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Abstract
Previous studies suggest fundamental differences between the perceptual learning of

speech and non-speech stimuli. One major difference is in the way variability in the training

set affects learning and its generalization to untrained stimuli: training-set variability appears

to facilitate speech learning, while slowing or altogether extinguishing non-speech auditory

learning. We asked whether the reason for this apparent difference is a consequence of the

very different methodologies used in speech and non-speech studies. We hypothesized

that speech and non-speech training would result in a similar pattern of learning if they were

trained using the same training regimen. We used a 2 (random vs. blocked pre- and post-

testing) × 2 (random vs. blocked training) × 2 (speech vs. non-speech discrimination task)

study design, yielding 8 training groups. A further 2 groups acted as untrained controls, test-

ed with either random or blocked stimuli. The speech task required syllable discrimination

along 4 minimal-pair continua (e.g., bee-dee), and the non-speech stimuli required duration

discrimination around 4 base durations (e.g., 50 ms). Training and testing required listeners

to pick the odd-one-out of three stimuli, two of which were the base duration or phoneme

continuum endpoint and the third varied adaptively. Training was administered in 9 sessions

of 640 trials each, spread over 4–8 weeks. Significant learning was only observed following

speech training, with similar learning rates and full generalization regardless of whether

training used random or blocked schedules. No learning was observed for duration discrimi-

nation with either training regimen. We therefore conclude that the two stimulus classes re-

spond differently to the same training regimen. A reasonable interpretation of the findings is

that speech is perceived categorically, enabling learning in either paradigm, while the differ-

ent base durations are not well-enough differentiated to allow for categorization, resulting in

disruption to learning.
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Introduction
Despite decades of research in perceptual learning, it is not clear whether the perceptual learn-
ing of the acoustic elements of speech [1] and non-speech [2, 3] sounds are based on the same
underlying mechanisms. These two forms of perceptual learning were generally studied sepa-
rately, by different communities of investigators with greatly varying goals and methodologies.
One striking difference between these two bodies of research, which is the focus of the present
study, is in the putative role of stimulus variability in learning (see [4] for review). On the one
hand, the perceptual learning of non-speech acoustic elements is most often studied with train-
ing regimens that involve massive repetition of the same stimulus tokens throughout training
(e.g., [5, 6]). In the rare cases in which stimulus variability was introduced by the presentation
of several randomly mixed stimuli during training (roving), the effect seemed detrimental to
learning [7, 8]. On the other hand, the perceptual learning of speech was predominantly stud-
ied with regimens that involve little or no stimulus repetition throughout training [9, 10]. In
these studies, when stimulus variability was limited by the introduction of greater stimulus rep-
etition, generalization to untrained tokens seemed to diminish [9–12]. The goal of the current
study was to directly compare the effects of stimulus variability on the learning of speech and
non-speech elements. For reasons discussed below, we theorize that the differential effects of
stimulus variability are related to the relevance of the variable dimension to learning, rather
than to true differences in learning mechanisms between the two domains. Three specific hy-
potheses derived from this idea were tested in this study:

H1: Randomly varying the stimuli along a training-relevant dimension and presenting them in
blocks (keeping them constant on a trial-by-trial basis) will result in similar amounts
of learning.

H2: Stimulus variability slows learning.

H3: The effects of variability are similar in the learning of speech and non-speech elements
once training and testing conditions are equated across the two types of stimuli.

A comparison of the outcomes of perceptual training with speech and non-speech stimuli
suggests that in general, greater effects of training are observed after training with speech sti-
muli than after training with non-speech ones because wider generalization to untrained to-
kens occurs with speech than with non-speech training [4]. For example, multiday training on
speech identification under adverse listening conditions (noise, time-compression, a competing
talker) [13] and on the discrimination of minimal phonetic pairs [9, 14] resulted in generaliza-
tion to untrained speech conditions. In contrast, multiday training on various acoustic [3] and
visual [15, 16] discriminations appears quite specific to the trained features. For example, train-
ing on the discrimination of the duration of auditory intervals results in learning that is highly
specific to the trained interval [5, 17, 18]. Even when two intervals are successfully learned,
there is no transfer to an untrained temporal-interval that is adjacent (in length) to the two
learned ones [18, 19]. A salient difference between the two types of studies is that training regi-
mens for speech stimuli tend to incorporate a larger degree of stimulus variability across the
training materials (e.g., multiple speakers and tokens) than non-speech training regimens
which are characterized by massive repetition of acoustically identical stimuli throughout
training, leading to the notion that stimulus variability during training contributes to the trans-
fer of learning to untrained materials.

