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Abstract
For advanced tongue cancer, the choice between surgery and organ-sparing treatment is often dependent on the expected 
loss of tongue functionality after treatment. Biomechanical models might assist in this choice by simulating the post-treat-
ment function loss. However, this function loss varies between patients and should, therefore, be predicted for each patient 
individually. In the present study, the goal was to better predict the postoperative range of motion (ROM) of the tongue by 
personalizing biomechanical models using diffusion-weighted MRI and constrained spherical deconvolution reconstructions 
of tongue muscle architecture. Diffusion-weighted MRI scans of ten healthy volunteers were obtained to reconstruct their 
tongue musculature, which were subsequently registered to a previously described population average or atlas. Using the 
displacement fields obtained from the registration, the segmented muscle fiber tracks from the atlas were morphed back to 
create personalized muscle fiber tracks. Finite element models were created from the fiber tracks of the atlas and those of the 
individual tongues. Via inverse simulation of a protruding, downward, left and right movement, the ROM of the tongue was 
predicted. This prediction was compared to the ROM measured with a 3D camera. It was demonstrated that biomechanical 
models with personalized muscles bundles are better in approaching the measured ROM than a generic model. However, 
to achieve this result a correction factor was needed to compensate for the small magnitude of motion of the model. Future 
versions of these models may have the potential to improve the estimation of function loss after treatment for advanced 
tongue cancer.
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1 Introduction

The incidence of tongue cancer is rising worldwide, 
accounting for almost 20% of all head and neck cancers 
(Tota et al. 2017; UK Cancer Research 2019). Locally 
advanced tongue cancer is usually treated by surgery and/
or chemoradiation, which may have a serious impact on 
the mobility of the tongue due to surgical defects and/or 
radiation-induced fibrosis. This often leads to difficulties 
with speech, mastication, and swallowing (Konstantinović 
and Dimić 1998; Kreeft et al. 2009b). The choice between 
surgical and organ-sparing treatment is dependent on 
expected function loss after treatment, which is difficult 
to predict (Kreeft et  al. 2009a). The prediction of the 
expected function loss would be of great benefit for the 
decision-making process shared between physician and 
patient. Biomechanical modeling of the tongue would be 
a logical next step in the process of the prediction of func-
tional loss.

The biomechanics of the tongue, however, are complex 
(Bressmann et al. 2004; Matsui et al. 2007; Kreeft et al. 
2009a). The tongue consists of four extrinsic and four 
intrinsic muscles, which interdigitate and seem to follow 
a strict pattern (Sanders and Mu 2013). Although we know 
that all muscles, except for the palatoglossus muscle, are 
innervated by the hypoglossal nerve (Takemoto 2001; Mu 
and Sanders 2010), the complex neural strategies that are 
required for shaping the tongue during speech and masti-
cation are currently unknown (Slaughter et al. 2005; Van 
Alphen et al. 2017). Moreover, the tongue shape varies 
between individuals, and knowledge about anatomical 
variations in muscle structure does not yet exist (Stone 
et al. 2018). Because of the difficulties in obtaining the 
right mechanical properties and simulating the viscoelas-
tic nature of the tongue, mechanical properties are often 
approached by a hyperplastic model using ex vivo data 
(Buchaillard et al. 2007; Hermant et al. 2017; Kappert 
et al. 2019b, 2021).

Despite the challenges, biomechanical finite-element 
(FE) models have shown to be a promising method to pre-
dict functional loss after treatment in their current form 
(Buchaillard et al. 2007; Hermant et al. 2017; Kappert 
et al. 2019b). However, these FE models are generally 
generic and are therefore unable to predict functional loss 
on an individual level and should be personalized.

One way of creating personalized FE models is by mor-
phing of a generic FE model to a subject-specific situation 
(Couteau et al. 2000; Sigal et al. 2008). Previous work has 
shown that this morphing can be driven by imaging data 
such as anatomical slices (Fernandez et al. 2004), com-
puted tomography (Bucki et al. 2010; Grassi et al. 2011), 

and MRI (Barber et al. 2007; Bijar et al. 2016). Alter-
natively, personalized models can also be constructed by 
embedding mesh and muscle structures in a FE model that 
is generated according to the shape of the mesh. (Nesme 
et al. 2009; Sánchez et al. 2017). If muscles are, however, 
included in personalized models, the morphing should not 
only be driven by the outline of anatomical structures or 
meshes, but also the internal structure of the muscle, such 
as the muscle fiber directionality.

