CP2 

explained a much smaller fraction of total variation (34% vs 12%) in the 23 gluco-metabolic 
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phenotypes. However, of the six CPs, expression levels of the highest number of transcripts 

(3337 transcripts) were associated with CP2. Fasting insulin levels contributed a high 

loading (0.842) to CP2 and may have influenced the expression level of adipose transcripts 

studied after overnight fasting. Transcripts most strongly associated with CP2 include 

alpha-2-glycoprotein 1 zinc-binding (AZGP1), ubiquitin carboxyl-terminal esterase L1 

(UCHL1), and galactosidase, beta 1 (GLB1). The Venn diagram (Figure 3) enumerates the 

shared transcripts across the CPs. Figure 3 demonstrates the notably larger number of 

transcripts (1384 Entrez gene, 41.2%) uniquely associated with CP2. The smallest number 

of adipose transcripts was associated with CP4 (47, p<0.001). At a more stringent threshold 

of FDR corrected p-value <0.01 no adipose transcript remained significantly associated with 

CP4 or CP5.

Compared to adipose tissue, expression levels of fewer skeletal muscle transcripts were 

associated with CPs. A total of 929 transcripts in muscle were associated (p<0.001) with at 

least one of the six CPs (Table S2). Among the 299 CP1-associated muscle transcripts, 

growth factor receptor-bound protein 14 (GRB14), pleckstrin homology-like domain family 

A member 3 (PHLDA3), and transmembrane protein 192 (TMEM192/FLJ38482) were most 

strongly associated. The GRB14 transcript level in muscle was positively associated with 

CP1 (β= 1.27, p= 6.6×10-9). GRB14 protein interacts with insulin receptors and insulin-like 

growth-factor receptors, and likely has an inhibitory effect on receptor tyrosine kinase 

signaling and, in particular, on insulin receptor signaling, and may play a role in signaling 

pathways that regulate growth and glucose metabolism (16). GRB14 knockout mice show 

improved insulin sensitivity and several genome-wide association studies identified 

association of SNPs near GRB14 with obesity (waist-to-hip ratio, % fat mass), fasting 

insulin and T2D (16-18). Similar to adipose, the highest number of muscle tissue transcripts 

(606 transcripts) was associated with CP2 (Table 2). The smallest numbers of muscle 

transcripts were associated with CP5 (41 transcript, p<0.001), and only two genes, solute 

carrier family 25 member 20 (SLC25A20; mitochondrial carnitine/acylcarnitine translocase) 

and angiopoietin-like 4 (ANGPTL4), remained significantly associated with CP5 at FDR-

p<0.01. No muscle transcript remained significantly associated with CP4 or CP6 at FDR-p 

<0.01.

Expression of a subset of transcripts in both adipose and muscle was associated with CPs. 

CP1 was associated with 148 transcripts in adipose and muscle (Table 2), with 134 showing 

directional concordance (increased expression with greater obesity-insulin resistance). For 

example, expression of GRB14 in both adipose and muscle was positively associated with 

CP1 (β=1.31, p=1.46×10-5 in adipose and β= 1.27, p=6.6×10-9 in muscle). Similarly, CP2 

was associated with 210 transcripts in adipose and muscle, with 177 showing directional 

concordance and 33 showing directional discordance. Expression level of genes involved in 

ribosome function (e.g. RPS17, RPL10A, RPL17, RPL22) and translation initiation (EIF2A, 
EIF3F) in adipose and muscle were negatively associated with CP2. Expression level of 12 

transcripts involved in mitochondrial function in adipose (e.g. ECH1, ETFA, ACOT2, CPT2) 

was negatively (inversely) associated with CP2, while their expression in muscle was 

positively associated. Expression of five transcripts, CYP1A1, BCKDHB, PER3, SREBF1, 

and ANGPTL4 in both tissues was significantly associated with CP5 and exhibited the same 

effect direction. The angiopoietin-like 4 (ANGPTL4) expression level was negatively 
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associated with CP5 (β = -0.77, p =3.27×10-5 in adipose and β =-0.89, p =2.37×10-7 in 

muscle) that capture efficient insulin sensitivity upon glucose loading. Among the three 