Although there is solid evidence that variability does facilitate speech learning [9–12], this is
not always the case [20]. Rather, it seems that across-trial variability facilitates learning (facili-
tation is assessed by the extent of generalization to untrained tokens) when variability is
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introduced along a training-irrelevant dimension (e.g., speaker), but not when it occurs on the
trained one (e.g., different phonetic contrasts). If this is the case, learning may not be depen-
dent on the type of stimulus (speech, non-speech) or the training regimen (variable, non-
variable), but rather on the relevance (or irrelevance) of the variable dimension. Indeed, several
studies found that learning of phonetic discriminations improved with variable training, but in
these studies variability was not introduced on the trained dimension (the specific minimal
pair to be learned), but rather, along an irrelevant one (talker or word position of the practiced
pair) [9–12]. On the other hand, the introduction of variability along a training relevant dimen-
sion seems to limit learning. For example, Nahum and colleagues [20] trained listeners on the
discrimination of minimal word pairs in noise in one of two conditions. In one condition, the
binaural cues that help the separation of speech and noise were delivered consistently across
trials such that listeners received either diotic or dichotic stimulation for entire blocks of trials.
In the other condition, diotic and dichotic stimuli were randomly mixed in each block. Where-
as listeners in the first group improved with training, no learning was observed in the other
group. Importantly, no transfer was observed in either group, demonstrating that inter-trial
variability during practice does not necessarily widen the scope of generalization. This could
also account for findings in the non-speech domain. For example, in a study on auditory dura-
tion discrimination [18] listeners practiced the discrimination of two auditory temporal inter-
vals. Different base durations were presented in separate blocks of trials (no trial-by-trial
variability), or randomly mixed within a block. Although both conditions were learned similar-
ly, no generalization to untrained durations occurred with either. In the current study listeners
were trained on the discrimination of minimal phonetic pairs (speech) and auditory durations
(non-speech). Variability was introduced by randomly mixing different pairs or different base
durations within a block of trials. Since these are training-relevant dimensions we predict simi-
lar patterns of learning following training with or without trial-by-trial stimulus variability
(H1).

Even when successful, learning under variable conditions might be slower than learning
under fixed stimulation conditions. Thus in the speech-in-noise discrimination study men-
tioned above [20], learning did occur when binaural cues were consistently interleaved across
trials (diotic, dichotic, diotic, dichotic, etc.). Nevertheless learning was slower than in the group
of listeners who received the two types of stimuli in different blocks. Similarly, trial-by-trial
variability seems to slow the auditory learning of non-speech stimuli [7, 8]. For example, when
trained on the detection of specific components of auditory patterns, listeners learned to detect
the target stimulus faster when its location within the pattern remained constant across trials
than when its location was variable [8]. The disruption of learning caused by stimulus variabili-
ty during training is not confined to audition—studies in vision consistently show that stimulus
variability slows or prevents learning altogether unless the stimuli are sufficiently different [21,
22]. Based on these, we now hypothesized that in this study trial-by-trial stimulus variability
should slow learning (H2).

Despite the putative differences between the perceptual learning of speech and non-speech
stimuli, the hypotheses presented so far are based on the tacit assumption that learning mecha-
nisms are similar in the two domains. Given the traditional divide between ‘speech perception’
and ‘auditory perception’ [23] this assumption merits at-least some consideration/explanation.
First, perceptual learning studies suggest that learning of speech and non-speech elements are
governed by similar principles and constraints [20, 24, 25]. For instance, training listeners to
categorize complex non-speech auditory patterns resulted in a pattern of neural changes highly
similar to that induced by learning to categorize speech sounds [25]. Likewise, the interfering
effects of stimulus variability on learning to discriminate speech-in-noise were similar to those
induced by stimulus variability in visual perceptual learning [20]. Second, recent
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conceptualizations of phenomena that were considered unique properties of speech processing
(e.g., talker normalization, categorical perception) emphasize the roles of general cognitive and
perceptual mechanisms that support categorization and perceptual grouping [26, 27]. Within
this framework we hypothesize that the effects of stimulus variability are similar in the learning
of speech and non-speech elements once training and testing conditions are equated across the
two types of stimuli (H3).

The current study was designed to test the three aforementioned hypotheses, that stimulus
variability: (H1) does not facilitate learning if it occurs on the dimension on which training is
administered; (H2) slows the learning process; and (H3) has similar influences on the percep-
tual learning of speech and non-speech sounds. To test these hypotheses, two training modes
differing in the amount of trial-by-trial stimulus variability were created and administered to
different groups of listeners using one of two stimulus classes—the discrimination of minimal
phonetic pairs (‘speech discrimination’) and the discrimination of pure tones of different dura-
tions (‘duration discrimination’). Before and after training, half of the listeners who practiced
each stimulus class and training mode were tested on both stimulus classes with stimulus vari-
ability, while the other listeners were tested on the same stimulus classes without variability.
Pre- and post-test performance was also compared to the performance of untrained listeners.
This design thus allows us to test the differential effect of both training mode (variable, non-
variable) and stimulus class (speech, non-speech) on learning and generalization to the other
stimulus class and other ‘variability condition’ (H1), and on learning rate (H2). A comparison
of outcomes across stimulus classes and presentation modes allowed us to compare learning
between the speech and non-speech domains (H3).

Materials and Methods

Ethics statement
All aspects of the study were approved by the ethics committee of the Faculty of Social Welfare
and Health Sciences at the University of Haifa. Written informed consent was obtained from
all participants prior to the first testing session.

Participants
A total of 112 University of Haifa students (aged 20–35) participated in this study. Participants
were native speakers of Hebrew and naïve to psychophysical testing. By self-report all had nor-
mal hearing and no history of language, learning or attention problems. Participants were com-
pensated for the time devoted to the study.