This muscle fiber directionality can be measured by 
exploiting the possibilities of diffusion-weighted MRI (Van 
Donkelaar et al. 1999). Using diffusion-sensitizing gradi-
ents, it is possible to encode MR images with diffusion infor-
mation along a certain direction. As the diffusivity of water 
is higher along muscle fibers than perpendicular to them, it 
is possible to reconstruct the fiber orientation using the dif-
fusion tensor. In fiber tracking or tractography, fiber tracks 
are computed from these fiber orientations, (Basser et al. 
2000), easing the visualization of the tongue musculature 
(Napadow et al. 2001; Shinagawa et al. 2006; Heemskerk 
et al. 2010; Ye et al. 2015). These tracks have even been used 
as an input for biomechanical models of the tongue (Mijail-
ovich et al. 2010). Despite this potential of DTI, it is unable 
to resolve crossing or merging muscle fibers of the tongue. 
Recently, a diffusion-weighted MRI technique called con-
strained spherical deconvolution (CSD), which can resolve 
the interdigitating muscle fibers of the tongue in vivo, was 
applied to the tongue (Voskuilen et al. 2019). This technique 
enables us to reconstruct the tongue muscle architecture of 
the individual more accurately.

The goal of the current work was to create personal-
ized biomechanical models of the tongue by using CSD 
MRI. As manual embedding of all the fibers of this mus-
cle architecture in the FE model would be very laborious, 
it is hardly feasible. This motivated us to use automated 
methods to embed these fibers. While CSD MRI is superior 
in resolving crossing and merging fibers, the high noise 
level resulted in relatively low-quality reconstructions of 
the tongue musculature of a single subject. We, therefore, 
proposed to use a population average or atlas of the tongue 
muscle architecture (Voskuilen et al. 2018), which is more 
resistant to noise and artifacts. By mapping the tongue of 
an individual to the atlas tongue, we hypothesized that the 
segmented fiber tracks of the atlas could be morphed back 
to an individual’s space and that, subsequently, from these 
segmented fiber tracks a personalized biomechanical model 
could be created. The effect of this personalization step was 
evaluated by comparing models with both personalized and 
generic muscles bundles to the predicted range of motion 
(ROM) of the tongue measured in vivo using 3D optical 
tracking (Kappert et al. 2019a).
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2  Methods

The following section covers the characteristics of volunteers 
and the measurement of their ROM. Hereafter, the creation of 
the personalized biomechanical models is described, which 
is summarized in Fig. 1. This figure helps the reader to fol-
low the steps that are needed for creating the atlas model 
(Fig. 1A1–9) and the personalized model (Fig. 1P1–7) as the 
method section covers both models at the same time. Finally, 
the ROM predicted by these biomechanical models and the 
atlas were compared to the measured ROM.

2.1  Volunteers & ROM measurement

A total of ten healthy volunteers were included with a mean 
age of 61 years (range: 56–71; seven men) to match the same 
age group of most tongue cancer patients. Volunteers with 
steel braces or any other contra-indication to an MRI scan 
were excluded.

The ROM of the tongue was obtained by optical track-
ing of a marker on the tip of the tongue using a 3D cam-
era. The volunteers were asked to perform four different 
tongue movements: left, right, down, and protrusion as 
described in the paper by Kappert et al. (2019a). The up-
movement was left out since it was proven to be unreliable. 
Written informed consent was obtained from all volunteers 
before inclusion. This study was approved by the medical 
ethical committee of the Netherlands Cancer Institute (ref: 
N17BTM).

2.2  CSD MRI acquisition and processing

The volunteers were scanned in a 3 T Philips MRI scan-
ner (Philips Healthcare, Best, The Netherlands) using 
a neurovascular coil according to the CSD scan protocol 
by Voskuilen et al. (2019) (Fig. 1P1). The raw diffusion-
weighted images were acquired using the following param-
eters: single-shot spin-echo echo-planar imaging; echo-train 
length 25; repetition time: 3.4 s; echo time: 60 ms; two rep-
etitions with opposing phase-encoding directions; number 
of signal averages: 1; fat suppression: spectral presaturation 
with inversion recovery and slice-selection gradient rever-
sal; field-of-view: 192 by 156 by 84 mm; voxel size: 3 mm 
isotropic; b-value: 700 s/mm2 along 64 directions evenly 
spaced over a hemisphere and optimized for gradient load; 
total scan time: 10 min.

