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Abstract

Hallmarks of malignant melanoma are its propensity to metastasize and its resistance to treatment, 

giving patients with advanced disease a poor prognosis. The transition of melanoma from non-

invasive radial growth phase (RGP) to invasive and metastatically competent vertical growth 

phase (VGP) is a major step in tumor progression, yet the mechanisms governing this 

transformation are unknown. Matrix Metalloproteinase-1 (MMP-1) is highly expressed by VGP 

melanomas, and is thought to contribute to melanoma progression by degrading type I collagen 

within the skin to facilitate melanoma invasion. Protease activated receptor-1 (PAR-1) is activated 

by MMP-1, and is also expressed by VGP melanomas. However, the effects MMP-1 signaling 

through PAR-1 have not been examined in melanoma. Here, we demonstrate that an MMP-1/

PAR-1 signaling axis exists in VGP melanoma, and is necessary for melanoma invasion. 

Introduction of MMP-1 into RGP melanoma cells induced gene expression associated with tumor 

progression and promoted invasion in vitro, and enhanced tumor growth and conferred metastatic 

capability in vivo. This study demonstrates that both the type I collagenase and PAR-1 activating 

functions of MMP-1 are required for melanoma progression, and suggests that MMP-1 may be a 

major contributor to the transformation of melanoma from non-invasive to malignant disease.
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Introduction

Melanoma is the most rapidly increasing cancer in the United States, and the survival rate of 

patients with metastatic disease is <10% (Berwick et al., 2009). Melanomas are classified 

histologically, with depth of tumor invasion being a strong prognostic indicator (Balch et al., 

2004). In early stage melanoma, the radial growth phase (RGP), the tumor grows laterally 
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along the epidermis, is non-invasive and cured by surgical excision, with a 95% patient 

survival rate. RGP melanomas can progress to vertical growth phase (VGP), in which the 

tumor invades the dermis and subcutaneous tissue. VGP melanomas have only a 30-60% 

patient survival rate, with deeper invasion associated with adverse clinical outcome. VGP 

melanomas can also invade dermal blood and lymphatic vessels, and are therefore 

metastatically competent (Balch et al., 2004; Breslow, 1970; Clark et al., 1975; Gray-

Schopfer et al., 2007; Leiter et al., 2004). The acquisition of the invasive VGP phenotype is 

therefore both biologically and clinically relevant; work to define the molecular mechanisms 

governing the transition of melanoma from RGP to VGP is ongoing.

To acquire the VGP phenotype, melanoma cells must degrade and remodel basement 

membrane and the extracellular matrix (ECM) within the skin. This matrix remodeling is 

mediated largely by Matrix Metalloproteinases (MMPs), which are frequently over-

expressed in cancers (Fingleton, 2006). Melanoma expresses several different MMPs, 

depending on the stage of tumor progression. The interstitial collagenase MMP-1 is 

expressed specifically by VGP melanomas, where it contributes to tumor invasion and 

metastasis (Blackburn et al., 2007; Durko et al., 1998; Ntayi et al., 2001), and is commonly 

associated with a poor clinical prognosis (Airola et al., 1999; Nikkola et al., 2005). Type I 

collagen is the major component of the dermis, and MMP-1 is thought to facilitate tumor 

cell invasion by degrading dermal collagen. In addition, MMP-1 proteolytically activates the 

G-protein coupled receptor Protease Activated Receptor-1 (PAR-1) (Boire et al., 2005), 

suggesting that MMP-1 has a larger role in tumor progression by activating signal 

transduction pathways and modulating cell behavior.

PAR-1 is activated by several proteases, including thrombin, activated protein C and 

MMP-1, and plays important roles in normal biologic processes (Macfarlane et al., 2001). 

PAR-1 is also an oncogene (Martin et al., 2001), and is over-expressed in several types of 

cancers, including melanoma (Arora et al., 2007). Signaling though PAR-1 facilitates tumor 

invasion, angiogenesis and metastasis by inducing the expression of genes associated with 

cell adhesion, invasion and survival (Agarwal et al., 2008; Boire et al., 2005; Even-Ram et 

al., 2001; Salah et al., 2007).