The participants were divided into ten groups (see Table 1). Eight groups participated in the
training program described below (initial n = 12 in each group). The trained groups differed
on the trained stimulus class (speech stimuli, non-speech stimuli), the training mode (whether
they trained with random or blocked stimuli), and the mode of pre- and post-testing they re-
ceived (random, blocked). Two additional groups served as no-training control groups (initial
n = 8 each). Listeners in these two groups participated in the pre- and post-test sessions, but
differed in the mode with which they were tested (random or blocked).

Twenty-eight participants did not complete training and were excluded from data analysis.
Data from three additional participants was lost due to technical errors. The data of 2 partici-
pants were removed during data analysis (see below), and thus data from a total of 81 listeners
are reported (see Table 1 for the distribution of listeners across training and testing
conditions).
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Experimental design
The experiment had three phases, a pre-test taken by all participants, a 9-sessions training
phase completed by the participants of the 8 training groups and a post-test session completed
by all participants. During the pre- and post-test sessions, conducted 4–8 weeks apart, listeners
were tested on two stimulus classes, speech discrimination and duration discrimination (de-
scribed below). The discrimination of stimuli within each class was tested in one of two modes
(also described below), random or blocked, such that listeners in five groups (four training
groups and one of the no-training groups) were tested with the random mode while listeners in
the remaining five groups completed the blocked testing.

In an attempt to the mimic ‘real-life’ scenarios under which multisession training is likely to
occur, a flexible training schedule was chosen for the current study. Trained listeners were
asked to complete the study in 4–8 weeks, and undertake at-least one training session a week,
with no further constraints. Prior to data analysis, training schedules were compared across the
trained groups. Training schedules were similar across the eight trained groups in the current
study (F(7,62) = 0.95, p = 0.48). On average listeners trained once every 2.4 days with a range
of 2.1 (in duration trained listeners who practiced on a roving training mode but tested with
blocked pre and post tests) to 2.7 days (in speech trained listeners who trained on the fixed
mode but were tested with the roving mode). This suggests that any difference in training out-
come between stimulus classes (speech vs. non-speech) or training modes (blocked vs. ran-
dom) are not attributable to different training schedules between the trained groups.

All ten groups participated in pre- and post-test sessions in which they were tested on both
speech discrimination and duration discrimination in one of two testing modes—blocked or
random (never both). Two of these were untrained groups who participated in the pre- and
post-test only. Four of the remaining groups were trained on the speech discrimination task
(two with random training and two with blocked training). The final four groups were trained
on the duration discrimination task (two with random training and two with blocked training).
Therefore, as described in Table 1, during the pre- and post-tests, all trained groups were tested
with the stimulus they trained with (speech/duration) as well as with the untrained stimulus
(duration/speech). However, for half of the trained groups the training and test modes were
identical (random or blocked) whereas the other half were trained with one mode but tested on
the other. There were no conditions that were administered to all groups.

Table 1. Training regimen (mode and stimulus class), testing conditions and final number of participants in each of the 10 study groups.

Group Training regimen Testing mode (pre- and post-test)

(final number of participants) Training mode Stimulus class

1 (n = 9) random speech random (speech and duration)

2 (n = 9) random speech blocked (speech and duration)

3 (n = 6) random duration random (speech and duration)

4 (n = 11) random duration blocked (speech and duration)

5 (n = 8) blocked speech random (speech and duration)

6 (n = 10) blocked speech blocked (speech and duration)

7 (n = 8) blocked duration random (speech and duration)

8 (n = 8) blocked duration blocked (speech and duration)

9 (n = 6) ———— ———— random (speech and duration)

10 (n = 6) ———— ———— blocked (speech and duration)

doi:10.1371/journal.pone.0118465.t001
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Task and stimuli
Our goal was to determine whether variability differentially affects learning on two different
classes of stimuli (speech and non-speech) when the two classes of stimuli are practiced with
identical training regimens and tasks. Stimuli within each class were selected based on previous
learning studies in each of the speech and non-speech domains. Therefore no attempt was
made to match the stimuli across classes or to make the non-speech stimuli more speech-like
in their acoustic properties.

Speech discrimination of four minimal phoneme pairs and auditory duration discrimina-
tion with four standard intervals were used in the current study, delivered in a 3-alternative
forced-choice oddball task. On each trial, three stimuli were presented, two standard stimuli
and one target stimulus. Listeners were instructed to determine which of the three presented
stimuli was different from the others. Target stimuli varied adaptively in a 3-down/1-up stair-
case procedure in 40-trial runs. A multiplicative staircase was used. Step size was two until the
fourth reversal and 1.41 thereafter. Adaptive runs were randomly interleaved and administered
in blocks of 160 trials. Visual feedback was provided throughout the entire experiment for both
correct and incorrect responses.

Speech discrimination. Four pairs of synthetic speech tokens (described by Moore et al.
[14]) were presented either randomly or blocked (see below): [bee]-[dee], [da]-[ga], [ma]-[na],
and [sa]-[sha]. Each pair formed the endpoints of a 96 item continuum. On each trial, two
identical standard stimuli and one target stimulus were presented. Standard stimuli were de-
fined as one endpoint of each continuum ([bee], [da], [ma], [sa]). Target stimuli were adapted
from the other endpoint and towards the standard.