Subsequently, the noise of the diffusion-weighted images 
was reduced using the method of Veraart et al. (2016). Using 
FSL, a software library for diffusion MRI (Smith et al. 
2004), the diffusion-weighted images were corrected for 
distortions caused by  B0-inhomogeneity, eddy currents from 
the diffusion-encoding gradients, and rigid motion (Anders-
son and Sotiropoulos 2016). For all subjects, masks of the 
tongue were created by manual delineation in ITK-Snap 
(Yushkevich et al. 2006). In MRtrix3 (Tournier et al. 2012), 
the corrected diffusion-weighted images were upsampled to 
a resolution of 1.5 mm isotropic using a b-spline interpola-
tion. For each volunteer, we estimated a CSD response func-
tion, which corresponds to the diffusion signal of a single 
fiber population (Tournier et al. 2013). By deconvolving, 
using CSD, the corrected diffusion-weighted images with 
this response function (Tournier et al. 2007), fiber-orienta-
tion distribution (FOD) maps were calculated up to a maxi-
mum spherical harmonic degree of 8 (Figs. 1P2, 2).

Fig. 1  A flow chart of the steps required to create an atlas-based (A1–
9) and a personalized model (P1–7)
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Finally, using symmetric diffeomorphic registration based 
on the FOD maps (Raffelt et al. 2011), displacement fields 
were calculated from each volunteer to the tongue muscle 
atlas described in Voskuilen et al. (2018) (Fig. 1P3). This 
atlas is a population average of ten volunteers different from 
those included in this study (mean age of 25.5 years; four 
female). The atlas has a voxel size of 1.5 mm isotropic after 
up sampling. The registration error between the FOD maps 
of the individuals and that of the atlas were quantified by the 
 L2-norm and the angular correlation coefficient (Raffelt et al. 
2012a). The calculated displacement fields were used later 
in this work to morph the generical biomechanical model 
of the atlas.

2.3  Fiber tracking and filtering

Although it would be possible to compute a 3D vector field 
(required to build a biomechanical model) from the FOD 
maps directly, CSD-based fiber tracking was first performed 
on the atlas (Tournier et al. 2010) (Fig. 1A3). Fiber track-
ing ignored many spurious vectors, and the segmentation 
of streamlines was less time-consuming than segmenta-
tion of vectors. For this global fiber tracking, the following 
parameters were used: step size: 1.5 mm; angular threshold: 
15°; FOD peak threshold: 10% of the largest peak; maximal 
length: 100 mm; minimal length: 10 mm; number of seed 
points: 10,000 randomly placed within the mask. In Track-
Vis (Wang and Benner 2007), the fiber tracking was manu-
ally segmented into the following muscle tracts: genioglos-
sus, geniohyoid, hyoglossus, inferior longitudinal, superior 
longitudinal, transverse, and vertical muscles (Figs. 1A4, 3). 
These segmentations were subsequently checked by a head-
and-neck surgeon. The styloglossus muscle could not be dis-
tinguished from the inferior longitudinal and was therefore 
not included (Voskuilen et al. 2019).

In MATLAB R2019a (Mathworks, Natick, MA), these 
atlas tracks were mirrored in the midsagittal plane to ensure 
the symmetry of the atlas (Fig. 1A5). To remove faulty 
tracks, while preserving the muscle shape, the muscle 
tracts were filtered using the criteria shown in Appendix I 
(Fig. 1A6). These criteria were chosen empirically based on 
the reduction in outliers and the expected curvature obtained 
from earlier anatomical research (Takemoto 2001).

For each volunteer of the study group, the displacement 
fields obtained from the registration earlier were used to 
morph the filtered tracts from the atlas into personalized 
tracts (Fig. 1P4). The personalized tracts may have been 
rotated during morphing and were therefore reoriented, 
based on the orientation of the muscles before morphing.