Like MMP-1, PAR-1 is differentially expressed in melanoma, with higher levels of found in 

VGP melanomas, compared to non-invasive RGP (Tellez and Bar-Eli, 2003). In patient 

samples, PAR-1 expression increased concomitantly with the depth of melanoma invasion, 

and was the best marker for poor prognosis (Depasquale and Thompson, 2008; Massi et al., 

2005). Further, blocking PAR-1 activation in B16 mouse melanoma prevented pulmonary 

metastasis (Nierodzik et al., 1998), and knock-down of PAR-1 expression in a human 

melanoma xenograft model inhibited tumor growth and metastasis (Villares et al., 2008). 

Thus, PAR-1 is likely a major contributor to melanoma progression.

We reported that MMP-1 expression by human VGP melanoma cells is necessary for 

melanoma metastasis (Blackburn et al., 2007). This was attributed to the type I collagenase 

activity of MMP-1 and to the induction of a pro-angiogenic paracrine MMP-1/PAR-1 

signaling axis in endothelial cells. Additionally, fibroblast-produced MMP-1 activated 

PAR-1 on breast cancer cells to promote tumor growth and invasion (Boire et al., 2005). 
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Because both MMP-1 and PAR-1 are expressed by VGP melanoma cells, we hypothesized 

that activation of PAR-1 signaling by MMP-1 in VGP melanoma could induce the 

expression of genes to promote invasion, growth and angiogenesis. MMP-1 would then 

contribute to melanoma progression in two ways: by degrading dermal type I collagen to 

remove the physical barriers for melanoma invasion, and by activating PAR-1 on the 

melanoma cells to induce genes that contribute to invasion and metastasis.

Here, we demonstrate that an MMP-1/PAR-1 signaling axis exists in melanoma and 

promotes melanoma invasion. We also show, for the first time, that both the collagenase and 

PAR-1 activating functions of MMP-1 are required for melanoma invasion. Additionally, 

our study shows that MMP-1 can convert an RGP melanoma to VGP, as measured by tumor 

growth and metastatic ability in vivo. Because very few genes have been linked to the 

transition of melanoma from RGP to VGP, our study may contribute to understanding of 

mechanisms mediating the acquisition of the invasive and metastatic phenotype.

Results

An MMP-1/PAR-1 signaling axis exists in VMM12 VGP melanoma cells

The VMM12 human melanoma cell line has an invasive and metastatic phenotype typical of 

VGP melanoma (Blackburn et al., 2007; Huntington et al., 2004). VMM12 cells secrete 

high amounts of MMP-1 compared to both Bowes cells, a non-invasive human RGP 

melanoma cell line (Iida et al., 2004), and normal melanocytes. VMM12 cells also produce 

a similar level of PAR-1 as human endothelial cells (Figure 1a).

We used the AP-PAR1 reporter construct to determine if MMP-1 produced by VMM12 cells 

cleaves PAR-1. AP-PAR1 consists of secreted alkaline phosphatase (AP) fused to the N-

terminus of PAR-1 (Ludeman et al., 2005). The construct is transiently transfected into cells, 

and when PAR-1 is cleaved, the alkaline phosphatase is released; the phosphatase activity 

within the media is measured to quantify PAR-1 cleavage. VMM12 VGP cells cleaved the 

AP-PAR1, while Bowes RGP cells, which produce little MMP-1 (Figure 1a), did not (Figure 

1b). Treatment of VMM12 cells with the thrombin inhibitor hirudin had no effect on their 

ability to cleave AP-PAR1, indicating that thrombin is not involved in PAR1 cleavage by 

the VMM12 cells. An MMP inhibitor that targets MMP-1 activity blocked AP-PAR1 

cleavage, and increasing concentrations of an MMP-1 neutralizing antibody led to a 

corresponding decrease in PAR-1 cleavage by the cells (Figure 1c). These data indicate that 

MMP-1 cleaves AP-PAR1 in VMM12 cells.

Because transfection with the AP-PAR1 construct results in PAR-1 over-expression in 

VMM12 cells, it is important to demonstrate that MMP-1 cleaves endogenous PAR-1. Since 

calcium flow into the cell is a hallmark of PAR-1 activation (Macfarlane et al., 2001), 

calcium flux was measured in VMM12 cells to examine endogenous PAR-1 cleavage. 