Duration discrimination. Four standard stimuli were used in this task, presented either
randomly or blocked (see below)– 50 ms, 100 ms, 200 ms and 350 ms. All stimuli were 1-kHz
pure tones. On each trial two identical standard tones and one target tone were presented with
an 800-ms inter-stimulus-interval. Target stimuli were adapted from a starting point of 1.5
times the duration of the standard, towards the duration of the standard stimulus.

Pre- and post-testing sessions
Testing modes—random and blocked. Each task had two testingmodes—random and
blocked. In random testing the four different stimuli used for each task were randomly mixed
(roved) within each block of 160 trials. In blocked testing only one type of stimulus was pre-
sented within a block. Each group of listeners was tested on one of the modes and trained on ei-
ther one or the other of the modes such that the effects of training on performance could be
tested as a function of both training and testing modes (see Table 1), without confounding
the two.

Stimulus classes—speech and duration. During the pre- and post-test sessions listeners
were tested on both the duration discrimination and the speech discrimination described
above in separate blocks (160 trials each). Each stimulus was presented for a single run of 40 tri-
als. Participants tested on random mode completed a single block of 160 trials per task, com-
prised of randomly mixed runs of the 4 stimuli (of the same class). Participants tested on the
blocked mode completed a 4 single blocks of 40 trials per task (8 in total).

Training regimens
Each group of trained listeners participated in nine training sessions of 640 trials (lasting ap-
proximately 45 minutes) each, divided into four 160-trial blocks. Each group practiced either
speech or duration discrimination. Likewise, each group practiced only a single mode, either
random or blocked. Each block consisted of 4 independent, adaptive runs of 40 trials mixed

Variability in Speech and Non-Speech Learning

PLOS ONE | DOI:10.1371/journal.pone.0118465 February 25, 2015 6 / 18



within the block on a trial-by-trial basis. In random training sessions, each run consisted of
one of the four stimuli, randomly mixed with runs of the other three stimuli, such that within a
block of 160 trials listeners encountered 40 presentations of each target stimulus. In blocked
training sessions, all 4 runs in each block consisted of only one of the four stimuli, so that lis-
teners practiced all four stimuli in consecutive blocks. The order of the different stimulus-
blocks was randomized across participants but kept constant across the training sessions of
each participant.

Data analysis
Many listeners were very poor at the start of training, especially under the random conditions.
Since both stimulus classes were upper-bound (not allowing stimuli to become too long in the
duration discrimination task, and bound by the end-points of the syllable continua in the
speech task), there were no viable reversals to use in blocks where performance failed to reach
79% correct at the greatest difference. Discrimination thresholds were therefore calculated as
the geometric average of the last 20 trials per adaptive run, which did not differ greatly from
the 79% correct thresholds obtained on those blocks where there were a sufficient number of
viable reversals. For each participant, a single threshold was obtained for each stimulus for the
pre- and post-tests, and four thresholds per stimulus for each of the training sessions. Log-
transformed thresholds were used for statistical analysis because the adaptive step
was multiplicative.

Prior to statistical analysis all individual data were visually inspected, and the data of two lis-
teners who performed at floor level consistently throughout training and testing were excluded.
The performance of those two listeners was consistently at the poorest possible level of perfor-
mance afforded by the staircase procedure used. In addition, the duration discrimination data
from the post-test of an additional participant were excluded because this listener performed
all 4 post-test conditions at a floor level, despite a reasonable performance at pre-test and
during training.

Pre- to post-test learning
As shown in Fig. 1 (and confirmed with a one-way ANOVA), mean performance was similar
between the different groups across individual tasks and stimuli. Therefore, speech- and dura-
tion-discrimination thresholds were submitted to two omnibus ANOVAs with time and stimu-
lus as within-listener factors and testing mode (blocked, random), training mode (blocked,
random) and stimulus class (speech, duration) as between-listener factors. This analysis re-
vealed no significant interactions between testing mode (random, blocked) and any of the
other factors (or interactions between factors), suggesting that the way listeners were tested
prior to training had no influence on any of the other effects of interest (time, training mode
and stimulus class). We therefore analyzed the effects of training with a series of ANOVAs on
the pre- and post-test thresholds in the two different modes (random, blocked), with time
(pre-test, post-test) and individual stimulus ([bee]-[dee], [da]-[ga], [ma]-[na] and [sa]-[sha] or
50 ms, 100 ms, 200 ms and 350 ms) as within listener factors and training mode (random,
blocked) and stimulus class (speech, duration) as between-listener factors. Main effects of time
were taken as evidence for training induced learning, while effects of training mode and stimu-
lus class were used to determine whether these modified learning. Main effects of stimulus are
reported, but not further considered or analyzed since the differences between the stimuli mak-
ing each of the tasks are beyond the scope of the current study. Greenhouse-Geisser corrections
were used in all cases where data were not spherical.
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Fig 1. Pre- and Post-test thresholds for each training stimulus, stimulus class and testing mode. (A) Pre-test (empty symbols) and post-test (full
symbols) thresholds on the speech discrimination task for each phonememinimal-pair stimulus. Thresholds are plotted as the phoneme number (on the
continuum between 1 and 96), tested on the blocked condition (top panels) and randommode (bottom panels). Five training groups (shown from left to right
on the x-axis of each panel) were tested on each mode: Blocked (B) and Random (R) Speech, Blocked (B) and Random (R) Duration, and untrained Controls
(C). Note that the top and bottom panels denote different training groups (10 groups in total; see Methods for details). All error bars denote 95% confidence
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To determine whether pre- to post-test changes in the trained groups are attributable to
learning, the amount of pre- to post-test improvements on the different testing modes were
compared between trained and untrained listeners using a series of contrasts. Amount of im-
provement was quantified for each listener and stimulus class by converting the four individual
thresholds (speech: [bee]-[dee], [da]-[ga], [ma]-[na] and [sa]-[sha]; duration: 50 ms, 100 ms,
200 ms and 350 ms) to Z-scores (relative to the relevant pre-test means). Individual Z-scores
were then averaged across the four pre- and post-tests for each stimulus class, yielding a total
of four Z-scores per participant (pre speech, pre duration, post speech, post duration). Post-
test Z-scores were then subtracted from pre-test scores and the differences were compared
across groups.