2.4  FE model construction

The tracks of both the atlas model and personalized models 
were converted into vector fields of muscle fiber direction 
(Fig. 1P5, A7), using the following steps. For each muscle, 
a convex hull was calculated that enclosed the filtered tract 
(Fig. 4a, b). These convex hulls were filled with a uniformly 

Fig. 2  Midsagittal view of an 
fiber-orientation distribution 
(FOD) map of volunteer 2. In 
the inlay, the map is enlarged so 
the individual FODs can better 
be appreciated. The FODs are 
colored according to their direc-
tion: red for right–left; green for 
anterior–posterior; and blue for 
feet–head

Fig. 3  Side view of the segmented fiber tracts of the atlas
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distributed grid of vectors, where the direction of these vec-
tors was determined by an inverse distance interpolation of 
nearby tracks [Figs. 4c, 5; Eq. (1)]. This was done for both 
left and right muscles independently if applicable (Fig. 4d).
with

Equation (1) ngrid(x) the uniformly distributed grid of vec-
tors within the convex hull, ∑i the sum over all vectors and 
ntracki

 , the original tracks. d
(
x, tracki

)
 is the distance of vec-

tor x to tracki.
The genioglossus muscle was divided into an oblique 

and horizontal part based on the estimated position of the 
short tendon (Sanders and Mu 2013). With all tracks com-
bined, a convex hull was generated to create a mesh of the 
tongue. In Meshlab (Cignoni et al. 2008), the HC Laplacian 
filter (Vollmer et al. 1999) was used to smoothen the mesh. 
Attachment points for the mandible and hyoid bones were 

ngrid(x) =
�
i

⎛⎜⎜⎝
1 −

���� d
�
x, tracki

�

max
x
(d
�
x, tracki

�
)

⎞⎟⎟⎠
ntracki

(1)ngrid(x) =
ngrid(x)

ngrid(x)

determined based on the endpoints of the extrinsic muscle 
tracts from the atlas model.

Using ArtiSynth (Lloyd et al. 2012)—a platform for com-
bined multibody and FE modeling—the muscle vector fields 
and tongue meshes of the atlas and the ten volunteers were 
integrated into a biomechanical model (Figs. 1P6, A8, 6) using 
the following steps, which are similar to those described by 
Kappert et al. 2019b. The surface mesh of the tongue, obtained 
from the previous step, is embedded into a FE model consist-
ing of 16  mm3 cubic hexahedral elements, generated to match 
the shape of the surface mesh. The benefit of only using cubic 
elements is that they can easily be removed or added, which 
is an essential feature to simulate surgical resections on per-
sonalized biomechanical models in the future (Kappert et al. 
2019b). The attachment points to the hyoid and mandible were 
simulated by making FE nodes non-dynamic.

Based on previous work (Buchaillard et al. 2009), an incom-
pressible Moony–Rivlin material was chosen for mechanical 
properties of the tissue:

where I1 is the first invariant of the left Cauchy–Green defor-
mation tensor, C10 and C20 stiffness parameters equal to 1037 
and 486 Pa, κ = 100 ×  C10 the bulk modulus to obtain a 
Poisson’s ratio close to 0.5, and J is the determinant of the 

W = C10(I1 − 3) + C20(I1 − 3)2 + κ(ln J)2

Fig. 4  Tracks (blue) and filtered tracks (red) from the inferior longitudinal muscle (a); the convex hull enclosing these tracks (b); a uniformly 
distributed vector field based on the direction of the tracks within the convex hull (c); and vector fields of both left and right muscles (d)

Fig. 5  Direction of �grid(�) 
(small blue arrows) is deter-
mined by nearby �tracki (large 
red arrows) by means of inverse 
distance interpolation [Eq. (1)] 
visualized in the right figure
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deformation gradient. The stiffness parameters are obtained 
from a fresh cadaver in (Gerard et al. 2005) and later scaled 
by a factor of 5.4 in (Buchaillard et al. 2009) to match 
in vivo measurements.  C10 is equal to 1037 Pa,  C20 equal is 
to 486 Pa, and the other parameters are all zero. Rayleigh 
damping coefficients of α = 40  s−1 and β = 0.03, and a den-
sity of 1040 kg/m3 were used, comparable to those used by 
Buchaillard et al. (2009), Stavness et al. (2012) and Kappert 
et al. (2019b).