FSIVGT-derived glucose-homeostasis traits (SI, DI and SG) that define CP5, ANGPTL4 
expression was most strongly associated with DI (β= -12.67, p= 5.58×10-7 in muscle and β= 

-12.5, p=8.61×10-6 in adipose). Studies in mouse models have shown that ANGPTL4 is a 

glucocorticoid receptor primary target gene that promotes lipolysis in adipocytes, inhibits 

extracellular lipoprotein lipase, and triggers interorgan communication (19). Increased 

glucocorticoid level during fasting induces ANGPTL4 expression. ANGPTL4 mediated 

lipolysis in adipocyte activates ceramide synthesis in the liver and induces whole-body 

insulin resistance by stimulating the activities of the downstream effectors of ceramide, 

protein phosphatase 2A and protein kinase Cζ (20).

Pathway enrichment analysis identifies salient biological process linked to gluco-
metabolic CPs

Ingenuity pathway analysis (IPA) identified significant enrichment of biological pathways 

among genes linked to the transcripts associated with the six CPs. Genes annotated in 

oxidative phosphorylation and mitochondrial dysfunction pathways were enriched among 

the first three CPs, CP1, CP2 and CP3 -associated adipose transcripts (Figure 4, Table S3). 

The oxidative phosphorylation pathway was most strongly enriched among CP2-associated 

adipose transcripts (50 genes, B-H p-value = 1.0×10-15), but was not significantly enriched 

among CP2-associated muscle transcripts. In adipose tissue, expression of nearly all 

transcripts in these two pathways were negatively (inversely) associated with CP1, CP2 and 

CP3. In muscle, genes in oxidative phosphorylation and mitochondrial dysfunction pathways 

were also enriched among CP1 and CP3-associated transcripts. In contrast to adipose, 

expression levels of oxidative phosphorylation pathway transcripts in muscle were positively 

associated with CP1 and CP3 (Table S4). Genes annotated in the EIF2 (Eukaryotic Initiation 

Factor-2) signaling, a pathway involved in protein synthesis, were most strongly enriched 

among adipose tissue transcripts associated with CP1 and CP3 (B-H p =2.51×10-7 and 

1.15×10-7). The EIF2 signaling pathway was strongly enriched among muscle transcripts 

associated with CP1, CP2 and CP3 (B-H p =2.0×10-8-3.98×10-22) and transcript profile 

indicate repression of this pathway (activation z-score<-2; Figure 5). Expression level of 

most transcripts in this pathway in adipose and muscle was inversely associated with CP1, 

CP2 and CP3. Genes annotated in pathways regulating translation and cellular metabolic 

state based on nutrient availability (e.g. Regulation of eIF4 and p70S6K Signaling pathway, 

and mTOR signaling pathway) were also enriched among adipose and muscle transcripts 

associated with CP1, CP2 and CP3.

CP-associated transcripts in adipose were also enriched for genes determining fatty acid, 

amino acid (including branched chain amino acids valine leucine and isoleucine), and 

bioactive amine concentrations (adrenaline, noradrenaline, serotonin, and dopamine). CP1 

had the strongest positive loading for BMI. Corroborating our previous findings on obesity 

(21), CP1-associated transcripts were enriched for endoplasmic reticulum (ER) stress 

induced unfolded protein response pathway (11 genes, B-H p = 0.031). CP4-associated 

adipose and muscle transcripts were not enriched for any biological pathways on IPA 

analysis or Gene Ontology categories by DAVID analysis. The CP5-associated transcripts in 
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adipose were only marginally enriched for triacylglycerol biosynthesis pathway (B-H p 

=0.038), while CP5-associated transcripts in muscle were enriched for superoxide radicals 

degradation (B-H p =0.003) and triacylglycerol biosynthesis (B-H p =0.049). In adipose, five 

triacylglycerol biosynthesis pathway genes (GPAM, LPIN1, DGAT2, DGAT1, and 

ELOVL6) were positively associated with CP5, while in muscle, two genes in this pathway 

(ABHD5 and PLPP1) were negatively associated. DGAT1 is an ER-localized diacylglycerol 

O-acyltransferase (DGAT) enzyme and during adipocyte lipolysis it mediates triglyceride 

synthesis by fatty acid re-esterification; this protects the ER from lipotoxic stress and related 

adipose tissue inflammation (22).