Treatment of VMM12 cells with VMM12 conditioned media caused the same amount of 

calcium flux as 10nM thrombin, which is known to cleave PAR-1 (Macfarlane et al., 2001). 

While treatment of the VMM12 conditioned media with the thrombin inhibitor hirudin had 

no effect, blocking MMP-1 activity reduced calcium flux (p<0.001), as did the PAR-1 

inhibitor SCH79797. Combining MMP-1 neutralizing antibody and the PAR-1 inhibitor was 
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similar to each individual treatment, indicating that MMP-1 activates PAR-1 signaling to 

induce calcium flux in VMM12 cells (Figure 1d). These data indicate that an MMP-1/

PAR-1 signaling axis exists in VMM12 VGP melanoma cells.

The MMP-1/PAR-1 signaling axis induces gene expression in VMM12 VGP melanoma cells

To define the role of MMP-1/PAR-1 signaling in melanoma, VMM12 cells were stably 

transfected with shRNAs against MMP-1 and PAR-1, or a control shRNA, MAMMX. 

MMP-1 expression was decreased by >90% in shMMP-1 cells, compared to shMAMMX 

control, while PAR-1 expression was unaffected by the MMP-1 shRNA. Likewise, PAR-1 

expression was decreased by >80% in the PAR-1 shRNA line, with no decrease in MMP-1 

expression (Figure 2a).

To determine if MMP-1/PAR-1 signaling affects gene expression in VMM12 cells, the 

shMAMMX and shMMP-1 cell lines were used in a Human Cancer Pathway RT2 Profiler 

PCR array. Gene expression was up-regulated in VMM12 cells in the presence of MMP-1 

(shMAMMX vs. shMMP-1, Table I); the induced genes have broad roles in tumor 

progression, including angiogenesis, tumor growth, inflammation and metastasis (Noted in 

Table I). Realtime RT-PCR validated the array, and was used to examine the expression of 

ANGPT1, associated with angiogenesis, the growth factor receptor FGFR2, and S100A4 

and SERPINB5, which are associated with metastasis. Higher expression (p=0.002) of these 

4 pro-tumorigenic genes was seen in the shMAMMX cell line compared to cells with 

MMP-1 knocked-down (shMMP-1, Figure 2b), or VMM12 cells with high MMP-1 but 

reduced PAR-1 expression (shPAR-1). Additionally, treatment of the shMMP-1 cell line 

with exogenous MMP-1 induced the expression of these genes, and this was blocked by the 

PAR-1 inhibitor SCH79797 (Figure 2c). Together, these data suggest that MMP-1 is 

signaling through PAR-1 to induce genes involved in tumor progression in VGP melanoma 

cells.

Both the collagenase and PAR-1 activating functions of MMP-1 are necessary for 
melanoma invasion in vitro

The collagenase activity of MMP-1 is thought to be particularly important for melanoma 

invasion, as the dermis is comprised primarily of type I collagen (Curran and Murray, 2000). 

However, several genes involved in tumor invasion (S100A4, SERPINB5, uPA, MMP-9) 

were induced in VMM12 cells via MMP-1/PAR-1 signaling (Table I). To differentiate 

between the collagenase and PAR-1 activating functions of MMP-1 in melanoma invasion, 

the MMP-1 and PAR-1 shRNA lines were used in in vitro invasion assays.

The collagenolytic activity of MMP-1 removes physical barriers to tumor cell movement 

(Hofmann et al., 2000). In collagen degradation assays, VMM12 cells with knocked-down 

MMP-1 expression could not degrade type I collagen, compared to shMAMMX control, 

while the PAR-1 shRNA had no effect on collagenolysis (Figure 3a). Likewise, significantly 

fewer shMMP-1 cells (p<0.001) invaded through collagen coated transwells, compared to 

shMAMMX cells, indicating that the collagenase function of MMP-1 is necessary for 

invasion through type I collagen (Figure 3b,c). Interestingly, shPAR-1 cells, which have 

knocked-down PAR-1 expression but control levels of MMP-1, also had reduced invasion 

Blackburn et al. Page 4

Oncogene. Author manuscript; available in PMC 2010 June 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



through collagen, suggesting that PAR-1 signaling contributes to the invasive phenotype of 

VMM12 cells. However, when shMMP-1 cells were treated with thrombin to activate 

PAR-1 signaling, the cells were still unable to invade through collagen. This suggests that 

although PAR-1 signaling promotes pro-invasive gene expression, without the collagenase 

function of MMP-1, VMM12 cells cannot invade through a type I collagen barrier.