Muscle contraction was simulated using “muscle material” 
in ArtiSynth. With this technique, when a muscle bundle is 
activated, it applies external stresses on the elements associ-
ated with the muscle bundles, in addition to the regular tis-
sue material (Lloyd et al. 2012). The transversely isotropic 
properties of the muscles were included using ArtiSynth’s 
“Muscle Material” interpretation of the method by Blemker 
et al. (2005):

with �max the max isometric stress in the muscle, � the nor-
malized activation level, � the stretch along fiber, �opt the 
optimal fiber stretch, fact the active force–length relationship, 
and fpass the passive.

�(�) = �max

(
�fact(�) + fpass(�)

)( �

�opt

)

2.5  Simulation and analysis

Inverse simulation, provided by ArtiSynth (Lloyd et al. 
2012; Stavness et al. 2012), was used to instruct the tongue 
tip of the personalized FE models to consecutively move to 
a point anterior, inferior, left, and right of its initial location. 
The predicted ROM was defined as the distance from the 
initial location to maximal deflection in one of the instructed 
directions.

The tongue can reach strain values of 200% for elongation 
and 160% for contraction (Napadow et al. 1999). Using the 
current biomechanical model, it is not possible to simulate 
these magnitudes of deformation. As all model simulations 
use the same constitutive models, tissue properties, and FE 
generation technique, the effect thereof is considered to be 
constant for all models. To evaluate the differences between 
the FE models with personalized muscle bundles and those 
using generic muscle bundles (the atlas model), we will 
therefore focus on the relative differences between individu-
als and not on the absolute values. In order to compare the 
simulations to the measured ROM, a scaling factor is needed 
to compensate for the reduced magnitude of motion of the 
model. The reduced magnitude of motion will be different 
depending on the movement direction, and therefore, four 
scaling factors were calculated and applied to all simula-
tions equally. To make sure outliers would not affect the 
scaling factors, these factors were determined by an iterative 

Fig. 6  Sagittal section view of 
personalized FE tongue models 
of the ten healthy volunteers. 
The direction of force of the 
muscle elements has been 
color-coded: anterior–posterior 
in red; right–left in green; and 
feet–head in blue. Bone attach-
ment points are visualized as 
floating point outside the mesh. 
The mandible attachment points 
are visualized in blue and those 
of the hyoid bone in white
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process to achieve the maximum number of predicted ROMs 
( ROMpred(i, j) ) that were within the CI ( ROM2� ) of the meas-
ured ROM ( ROMmeas(i, j) ) [Eq. (2)].

in which
i = 1,… , 4 Index for the 4 different movements.
j = 1,… , 10 Index for the 10 volunteers from the study 

group.
ROMpred(i, j) Predicted ROM.
ROMmeas(i, j) Measured ROM.
Si The scaling factor applied to predicted ROMpred(i, j).
ROM2� Twice the standard deviation of the measured 

ROM (i.e., 6 mm).
Equation (2) Optimization of the scaling factor such that 

the number of predictions ROMpred(i, j) within the bounds 
ROM2σ of the measured ROM ( ROMmeas(i, j) ) is maximized.

The predicted ROM was compared to the in vivo meas-
ured ROM of the individual on which the personalized 
model was based. To show the benefit of personalization, 

(2)Si = arg max
Si

10∑
j=1

[|||Si ⋅ ROMpred(i, j) − ROMmeas(i, j)
||| < ROM2σ

]
, where [x] =

{
0 if x = false

1 if x = true

also the Atlas model (essentially a generic model) will be 
compared with the measured ROM. Only when the personal-
ized models perform better than the atlas, we can conclude 

that personalization improves the ROM prediction.
Previously, the precision of the ROM measurements, 

quantified by the standard deviation, was determined to 
a range from 2.3 to 3.2 mm (Kappert et al. 2019a). We, 
therefore, assumed a precision of 3 mm (3.2 mm rounded 
off) for all ROM measurements. If a predicted ROM fell 
within the 95% confidence interval (CI), i.e., within two 
times the standard deviation, we judged the measurement 
to be correct.

Fig. 7  Range of motion (ROM) in mm for the ten healthy volunteers 
(01–10) and the Atlas (Generic model), for protrusion, and the down, 
left, and right movements. The predicted ROM of the personalized 
and atlas (generic model) is given in blue, the scaled predicted ROM 

in orange, and the measured ROM in yellow. The grey box depicts 
the interval of two times the standard deviation of the measured ROM 
within which the predicted ROM values of both atlas and personal-
ized models are assumed to be accurate
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3  Results

Visually, the FOD maps were well aligned to the atlas. The 
error in alignment or registration error was quantified by 
the L2-norm and the angular cross-correlation. The mean 
 L2-norm between the FOD maps and the atlas was 0.302 
(SD 0.030). The mean angular correlation coefficient was 
0.634 (SD 0.057).