Training-phase learning
Amean learning curve was calculated for each participant by averaging over all of the daily
thresholds. Individual regression lines were then fitted to the session average and the slopes of
these lines were submitted to statistical analysis to determine whether training mode and stim-
ulus class had differential effects on learning.

Results

Learning and transfer between the pre- and post-tests
Mean group discrimination thresholds are shown in Fig. 1, across all stimuli, as a function of
stimulus class, training mode and test mode. A visual inspection of the data presented in
Fig. 1A suggests that with the exception of the [ma]-[na] blocked condition, speech discrimina-
tion in both test modes (blocked, and random, shown on the top and bottom rows respectively)
improved substantially following training on either of the two modes of the speech task
(blocked and random). As for duration discrimination, Fig. 1B suggests pre- to post-test
changes were small and inconsistent across stimuli, but these were not specific to either class or
training mode. As explained in the data analysis section of the Methods, these observations
were confirmed statistically by submitting the pre- and post-test speech and duration thresh-
olds to a series of ANOVAs with time (pre, post) and stimulus ([bee]-[dee], [da]-[ga], [ma]-
[na] and [sa]-[sha] or 50-ms, 100-ms, 200-ms and 350-ms) as within-listener factors and train-
ing mode (blocked, random) and stimulus class (speech, duration) as between-listener factors.
The outcomes of these analyses are reported in the following sections. Note that because we
were not specifically interested in the differences between the trained stimuli within each class
of stimuli, interactions involving stimuli were not explored further and are not reported.

Learning and transfer on the speech task
Performance on the blocked speech tests (Fig. 2A) was significantly influenced by time (F(1,34)
= 60.6, p< 0.001, η2p = 0.64) and individual stimulus (F(2.2, 74.1) = 42.0, p< 0.001, η2p =
0.55), with a marginal effect of stimulus class (F(1,34) = 3.68, p = 0.063, η2p = 0.10). Suggesting
that learning did not transfer across stimulus classes, a strong time × class effect was also ob-
served (F(1,34) = 14.5, p< 0.001, η2p = 0.30). Indeed, listeners who trained on either mode of
the speech task improved their speech discrimination thresholds between the pre- and post-
tests significantly more than controls, but listeners who practiced the duration task did not (see
Table 2 and Fig. 2A). No other main effects or interaction terms were significant.

intervals. (B) Pre- and post-test thresholds on the duration discrimination task for each reference stimulus duration, plotted as per-cent of the reference
duration. Top panels show performance on the blocked tests, while the bottom panels show performance on the random test for the same groups as (A).

doi:10.1371/journal.pone.0118465.g001
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Three factors significantly influenced speech discrimination in the random testing mode
(Fig. 2B)—time (F(1,27) = 56.8, p< 0.001, η2p = 0.68), individual stimulus (F(2.3, 58.8) = 30.6,
p< 0.001, η2p = 0.53) and training stimulus class (F(1,27) = 22.7, p< 0.001, η2p = 0.46). The
significant effect of time suggests that pre- to post-test learning occurred in this condition. The
amount of learning was however modified by the training stimulus class (time × class interac-
tion, F(1,27) = 23.4, p< 0.001, η2p = 0.46) confirming that listeners that trained on the speech
task improved more than listeners who trained on the duration task between the pre- and post-
test (see Fig. 1A, bottom panels and Fig. 2B). No other main effects or interaction terms were
significant, suggesting that random training was not more likely to improve speech discrimina-
tion than blocked training. Consistent with the finding that learning was specific to the trained

Fig 2. Learning on each stimulus class and testingmode. Learning is shown as the difference between
pre- and post-test thresholds. Individual z-scores were calculated with respect to the aggregate pre-test data
across all participants tested on each stimulus class and mode (see Methods), and are thus plotted in units of
standard deviation from pre-test scores (dashed line at 0) for each group. Data are shown for Blocked (A) and
Random (B) Speech, and Blocked (C) and Random (D) Duration, in the groups trained on Blocked and
Random Speech, Blocked and Random Duration, and untrained Controls (denoted on the x-axis of each
panel). The grey box in each panel indicates the group for which training and testing was on the same
regimen. Asterisks demarcate significant learning compared to the Control group (after correction for multiple
comparisons, see Table 2). Error bars denote 95% confidence intervals.

doi:10.1371/journal.pone.0118465.g002
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stimulus class, but not to the training mode (random or blocked), a contrast analysis suggests
that only speech trained listeners improved significantly more than controls between the pre-
and post-test on the random speech task (Fig. 2B, and see Table 2 for contrast values and
significance).