VGP melanoma cells also invade basement membrane found between the epidermal and 

dermal layers of skin; basement membrane surrounding the vasculature must also be 

breached by tumor cells for metastasis. Basement membrane is comprised partly of type IV 

collagen, which is not a substrate of MMP-1. However, MMP-1/PAR-1 signaling increased 

the expression of several genes that contribute to invasion through basement membrane, 

including the type IV collagenase MMP-9 (Table I). Compared to shMAMMX control, both 

cells with MMP-1 and PAR-1 knocked-down had reduced invasive ability (p<0.001) 

through reconstituted basement membrane (Matrigel, Figure 3b,c). However, treating 

shMMP-1 cells with thrombin to activate PAR-1 restored their invasiveness, suggesting that 

the PAR-1 activating function of MMP-1 contributes to melanoma invasion through 

basement membrane, while the collagenase activity of MMP-1 plays no role.

Induction of the MMP-1/PAR-1 signaling axis in Bowes RGP melanoma cells induces a 
VGP-like phenotype

Non-invasive radial growth phase (RGP) melanomas do not express MMP-1 (Airola et al., 

1999); to determine if MMP-1 is sufficient to promote an invasive VGP phenotype in RGP 

melanoma, the human RGP melanoma cell line Bowes was used for further experiments. 

Bowes cells do not express MMP-1, but do express PAR-1 (Figure 1a), suggesting that 

MMP-1 activation of PAR-1 signaling could occur in this RGP line.

Treating Bowes cells with 5nM purified MMP-1 induced the expression of many genes that 

were induced by MMP-1 in the VMM12 VGP cells, including genes associated with 

angiogenesis, inflammation and invasion/metastasis (MMP-1 vs. PBS, Table I). 

Interestingly, there were also genes induced in Bowes cells that were not induced by MMP-1 

in the VMM12 cells, including transcription factors and genes associated with cell division 

(Table I). Perhaps VMM12 cells, an advanced VGP melanoma, have mechanisms in place to 

activate the expression of these types of genes; for example, VMM12 cells have a B-RAF 

mutation leading to constitutive activation of MAPK signaling (Huntington et al., 2004), 

while Bowes cells have wild-type B-RAF (data not shown). MMP-1 signaling through 

PAR-1 could therefore have a much greater effect in RGP melanomas.

To determine if MMP-1 expression confers a VGP-like phenotype, Bowes cells were stably 

transfected with a pCMV-MMP1 expression construct, which increased MMP-1 expression 

>100-fold, with no effect on PAR-1 expression (Figure 4a). Interestingly, MAPK signaling 

pathways, which are commonly activated in VGP melanomas (Haluska and Ibrahim, 2006; 

Ueda and Richmond, 2006), were activated in the Bowes-MMP1 cells, compared to control 

(Figure 4b). Treatment with either an MMP or PAR-1 inhibitor decreased the 

phosphorylation of MEK and p38 (Figure 4b), suggesting that MMP-1/PAR-1 signaling in 

Bowes RGP cells induced activation of MAPK signaling cascades.
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Realtime-RT PCR demonstrated that several genes induced by treatment of Bowes cells 

with purified MMP-1 (Table I) were also induced by stable transfection with MMP-1 

(Figure 4c). Importantly, treating Bowes-MMP1 cells with the PAR-1 inhibitor SCH79797 

reduced this expression, suggesting that MMP-1/PAR-1 signaling induces the expression of 

genes associated with tumor progression in Bowes RGP melanoma cells. Additionally, 

several cell cycle genes were induced by MMP-1 in the Bowes cells (Table I), and compared 

to control, Bowes-MMP1 cells showed increased (p=0.0002) proliferation, which depended 

on activation of PAR-1 signaling (Figure 4d).