In Fig. 7, the distances for specific tongue movements 
of both the measured ROM and predicted ROM are shown 
for all ten subjects. For the predicted ROM, both the scaled 
and non-scaled movements are shown. The scaling factors 
are 2.6 for protrusion, 2.2 for down, 2.4 for left, and 2.6 
for right. Protrusion and down movements show the best 
agreement between predictions and measurements, as nine 

out of ten (90%) predicted ROM’s are within the CI. Eight 
movements (80%) to the right were predicted to be within 
the CI, but for the movement to the left, only six (60%) were 
predicted to be within the interval. In total, 32 out of the 40 
predictions (4 movements, 10 volunteers) from the personal-
ized models were within the CI. The largest disagreements 
between the prediction and in vivo measurement were found 
in subject 08. The atlas model is the same for every subject 
which is depicted more clearly in the following table.

In Table 1, the percentual differences of the models with 
the measured ROM are shown for every subject. The model 
that approaches the measured ROM better differs between 
subject and movement, but a majority of the measurements 
are approached better using the personalized model. The 
mean percentual difference per movement shows that for all 

Table 1  Percentual difference between the personalized model or Atlas (generic model) and the measured ROM per subject

The last column shows the mean percentual difference

Movement Model 01 (%) 02 (%) 03 (%) 04 (%) 05 (%) 06 (%) 07 (%) 08 (%) 09 (%) 10 (%) Mean (%)

Out Personalized 8 4 1 16 3 0 12 21 8 36 11
Atlas 30 12 47 4 17 17 5 17 22 28 20

Down Personalized 11 7 7 8 1 6 12 35 5 4 10
Atlas 6 23 23 4 0 21 6 25 12 37 16

Left Personalized 5 28 17 8 1 26 4 28 6 11 13
Atlas 34 36 27 8 10 26 19 35 8 16 22

Right Personalized 8 0 2 27 11 12 3 40 9 2 11
Atlas 11 18 14 9 17 9 21 27 0 6 13

Fig. 8  An example of the maximum range in the ROM prediction for protrusion, down, left, and right using the personalized model of subject 1, 
10 and the atlas
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movements the difference with the measured ROM is lower 
for the personalized models.

In Fig. 8, the atlas model and the personalized model 
of subject 3 are shown within the ArtiSynth environment. 
For the four simulated movements, the maximal extension 
is shown. Subject 3 demonstrated a ROM that in 3 out of 4 
movements could not be predicted using the atlas, but could 
be using the personalized model. The movement of the atlas, 
relative to its rest state, looks larger in most directions than 
the personalized model as confirmed by the bar charts in 
Fig. 7. Also, the tongue moves more upwards during the 
right movement. The magnitude of the movements of both 
models is smaller than what would be expected from a real 
tongue.

4  Discussion

This study was a first approach to combine CSD MRI and 
FE modeling to create personalized biomechanical models 
of ten healthy volunteers. The results show that, after apply-
ing a correction factor to the simulations, the personalized 
models were comparable to the measured ROM in 80% of 
the cases, whereas the atlas model was only comparable in 
50% of the cases. For every individual movement, the per-
sonalized models also performed better than the atlas model 
predicting up to 90% of the down movements correctly. This 
confirms that using muscle bundles based on CSD in an FE 
model of the tongue contributes significantly to the person-
alization of a biomechanical tongue model.

Although the downward movement of subject 8 with a 
relatively small tongue was exceptionally high, this measure-
ment was confirmed to be correct upon reviewing the images 
from the 3D camera. The model was not able to reproduce 
this large ROM, which may indicate that a large ROM is not 
only a result of differences in tongue muscle morphology. 
The ROM may also have been affected by other quantities 
that were not accounted for, such as the number of motor 
units or the stiffness, anisotropy, and density of the tissue.