Adipose tissue transcript profiles for CP2-associated genes displayed repression of Rho 

GDP-dissociation inhibitor (RhoGDI, activation z score = -3.18) signaling, LXR/RXR-

activation (z = -2.83), and PPAR signaling (z = -2.23) pathway. The LXR/RXR-activation 

and PPAR signaling pathway were also repressed among CP1 and CP3-asssociated genes in 

adipose, while transcript profiles for CP5-associated genes indicate significant activation of 

the PPAR signaling pathway (z =2). The CP2-associated transcripts indicated strong 

activation of inflammation-related pathways in adipose, including Fcγ receptor-mediated 

phagocytosis in macrophages and monocytes (z =4.7), Tec kinase signaling (z =4.24), 

integrin signaling (z =4.14), TREM1 signaling (z =4.02), leukocyte extravasation signaling 

(z =4.01), IL-8 signaling (z =3.53), dendritic cell maturation (z = 4.33), and inflammasome 

pathway (z =2.64). Many of these inflammatory related pathways were also activated among 

CP1 and CP3-associated adipose transcripts, while CP6-associated transcripts show 

repression of these pathways (Figure 4).

Expression of a subset of gluco-metabolic CP-associated transcripts is dependent on 
regulatory genetic polymorphisms

To develop putative causal models, we integrated genotype information (SNPs with 

MAF≥0.01) and gene expression data through expression quantitative trait (eQTL) analysis 

to identify cis-regulatory variants (cis-eSNPs) in modulating the expression of CP-associated 

transcripts in adipose and muscle. In adipose, significant cis-eQTLs were identified for 558 

CP-associated transcripts (q-value <0.01, Table S5). In muscle, significant cis-eQTLs were 

identified for 164 CP-associated transcripts (q-value <0.01; Table S6). Twenty-four CP-

associated transcripts were cis-eGenes in both adipose and muscle. Among the CP-

associated transcripts, TGF beta-inducible nuclear protein 1 (TINP1/NSA2) had the 

strongest cis-eSNP in adipose (rs6873912, β=0.391, p=33.47×10-67), while Abelson helper 

integration site 1 (AHI1) has the strongest cis-eSNP in muscle (rs7772705, β= 0.518, p= 

1.63×10-60). Among the adipose cis-eGenes (FDR 1%), dicarbonyl/L-xylulose reductase 

(DCXR) was most significantly associated with CP2 (β= -2.22, p= 1.11×10-15), while 

among muscle cis-eGenes prostaglandin D2 synthase (PTGDS) was most significantly 

associated with CP2 (β= 1.14, p= 1.1×10-11). The top 10 CP-associated cis-eGenes or 

genetically regulated transcripts in each tissue based on average ranking for CP association 

p-value and eQTL p-value are shown in Table 3. The top average ranking transcripts 

included membrane-spanning 4-domains subfamily-A member-6A (MS4A6A) and galectin-

related protein (LGALSL/GRP/HSPC159) in adipose and muscle, respectively. The 

expression of an isoform of MS4A6A (NM_022349.2) in adipose was positively associated 
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with CP2 (β=0.93, p=1.66×10-11) and common minor allele (MAF= 0.33) of SNP 

rs597982_C was associated with reduced transcript expression (β= -0.45, p= 3.52×10-17).