We next used a collagen degradation assay to determine if Bowes-MMP1 cells had an 

invasive VGP phenotype. Bowes-MMP1 cells degraded more collagen (Figure 4e), and were 

more invasive through type I collagen than control. The PAR-1 inhibitor reduced this 

invasiveness (Figure 4f), indicating that, as with the VGP cells, both the collagenase and 

PAR-1 activating functions of MMP-1 are important for invasion through type I collagen. 

However, in contrast to VMM12 cells (Figure 3c), MMP-1 expression in Bowes cells did 

not promote invasive ability through Matrigel (data not shown), suggesting that MMP-1/

PAR-1 signaling is not sufficient to induce the expression of all genes needed for basement 

membrane invasion by RGP melanoma cells.

MMP-1 promotes tumor growth and metastasis of Bowes RGP melanoma cells

To determine if MMP-1 can promote the VGP phenotype in vivo, the cells were injected 

intradermally into nude mice. Tumor incidence in mice injected with Bowes-MMP1 cells 

was 87%, while only 38% of mice developed Bowes-pCMV control tumors. While both cell 

lines formed tumors 2-3 weeks after injection, the Bowes-MMP1 tumors grew significantly 

faster (p<0.01, Figure 5a).

MMP-1 expression also caused tumor spread into the draining lymph node in 6 out of 7 

Bowes-MMP1 tumor bearing mice, compared to tumor-free lymph nodes of Bowes-pCMV 

injected mice. Additionally, 4 out of 7 Bowes-MMP1 tumor bearing mice had melanoma 

cells in their contra-lateral lymph node, and one mouse had a palpable metastasis in an 

auxiliary lymph node (data not shown), indicating that some Bowes-MMP1 tumors 

metastasized through the lymphatic system (Figure 5b). ALU PCR analyses of organs 

showed that lung samples from 3 mice with Bowes-MMP1 tumors were positive for human 

DNA, with ∼1100pg, 190pg and 150pg of human DNA found per 100ng of lung DNA 

(Figure 5c). In contrast, Bowes-pCMV tumor bearing mice had an average of 7pg human 

DNA/100ng lung DNA, which was not significantly higher than the PCR background levels 

found in naïve mice. These in vivo data suggest that MMP-1 confers aspects of the 

metastatic VGP phenotype in RGP cells.

MMP-1 expression can be induced in Bowes RGP cells by factors within the tumor 
microenvironment

While stable transfection of MMP-1 in RGP cells provides insight into the role of MMP-1 in 

melanoma progression, questions remain as to whether MMP-1 is expressed only after the 

melanoma becomes VGP, or if MMP-1 expression can be induced in RGP, where it then 

drives the melanoma to develop a VGP phenotype. Factors within the tumor 
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microenvironment can induce MMP-1 expression (Ishii et al., 2003; Loffek et al., 2005; 

Rothhammer et al., 2008); we therefore treated Bowes RGP cells with factors present within 

the melanoma microenvironment and found that thrombin, bFGF and VEGF induced 

MMP-1 expression in the RGP melanoma cells (Figure 6a).

These growth factors induced MMP-1 expression only ∼5-fold, significantly less than the 

amount of MMP-1 produced by VGP melanomas. However, the gene expression array 

indicated that exogenous MMP-1 treatment induced a 24-fold increase in MMP-1 expression 

in Bowes cells (Table I). This was verified by realtime-RT PCR, which also showed that 

treating Bowes cells with the PAR-1 inhibitor reduced MMP-1 gene expression, indicating 

that the MMP-1/PAR-1 signaling induces a strong positive feed-back loop to promote 

MMP-1 gene expression in RGP melanoma cells (Figure 6b).

To determine if the slight induction of MMP-1 expression by factors within the tumor 

microenvironment could activate MMP-1/PAR-1 signaling and enhance MMP-1 expression 

in RGP cells, Bowes cells were treated with thrombin, and MMP-1 expression was 

examined. Thrombin induced MMP-1 expression by ∼5-fold after 24hr, and 30-fold after 

48hr. Blocking MMP-1 activity with a neutralizing antibody at 24hr reduced this latter 

increase to only 7-fold, indicating that thrombin induction of MMP-1 in RGP cells sets up a 

feed-forward loop by which MMP-1 induces its own expression (Figure 6c).