In the posterior part or base of the tongue, breathing 
motion impaired the tracking of the superior longitudinal 
and transverse muscle (Voskuilen et al. 2019). Although 
these muscle tracts were filtered less vigorously, this could 
not resolve the absence of muscle tracts. Fortunately, the 
effect of the absence of these tracks is expected to be mini-
mal, as the simulation of the ROM is less dependent on the 
musculature of the posterior tongue. Other artifacts, such 
as those caused by ferromagnetic crowns, resulted in signal 
voids in the diffusion-weighted images and therefore gaps in 
the tractography of the tongue. As the biomechanical models 
were based on the atlas, where such gaps are not present, 
we assume these artifacts that occurred in individual data 
sets would cause minimal errors in the personalized models.

The genioglossus and geniohyoid muscles form one large 
continuous fan of tracks. As described in the literature, some 
FE models divide the genioglossus into an anterior, middle, 
and posterior part (Harandi et al. 2014; Wu et al. 2014; Dab-
baghchian et al. 2016; Hermant et al. 2017), while others 
separate the genioglossus into a horizontal and an oblique 
subdivision (Mu and Sanders 2010; Honda et al. 2013; Sand-
ers and Mu 2013). We chose the latter because the location 
of the short tendon could be inferred from our atlas and 
could, therefore, be used as an anatomical marker to split 
the genioglossus into two. As the styloglossus could not be 
distinguished from the inferior longitudinal muscle in the 
fiber tracking, the styloglossus was omitted from the model. 
The effect on our simulations was expected to be limited 
since the styloglossus is mainly involved in retracting the 
tongue and swallowing.

Similar to CSD in the brain, the apparent fiber density 
could be derived from CSD in muscles, which should in 
principle relate to muscle strength (Miller et al. 2002; Raffelt 
et al. 2012b). Therefore, incorporating this apparent fiber 
density into our biomechanical models might improve the 
ROM predictions. However, since CSD MRI in the tongue 
is subject to higher noise levels and more motion artifacts 
than for example in the brain, in our opinion, the apparent 
fiber density can currently not be quantified accurately. We, 
therefore, assumed that the vectors describing the muscle 
direction were equally distributed within the area of specific 
muscles.

While large parts of the methods were automated, some 
key elements were still done manually. For the atlas, the 
segmentation of the fiber tracts and the subsequent filtering 
were done manually. Techniques to automate these segmen-
tation steps are not matured yet, and therefore, manual input 
is still needed. For the personalized models, only the initial 
masks were manually delineated. After this step, the models 
could be processed without manual interference.

In this study, we mirrored the atlas to make it symmet-
ric. However, by applying the displacement fields to create 
personalized biomechanical models, asymmetry was reintro-
duced. In this study, the orientation of the personalized bio-
mechanical models was based on the former position of the 
tracks within the atlas. This leads to small lateral asymmetry 
in the distribution of muscles. An alternative method would 
be to label based on its new midline. However, determining 
the exact midline remains challenging, and without a gold 
standard, there is no way to determine which method is best.

Similar to previous work (Kappert et al. 2019b), we used 
hexahedral cubic elements with embedded muscles and 
mesh for the FE model, which do not optimally represent 
the shape of a surface. As stated in the previous work, the 
effect of this method on the mobility of the model is mini-
mal. The choice for this embedded design was made so that 
in the future the virtual surgery method introduced in the 
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aforementioned study can be used in combination with the 
personalization proposed in the current study.

In this study, optical tracking of the tongue tip was used 
to determine the ROM. Not only the tongue but also the 
mandible and hyoid bone assist the tongue tip in reaching 
the desired position. How much influence these structures 
have on the tongue ROM depends on the anatomy, innerva-
tion, and brain-muscle control. This influence had not been 
measured and, instead, a marker on the mandible was used 
to compensate for the movement of the mandible (Kappert 
et al. 2019a). This marker may, however, not always reliably 
compensate for all complex movements, and an error should 
be expected in the measured ROM. Predicted ROMs were 
therefore judged on whether they fell within the CI of this 
error. This CI was relatively wide and might, therefore, have 
hampered the correct judgment of small variations between 
the predicted ROM and measured ROM.