Together, these data suggest that in general, improvements in speech discrimination were
specific to speech training, regardless of whether the training was delivered in a random or
blocked fashion. That no influence was found for the random training regimen suggests that,
consistent with our initial hypothesis (H1), in the current study there was no advantage for
random over blocked training for learning speech discrimination. We also found no evidence
of significant transfer from duration training to speech discrimination regardless of training or
testing modes.

Learning and transfer on duration discrimination
As shown in Fig. 1B (top panels) and in Fig. 2C, learning on the blocked duration tests was
weakest compared to the other learning effects (main effect of time: F(1,34) = 5.37, p = 0.027,
η2p = 0.14). Although stimulus also affected performance in this task (F(2.4, 80.4) = 16.3,
p< 0.001, η2p = 0.32) no other main effects or interaction terms were significant suggesting
that neither the trained stimulus class (speech, duration) nor the training mode (random,
blocked) had any discernible effects on learning in this condition. Likewise, duration trained
listeners did not improve between the pre- and post-tests more than untrained controls
(Table 2 and Fig. 2C).

Duration discrimination in the random test mode (Fig. 1B, bottom panels and Fig. 2D)
changed significantly as a function of both time (F(1,26) = 9.50, p = 0.005, η2p = 0.27) and stim-
ulus (F(3,78) = 21.5, p< 0.001, η2p = 0.45), and marginally so as a function of the trained stim-
ulus class (F(1,26) = 3.25, p = 0.083, η2p = 0.11). No other main effects or interaction terms
were significant. Consistent with the relatively small effect size of the pre- to post-test change
on the random duration discrimination test, neither of the duration trained groups learned sig-
nificantly more than controls (Fig. 2D and Table 2).

Together these data suggest that for the blocked as for the random test modes, learning was
sensitive and specific to the trained stimulus class (duration vs. speech), but not to the training
mode (random vs. blocked), again, consistent with our initial hypothesis (H1) concerning the
effect of the training regimen. These data also suggest that in this study speech discrimination
was learned more readily than duration discrimination.

Table 2. Pre- to post-test learning vs. untrained controls in Z-score units.

Speech Duration

Random Blocked Random Blocked

Training regimen Random speech 2.25*** -1.90*** -0.09 0.33

Random duration 0.33 0.38 0.43 0.08

Blocked speech 1.97*** 1.27** 0.02 0.30

Blocked duration 0.36 0.41 0.76 0.66

Statistical significance was determined using a contrast between untrained listeners and each of the trained groups. Contrast values are significant at

***p < 0.001,

**p < 0.01.

All significant contrasts remain significant with Bonferroni corrections.

doi:10.1371/journal.pone.0118465.t002
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Training-phase learning
Mean daily discrimination thresholds (pooled across the trained stimuli) are shown in Fig. 3.
The fitted regression lines suggest that robust learning (negative slopes) occurred during
speech discrimination training across the different groups that trained on speech discrimina-
tion, irrespective of training or testing mode (Fig. 3A). This was clearly not the case for listeners
who practiced duration discrimination in which learning, if any, appeared to occur with
blocked training only (Fig. 3B). To determine whether the training mode (random, blocked),
testing mode (random, blocked) and trained stimulus class (speech, duration) influenced the

Fig 3. Groupmean learning curves for all training regimens.Group mean learning curves for the groups trained on Blocked (red) and Random (blue)
Speech (A) and Duration (B). Dotted and full lines are the regression lines fitted to the mean thresholds averaged across stimuli and participants for each
training session, in the groups tested on the random and blocked mode, respectively. Error bars are not shown because they overlap substantially.

doi:10.1371/journal.pone.0118465.g003
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rate of learning during the training phase, individual regression slopes were submitted to a 2
(testing modes) × 2 (training modes) × 2 (stimulus class) ANOVA. Only the stimulus class sig-
nificantly impacted the slopes (F(1, 68) = 14.5, p< 0.001, η2p = 0.19), suggesting that training
on speech discrimination yielded greater learning than training on duration discrimination. In-
deed, the mean slopes and their confidence intervals, shown in Table 3, were significantly nega-
tive in all the groups that practiced speech discrimination but only in one of the four groups of
listeners who practiced duration discrimination (those who practiced on the blocked mode but
tested on the random mode). Thus in contrast to our initial hypothesis (H2), when learning oc-
curred during the training phase, it was not slower with random than with blocked training.