Expression of genes predicted by a genome-wide association study (GWAS) for BMI are 
associated with CPs

GWAS in large well powered cohorts identified many - loci associated with increased risk of 

obesity and other gluco-metabolic traits. For example, Locke et al. (23) identified 97 

genome-wide significant (p<5×10-8) loci for BMI. However, most of these trait-associated 

SNPs are in the non-coding region of the genome, and cannot directly implicate the “culprit- 

gene”. Thus, Locke et al. (23) used Data-driven Expression prioritization Integration for 

Complex Traits (DEPICT) (24) to predict and prioritize genes in an expanded set of 511 

BMI-associated (p<5×10-4) genomic regions. DEPICT predicted 989 potential causal genes 

in BMI-associated genomic regions. Among the DEPICT-predicted BMI-genes, expression 

of 127 and 19 genes in adipose and muscle, respectively, were associated with CPs in our 

AAGMEx cohort (Table S7).

Discussion

Existing genome-wide transcriptomic studies have tested association of transcript levels in 

tissues with single anthropometric, glucose homeostasis, and lipid traits (2;4;9;14). Some 

employed covariate adjustment strategies to account for confounding effects of correlated 

traits (e.g. SI adjusted for BMI) (3;9). These strategies cannot fully capture variation across 

multiple traits simultaneously. Specifically, many of these individual measures are partial 

manifestations of underlying latent gluco-metabolic phenotypes and applying a method that 

combines correlated endophenotypes into CPs capturing the underlying gluco-metabolic 

construct is more likely to provide novel insight into the pathophysiological and molecular 

processes involved in T2D and obesity. This study used factor analysis to identify and 

partition 23 measures of obesity and glucose metabolism into six orthogonal dimensions of 

gluco-metabolic CPs. For example, CP1 explained 34% of the variation in the 23 gluco-

metabolic measures in this African American cohort (AAGMEx) and comprehensively 

captured the obesity and FSIVGT-derived glucose-homeostasis phenotypes. Availability of 

detailed phenotype data for AAGMEx participants enabled us to capture the composite 

multi-dimensional structure of gluco-metabolic phenotypes. We believe transcripts 

associated with the CPs most comprehensively define the repertoire of, including novel, 

biological pathways involved in genetic regulation of gluco-metabolic traits.

Focusing on the top six CPs, a total of 3994 associated transcripts were identified in 

subcutaneous adipose; only 929 transcripts in muscle were similarly associated. Thus, 

transcriptional dysregulation involved in determining gluco-metabolic phenotypes appears 

more pervasive in adipose. Although CP1 (reflecting a composite obesity-insulin resistance 
phenotype) explained the largest proportion of variation in the 23 measures, expression 

levels of the largest number of transcripts in adipose and muscle were most strongly 

associated with CP2 (reflecting a composite hyperinsulinemic-insulin resistance phenotype). 

Fasting insulin and HOMA-IR index had the largest loadings for CP2. Fasting insulin is 

higher in insulin-resistant subjects and alters adipose and muscle gene expression and 
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mediates cross-talk between tissues involved in glucose-homeostasis (25). Short term 

experimental hyperinsulinemia (2hr-hyperinsulinemic euglycemic clamp) induced 

transcriptional response of 230 genes in adipose of subjects with obesity, and the difference 

in response was distinct in insulin-sensitive compared to insulin-resistant individuals with 

obesity (26). Among insulin responsive genes, transcript levels of 45 genes in adipose were 

associated with CP2 in this study, including genes with known roles in adipose development 

(RORC, AACS, PPARGC1A, LRP5), AMPK signaling pathway (IRS2, PFKFB3, 
PPARGC1A, PIK3R1), and T2D (IRS2, DBP, HMOX1, PPARGC1A, PIK3R1, DDIT3, 
LRP5). In this study, adipose and muscle tissue samples were collected for gene expression 

analysis following an overnight fast, and participants in this cohort had a broad range of 

fasting insulin concentrations. Our data suggests a role for plasma insulin level in 

determining the fasting transcriptome in adipose and muscle. Additional studies are required 

to resolve temporal and mechanistic connections between hyperinsulinemia, obesity and 

insulin resistance.