In the biomechanical models, the magnitude of the pre-
dicted ROM was much smaller than that of the measured 
ROM which, therefore, had to be scaled in order to be com-
pared with the measured ROM. Incorporating movement of 
adjacent connected structured such as the hyoid bone might 
improve the range. Also, the mechanical properties were 
based on the model of Buchaillard et al. (2009), which uses 
stiffer material properties than those originally measured 
in a cadaver study, to simulate an active state of the tongue 
(Gerard et al. 2005). A more recent publication showed that 
the stiffness of the tongue in rest might be four times less 
(Kappert et al. 2021). Moreover, hyperelastic material mod-
els used in most FE tongue models cannot cover all the com-
plex properties of the tongue (Hermant et al. 2017). In this 
study, the FE model became unstable in extreme positions 
using lower stiffness values. Because the same mechanical 
and muscle properties are used for all personalized mod-
els, we assumed that the relative difference between models 
could still be used to analyze the effect of personalizing the 
muscle bundles of the FE model. However, mechanical prop-
erties were not the only limiting factor. Also, the specific 
muscle morphology obtained from CSD MRI contributed 
to the small magnitude of motion that is smaller than other 
non-personalized models in the literature that use the same 
mechanical properties (Buchaillard et al. 2009; Hermant 
et al. 2017; Kappert et al. 2019b). Manual editing of the 
muscle morphology might improve the magnitude of motion, 
but it was not considered as it would compromise the goal 
of this research, which was to automate FE modeling based 

on CSD data. Finally, the scaling of the predicted ROMs 
was, although very close, not the same in every movement 
direction. In part, this can also be contributed to the material 
properties which can have a different impact on the deforma-
tion in for example a down and a left movement. The dif-
ference between left and right, however, corresponded to an 
asymmetry in the measured ROM, specifically a deviation 
to the left. As explained previously (Kappert et al. 2019a), 
this may have been caused by the order of instructions given 
by the investigator.

In conclusion, we demonstrated that biomechanical mod-
els based on CSD MRI contribute significant to the person-
alization of biomechanical models. To our knowledge, we 
are the first to report this personalization step for improv-
ing the prediction of tongue mobility. Additional research 
is needed to improve the performance of biomechanical 
models to match the same magnitude of motion as a real 
tongue. In the future, personalization may improve other 
biomechanical models such as those of speech and swallow-
ing, potentially leading to better simulations of actual tongue 
functionality. In rehabilitation after tongue cancer surgery, 
models can potentially be used to simulate the tongue func-
tion that could be regained by practice. In the preoperative 
setting, we would expect an even larger potential for the pre-
diction of tongue function, as alterations in tongue shape and 
musculature due to tumor growth would also be accounted 
for. Therefore, these results harbor a promising perspective 
for the development of biomechanical models that would 
better predict function loss of oral cancer patients and thus 
improve the choice of treatment in these patients.

Appendix I

To avoid manual manipulation of the tracts in the atlas 
model, four filtering steps were used. A filter was only 
applied if it contributed to removal of faulty tracks. The first 
filter checked for deviations in the tracts from a global angle. 
This only worked well for muscle bundles with one global 
direction. The next filter calculated the angle within a single 
track. This did not work well with curved muscles like the 
superior longitudinal muscle. The third filter checked for the 
number of neighbors and at a certain distance, thus remov-
ing tracks that are too far from the rest. The alpha shape 
controlled the curvature of the convex hull that enclosed a 
muscle bundle and is explained in the MATLAB documenta-
tion (https ://nl.mathw orks.com/help/matla b/ref/alpha shape 
.html).

https://nl.mathworks.com/help/matlab/ref/alphashape.html
https://nl.mathworks.com/help/matlab/ref/alphashape.html
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The angle 
of the vec-
tor cannot 
deviate 
more than 
…° from 
the total 
mean vector 
direction of 
all tracks

The angle 
of the vec-
tor cannot 
deviate 
more than 
…° from 
the total 
mean 
vector 
direction of 
one muscle 
track

Tracks with 
less than … 
neighbors 
at a dis-
tance of … 
mm will be 
removed

Alpha shape

Vertical 45 (z-axis) 45 3/0.03 0.011
Transverse 5/0.20 0.03
Superior 

longitudi-
nal

6/0.20 0.014

Mylohyoid 5/0.05 0.015
Inferior 

longitudi-
nal

45 (y-axis) 45 5/0.04 0.011

hyoglossus 45 3/0.04 0.011
Geniohyoid 3/0.02
Genioglos-

sus
45 10/0.10 0.011

Digastricus 45 3/0.03 0.011
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