Discussion
The major outcomes of the current study were that (1) the discrimination of minimal phonetic
contrasts was learned equally with random and blocked training regimens; (2) speech learning
with either one of the regimens fully generalized to the other; (3) no learning was observed on
the duration discrimination task with either a random or a blocked training regimen (see Fig. 2
for a visual summary). These findings are consistent with the idea that variability along a train-
ing-relevant dimension is not conducive to learning (initial hypothesis H1), but not with the
hypothesis (H2) that trial-by-trial variability slows learning. In contrast to what we expected
based on previous studies [18, 19], no significant learning was observed on duration discrimi-
nation with either roving or blocked training. Therefore, the data neither confirmed nor dis-
confirmed our hypothesis (H3) that the effects of variability are similar in the learning and
generalization of speech and non-speech elements. In the following sections we discuss the po-
tential causes for the lack of learning (and generalization) on duration discrimination, as well
as the different natures of speech and non-speech stimuli which could have made speech sti-
muli more learnable and more robust to stimulus variability.

Why did listeners learn speech, but not duration discrimination?
Methodological Considerations
The current finding that training on duration discrimination (either blocked or roving) yielded
no learning, was surprising because previous reports led us to expect learning on the blocked
regimen (e.g., [5, 19]), if not on both regimens [18]. Nevertheless, the current study was not an
exact replication of any previous study, and several methodological factors could account for
this failure and are discussed below—the random-like nature of our blocked regimen, the num-
ber of training trials per condition, the number of different stimuli trained or the spreading of
training over a longer period than in previous studies.

First, although blocked trained listeners practiced each of the four stimuli on separate blocks
of trials, each block was comprised of four randomly interleaved runs. Therefore, although the

Table 3. Mean group slopes of the regression lines fitted to individual learning curves [with 95%
confidence intervals].

Pre- and post-test

Random Blocked

Training regimen Random speech -0.027 [-.046, -.007] -0.039 [-.062, -.016]

Random duration 0.001 [-.032, .035] -0.008 [-.026 0.011]

Blocked speech -0.029 [-.049, -.016] -0.028 [-.048, -.008]

Blocked duration -0.021 [-.035, -.008] -.000 [-.018, 0.18]

doi:10.1371/journal.pone.0118465.t003
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same reference stimulus appeared on each and every trial, adaptation of the target stimuli was
conducted separately for each run. This could have resulted in uneven changes in the values of
the target stimuli across runs, leading to the presentation of very different values of the target
stimulus across trials. Therefore, although listeners heard only one stimulus per block, they
may have actually faced a more variable situation than listeners in previous studies in which
duration discrimination learning was observed [5, 18, 19], leading to a disruption of the learn-
ing process. Random presentation should not have precluded learning entirely [7, 18]. Howev-
er, the mixed stimuli in our blocked conditions differed from both these studies in that they
were more similar to each other (e.g., 100–200 ms in the 100 ms condition) than the mixed sti-
muli in the Karmarkar and Buonomano [18] study that differed in both frequency and base du-
ration (e.g., around 100 ms and around 350 ms). Likewise, large frequency differences between
base frequencies did not disrupt frequency discrimination learning (for most listeners), while
small differences did [7]. It is also consistent with the notion arising from studies in visual per-
ceptual learning that have repeatedly shown that stimulus variability disrupts learning when
the varied stimuli are similar, but not when they are highly distinctive [21, 22, 28].

Second, the amount of training provided on each of the stimuli (160 trials of each stimulus
on each training session) might have been sufficient for speech discrimination learning, but too
small to initiate learning on duration discrimination. Indeed, previous studies in auditory per-
ceptual learning suggest that the minimal number of practice trials required to initiate learning
varies greatly across different tasks [29]. For example, it has been previously shown that al-
though 360 training trials/session were sufficient to yield learning on temporal-interval dura-
tion discrimination, this number was not sufficient to yield learning on a frequency
discrimination task with the same stimuli [29]. Nevertheless, other studies on frequency dis-
crimination showed that the number of training trials also changes as a function of the particu-
lar stimulus used. Whereas 360 trials/session were not sufficient to initiate frequency
discrimination learning when the stimuli were 15-ms tone pips separated by silent intervals
[29], 100 trials were adequate to initiate learning with longer (100-ms) stimuli [30]. It is quite
possible that task difficulty is the critical factor in determining the amount of training required
to initiate learning, and that duration discrimination presents a greater challenge perceptually
than the speech continua used here.

Third, whereas previous studies of duration discrimination used training regimens that
mixed two different stimuli [18, 19], ours employed four different base durations. However, we
think it unlikely this is responsible for eliminating the learning, as frequency discrimination
learning was shown to slow rather than disappear entirely when five base frequencies were
used [7].

Finally, although the total amount of training provided to listeners in the current study was
similar to the amount that was found previously to yield learning [19,29], the training schedule
in the current study may have been different than that of previous studies [5, 18, 19, 29].
Whereas in previous studies (when reported) training typically occurred on consecutive days
with larger gaps only during weekends [19, 29], here greater spacing of the training sessions
was possible. Nevertheless, listeners typically trained every two to three days (see Methods).
Therefore, although we cannot rule out session spacing, we think it unlikely that that lack of
learning here was an outcome of the more flexible training schedule we allowed.

Other factors that could have contributed to the lack of learning—the final number of
trained listeners, between-listener variability and number of excluded data points—were simi-
lar to those reported in previous studies [19, 29]. This suggests that the lack of learning did not
result from the current sample being unusual or too variable.