Discussion

As melanoma transitions from non-invasive radial growth phase (RGP) to dermally invasive 

and metastatically competent vertical growth phase (VGP), patient prognosis worsens 

(Airola et al., 1999; Tellez et al., 2006). However, few genes have been identified that 

contribute to the RGP to VGP transition. MMP-1 is expressed specifically by VGP 

melanomas, where its type I collagenase activity has been linked to invasion and metastasis 

(Blackburn et al., 2007; Hofmann et al., 2005). VGP melanomas also express PAR-1, which 

is associated with invasion and metastasis in other types of cancer by inducing matrix 

remodeling, cell adhesion, angiogenesis and survival (Arora et al., 2007). While paracrine 

MMP-1/PAR-1 signaling between tumor and stromal cells is known to promote breast 

cancer progression (Boire et al., 2005), the concurrent expression of MMP-1 and PAR-1 in 

VGP melanoma led to our hypothesis that an MMP-1/PAR-1 signaling axis promotes an 

invasive and metastatic phenotype in melanoma.

Our data demonstrate that an MMP-1/PAR-1 signaling axis exists in VGP melanoma. This 

signaling induced the expression of 20 cancer specific genes, with known functions in 

angiogenesis, tumor growth, inflammation, invasion and metastasis (Table I). Thrombin, 

which is frequently found in the melanoma microenvironment (Ornstein and Zacharski, 

2001), also activates PAR-1 to induce the expression of genes involved with melanoma 

progression. Interestingly, while there was some overlap between the genes induced by 

MMP-1 and thrombin, such as IL-8 and uPA (Tellez and Bar-Eli, 2003), thrombin and 

MMP-1 may differentially induce gene expression in melanoma cells via PAR-1, as MMP-1 

did not induce the expression of MMP-2 or integrins, which are induced by thrombin (Tellez 

and Bar-Eli, 2003). MMP-1, however, induced the expression of several growth factors 
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(FGFR2 and IGF1) and genes linked to metastasis (SERPINB5 and S100A4), which have 

not been associated with thrombin/PAR-1 signaling. This is in agreement with our previous 

work (Blackburn and Brinckerhoff, 2008), which demonstrated that activation of PAR-1 by 

MMP-1 and thrombin can have separate, and additive, effects.

The collagenase activity of MMP-1 is important for melanoma progression, yet data 

presented here indicate that MMP-1 activation of PAR-1 is also critical for melanoma 

invasion through the ECM (Figure 3). For example, MMP-1 activation of PAR-1 signaling 

induced invasion through basement membrane, while the collagenase function of MMP-1 

had no role this process. Conversely, while MMP-1/PAR-1 signaling was necessary for 

invasion of VMM12 cells through type I collagen, cells could not physically move through 

the collagen barrier without MMP-1 collagenolytic activity (Figure 3c). These findings 

provide a new model for MMP-1 in melanoma progression, where MMP-1 activation of 

PAR-1 signaling induces pro-invasive gene expression in the tumor cells, and the 

collagenase function of MMP-1 remodels the collagen-rich dermis. Both actions of MMP-1 

would be necessary for the acquisition of the VGP phenotype.

Currently, it is unclear if MMP-1 expression is a consequence of the biochemical changes 

which lead to VGP, or whether MMP-1 itself directly contributes to the conversion of RGP 

melanoma to VGP. Factors in the tumor microenvironment induce MMP-1 expression in 

melanoma (Figure 6a (Ishii et al., 2003; Loffek et al., 2005; Rothhammer et al., 2008)), and 

MMP-1 also strongly induced MMP-1 expression in Bowes RGP cells (Figure 6b). This 

suggests a feed-forward mechanism: a slight induction of MMP-1 by factors within the 

microenvironment induces MMP-1/PAR-1 signaling, leading to increased expression of 

MMP-1 by the RGP cells (Figure 6c). MMP-1/PAR-1 signaling did not contribute to 

MMP-1 expression in VMM12 cells (Figure 2a), perhaps because VMM12 cells have an 

activating B-RAF mutation that is largely responsible for MMP-1 expression in these cells 

(Huntington et al., 2004). Thus, the induction of MMP-1/PAR-1 signaling by exogenous 

factors may provide a mechanism by which a less advanced RGP melanoma increases 

MMP-1 expression to facilitate tumor progression.