Expression of a subset of transcripts in both adipose and muscle were associated with the six 

gluco-metabolic CPs. Inverse correlation of genes in pathways involved in protein synthesis 

(EIF2 signaling), regulation of translation and cellular metabolic state based on nutrient 

availability (eIF4 and p70S6K Signaling pathway, and mTOR signaling) with CP1 and 

CP3suggest concordant downregulation of these pathways in adipose and muscle. However, 

CP1 and CP3-associated genes show discordant regulation of oxidative phosphorylation 

pathway genes, and CP5-associated genes suggest discordant regulation of triacylglycerol 

biosynthesis pathway in adipose and muscle. Enrichment of CP2-associated adipose genes 

in various inflammation-related pathways supports the tissue specific activation of these 

pathways. Some of the gluco-metabolic CP-associated genes identified here (e.g., 

ORMDL3, MS4A6A) are involved in asthma and Alzheimer’s disease, suggesting common 

transcriptional mechanisms across diseases. Precise triggers of adipose tissue inflammation 

are poorly understood (27); our data supports involvement of multiple potential mechanisms. 

In adipose, PPAR signaling was repressed among CP1 and CP3-asssociated genes, while 

transcript profiles for CP5-associated genes indicate significant activation of this pathway. 

CP5 captures a dimension measuring efficient insulin sensitivity upon intravenous glucose 

loading, and CP1 reflects a combined obesity-insulin resistance phenotype. Together, these 

genome-wide transcriptomic and biological pathway analyses define the repertoire of 

biological pathways involved in regulating distinct dimensions of obesity and glucose 

homeostasis. Our study used only adipose and muscle tissue to define transcriptional 

mechanisms determining CPs. Other metabolic tissues are of interest but are not readily 

accessible in the clinical setting.

Recent GWAS approaches successfully identified genetic loci associated with gluco-

metabolic phenotypes; however, identification of precise causal genes in those loci typically 

remains elusive. Most studies considered the genes closest to the sentinel SNP as the effector 

gene. For example, FTO was considered the causal gene in the most significant and highly 

replicated BMI-associated locus on chromosome 16 (28). Recent studies refute this 

conclusion. Functional genetic analyses, including eQTL and chromatin interaction analysis, 

suggest that BMI-associated SNPs in the FTO-locus contribute to obesity by regulating 

expression of the IRX3 and IRX5 genes in pre-adipocytes or brain (29;30). IRX3 is located 
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~513Kb from the BMI-associated SNPs. In a similar fashion, adipose and muscle transcript 

levels are key molecular phenotypes associated with composite gluco-metabolic traits, and 

act proximal to actions of DNA sequence variants. Therefore, the present study focused on 

identifying transcriptional mechanisms associated with composite gluco-metabolic 

phenotypes. Our previous studies showed that a subset of gluco-metabolic trait GWAS-

identified SNPs are cis-eSNPs (11;31). Herein, we demonstrate that expression of a subset 

of CP-associated transcripts is determined by cis-eSNPs, and CP-associated transcripts are 

among the genes predicted by bioinformatics analysis of GWAS-implicated BMI loci. As an 

alternative to GWAS, this approach provides more direct evidence for putative causal genes 

and novel genetically-regulated mechanisms determining gluco-metabolic phenotypes.

Our data implicates thousands of genes in biological processes determining gluco-metabolic 

phenotypes. However, it is likely that a subset of these processes is due to reactive changes 

in response to primary causal mechanisms. This study cannot conclusively differentiate 

causal effects from reactive effects based solely on transcriptomic data. Naturally occurring 

genetic variants, including SNPs in our genome, determine gene expression levels in tissues 

by controlling transcriptional regulation. Thus, regulatory SNPs may act as primary 

initiators determining gluco-metabolic phenotypes via roles in modulation of transcript level 

(SNP →Transcript→ Phenotype) in tissues important for glucose homeostasis. The eQTL 

analysis in this cohort identified cis-eQTLs for a subset of CP-associated transcripts in 

adipose and muscle. These CP-associated cis-eGenes may act as key derivers in 

transcriptional regulatory mechanisms involved in determining gluco-metabolic phenotypes.