Whatever caused the lack of learning on duration discrimination makes it impossible for us
to draw any conclusions regarding the effects of variability on this type of learning. Although
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we cannot rule out that the methodological factors considered above were responsible for the
lack of learning on duration discrimination in the current study, it is nevertheless revealing
that non-speech learning may be more sensitive to those variables than speech learning. In the
following section we discuss why this might be the case, although determining whether our
proposal is indeed correct requires further studies.

Variance, invariance and the (different) nature of speech and non-
speech stimuli
The current data strongly support the notion that, at least as tested here, speech discrimination
learning is more robust to interference than non-speech auditory learning. As discussed below,
we tentatively propose that despite the methodological considerations noted above, the differ-
ent nature of the syllables and the non-verbal stimuli led both to the divergent learning out-
comes and to the similarity of the outcomes of random and blocked speech discrimination
training. Specifically, we propose that the categorical nature of the speech stimuli may have
made them more distinctive and thus more easily learned and more immune to the interfer-
ence induced by stimulus variability than the non-speech stimuli which appear to form a
continuous dimension.

The ability to categorize/label speech makes it easier to learn
Random or blocked, four different speech stimuli and four different non-speech stimuli were
used as reference stimuli in this study. Whereas the (minimal) syllable pairs differed on differ-
ent acoustic phonetic features (e.g., place and manner of articulation) which would have made
the category endpoints easily discriminable for naïve listeners, this may not have been the case
for duration discrimination. Naïve performance on the duration discrimination task (Fig. 1B,
empty symbols) supports this idea. For example, mean naïve thresholds on the roving condi-
tion were in the order of 100% of the reference duration. This implies that the target tones rep-
resenting each of the different stimuli initially overlapped adjacent base durations, making the
four different stimuli less discernible than the speech stimuli, thereby disrupting both discrimi-
nation and learning. On the other hand, the four reference speech stimuli ([da], [bee], [ma],
[sa]) were taken from different phonetic categories, which should have made them easily dis-
cernible (e.g., /b/ and /m/ are both bilabial but one is plosive and the other is nasal, while /s/ is
a fricative and [ee] is a different vowel category than [a]). Indeed, when only two, more distinct,
base durations were roved [31], naïve thresholds were much lower than in the current study.

That duration learning was disrupted by the similarity between the stimuli even in the
blocked conditions is consistent with our previous proposal that the ability to categorize stimuli
to distinct perceptual categories is conducive to learning, especially under variable conditions
[4, 32]. By this account the difference between learning speech and non-speech discrimination
in this study was driven by the greater role of categorization in the auditory perception of
speech than non-speech (for review, see [26]). Indeed, whereas endpoint stimuli in our speech
tasks could have been easily assigned to four distinct categories ([bee], [sa] etc.), this was not
the case for the stimuli in the duration task which appear to form a continuous, rather than a
categorical dimension [33]. Therefore, on either random or blocked conditions, it would have
been quite easy for listeners to (implicitly) identify the reference stimulus in the case of speech,
but harder to do so in the case of the non-speech stimuli. Rather, in the case of duration they
would have to resort to a true comparison across the lengths of the stimuli presented on each
trial, which could have interfered with task performance, and subsequently with learning [34].
Similarly, it has been proposed that perceptual learning is strongly constrained by perceptual
constancy [35]. By this account, the ability to classify variable sensory inputs to perceptually
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invariant units guides learning. Since this classification would have occurred more readily for
the speech than for the non-speech stimuli, speech discrimination was learned, but duration
discrimination was not. Adini et al. [12] made an even stronger claim—that variable training
(roving) disrupts learning when discrimination necessitates exact knowledge of the stimulus.
Thus, while in speech it is clear what the stimulus is (i.e., at least the endpoint reference stimu-
lus can be clearly labelled), not so in duration, which is a relative quantity.

The ability to categorize speech makes it less sensitive to variability
In contrast with previous speech learning studies [9–12], we observed no differences between
the outcomes of random and blocked training when it comes to speech learning. Rather, the
learning curves on the two conditions were nearly overlapping (Fig. 3A). Furthermore, training
on either the random or the blocked mode similarly generalized to the other, untrained mode
(Fig. 2A and B, circles). We argue that this was the case because the speech stimuli could be cat-
egorized. If this is indeed the case, the ability to categorize non-speech sounds should also
allow learning when variability across training-irrelevant dimensions is present (as these do
not involve a category change). Although here we saw no learning with the non-speech stimuli
and did not test for generalization to untrained tokens, previous studies nevertheless demon-
strated that auditory perceptual learning can transfer across training-irrelevant dimensions
[7, 18, 19, 36]. For example, successful learning on auditory duration discrimination trans-
ferred across tonal frequencies (a training-irrelevant dimension), but not across durations
(the trained dimension), although it is not clear how training-set variability affects this pattern
[18, 19].

Finally, taken together our data suggest that concurrently training several stimuli is more ef-
ficacious when they can be categorized, or are sufficiently distinct from one another. This has
implications for the design of perceptual training programmes, especially those using mixed
training regimens.
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