Conclusions

Adipose and muscle transcripts associated with composite phenotypes comprehensively 

define the repertoire of biological pathways involved in regulating distinct dimensions of 

obesity and glucose homeostasis. The cis-eSNPs may act as primary initiators influencing 

obesity and glucose homeostasis by regulating transcript levels of a subset of genes in 

adipose and muscle. Further computational analysis and in vitro functional studies will be 

required to prioritize these genes and validate the causal regulatory role of the key derivers 

in remodeling transcriptional regulatory networks relevant to glucose homeostasis.
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What is already known about this subject?

• Dysregulation of transcript expression in human tissues are linked to the 

pathophysiology of obesity, insulin resistance, and type 2 diabetes mellitus.

• Gluco-metabolic traits are correlated, suggesting pleiotropy among 

quantitative gluco-metabolic endophenotypes. Analyses focused on single 

traits may not capture differences in gluco-metabolic phenotypes between 

individuals similar in one trait but different in others.

• Single nucleotide polymorphisms (SNPs) may influence phenotypes by 

regulating the expression level of transcripts in tissues important for glucose 

homeostasis.

What does this study add?

• Six independent composite phenotypes were derived from a factor analysis of 

23 quantitative gluco-metabolic traits in non-diabetic African Americans.

• Across the six composite phenotypes, 3994 and 929 phenotype-associated 

transcripts were identified in subcutaneous adipose tissue and muscle, 

respectively; suggesting gluco-metabolic phenotype-associated transcriptional 

dysregulation is more frequent in adipose tissue. Genome-wide transcriptomic 

analysis and pathway analyses defined biological processes involved in 

regulating distinct dimensions of these composite gluco-metabolic 

phenotypes.

• Cis-eSNPs were identified for 558 and 164 gluco-metabolic composite 

phenotype-associated transcripts in adipose and muscle, respectively. These 

cis-eGenes may alter transcriptional regulatory mechanisms involved in 

determining gluco-metabolic phenotypes.
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Figure 1. Loadings and explained variance from factor analysis of the gluco-metabolic 
phenotypes in AAGMEx cohort
Line graphs shows eigenvalues (A) and variance explained (B) by each factor and radar plots 

(C) show the corresponding factor loadings for 23 phenotypes.
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Figure 2. Distribution of adipose and muscle tissue transcripts associated with top six gluco-
metabolic composite phenotypes
Stacked Bar graph shows number of transcripts (represented by probes in Illumina 

expression arrays) associated (uncorrected-p<0.001) uniquely with each (red) or shared 

(blue) composite gluco-metabolic phenotype (CP).
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Figure 3. Venn diagram showing overlap among adipose and muscle tissue transcripts associated 
with gluco-metabolic composite phenotypes
Number indicates the count of unique Entrez id genes uniquely associated (uncorrected-

p<0.001) with a composite phenotype or overlapping with genes associated with other 

composite phenotypes.
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Figure 4. Transcripts in subcutaneous adipose tissue are associated with composite gluco-
metabolic phenotypes and enriched for salient biological pathways
A) Heat map shows hierarchical clustering of -log10 p-values for 3994 adipose tissue 

transcripts (each row indicate probe for a transcript) associated (p<0.001) with composite 

phenotypes. B) Enrichment and C) activation of genes in biological pathways among six 

composite phenotype-associated adipose transcripts based on ingenuity (IPA) pathway 

comparison analysis are shown as heat maps.
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Figure 5. Transcripts in skeletal muscle tissue are associated with composite gluco-metabolic 
phenotypes and enriched for salient biological pathways
A) Heat map shows hierarchical clustering of -log10 p-values for 929 muscle tissue 

transcripts (each row indicate probe for a transcript) associated (p<0.001) with composite 

gluco-metabolic phenotypes. B) Enrichment and C) activation of genes in biological 

pathways among six composite phenotype-associated muscle transcripts based on ingenuity 

(IPA) pathway comparison analysis are shown as heat maps.
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