MMP-1 induced several aspects of the VGP phenotype in RGP cells, including the 

expression of pro-tumorigenic genes (Table I), invasion through type I collagen in vitro and 

increased tumor growth in vivo. Importantly, MMP-1 expression conferred metastatic 

capability in Bowes tumors (Figure 5), suggesting that MMP-1 may be sufficient to induce a 

metastatic phenotype in melanoma. However, not every MMP-1 expressing tumor was 

metastatic, and it is unclear whether MMP-1 expression itself is sufficient to induce 

metastasis, or if the metastatic tumors gained additional mutations. The latter scenario seems 

likely, as MMP-1 expression in the RGP cells did not permit invasion through basement 

membrane, which is essential for tumor cells to enter the vasculature and to extravasate at 

the site of metastasis (Curran and Murray, 2000). However, none of the Bowes parental or 

Bowes-pCMV control tumors metastasized, demonstrating that MMP-1 is central to the 

acquisition of the metastatic phenotype in melanoma.

In conclusion, these data demonstrate that an MMP-1/PAR-1 signaling axis exists in 

melanoma, and that the combined PAR-1 activating and collagenolytic functions of MMP-1 
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are necessary for tumor cell invasion. Additionally, we found that MMP-1 expression is 

sufficient to promote aspects of a metastatic phenotype in non-invasive melanoma cells, 

suggesting that MMP-1 plays an important role in the transition of melanoma from benign to 

malignant disease.

Materials and methods

Cell culture, conditioned media and activation of MMP-1

VMM12 cells were cultured as described (Huntington et al., 2004). Bowes cells were from 

ATCC (Manassas, VA, USA) and cultured according to manufacturer's directions. For 

serum-free conditions, cells were cultured in media supplemented with 0.2% lactalbumin 

hydrolysate. For conditioned media, 5×106 were plated in 10cm dishes, and after 24hr, 

media were switched to 4mL serum-free media. For all experiments, purified MMP-1 or 

MMP-1 in conditioned media was activated using 10μg/mL trypsin for 1hr at 37°C. A 4-fold 

molar excess of soybean trypsin inhibitor (SBTI, Sigma, St. Louis, MO, USA), was added to 

neutralize the trypsin (Suzuki et al., 1990). Controls were similarly treated with trypsin/

SBTI.

Reagents

Purified MMP-1 was from Abcam (Cambridge, MA, USA). Purified human α-thrombin was 

from Hematological Technologies (Essex Junction, VT, USA). The PAR-1 antagonist 

SCH79797 was from Tocris (Ellisville, MO, USA). The MMP inhibitors II and V were from 

Calbiochem (Gibstown, NJ, USA). The thrombin inhibitor hirudin was from Sigma. TNF, 

VEGF and bFGF were from BD Biosciences (San Jose, CA, USA). The following 

antibodies were from Cell Signaling (Danvers, MA, USA): mouse anti-phospho-MEK, 

mouse anti-phospho-p38, mouse anti-human actin. Mouse anti-human PAR-1 was from 

Beckman-Coulter (Miami, FL, USA), rabbit anti-human MMP-1 and MMP-1 neutralizing 

antibody were from Calbiochem, and mouse anti-FLAG from Abcam.

Exogenous MMP-1 expression

The Tag2B-CMV and Tag2B-CMV-MMP1 expression plasmid were described (Wyatt et 

al., 2005). Bowes cells were transfected using Lipofectamine 2000, according to 

manufacturer's directions (Invitrogen, Carlsbad, CA, USA), and stable transfectants were 

selected with 1mg/ml G418. Clones were examined for MMP-1 expression by realtime-RT 

PCR (see below), and Bowes-pCMV-MMP1 clones with >1000-fold increase in MMP-1 

expression compared to the parental Bowes line were pooled. Bowes-pCMV clones with no 

significant change in MMP-1 expression compared to the parental line were pooled.

MMP-1 and PAR-1 knockdown

pSuper-H1-MAMMX and pSuper-H1-MMP1 shRNA expression plasmids were described 

(Blackburn et al., 2007). PAR-1 shRNAs were designed using the Block-IT shRNA 

algorithm (Invitrogen), and cloned into the psiRNA-H1 expression vector (Invivogen, San 

Diego, CA, USA), according to manufacturer's directions. The PAR-1 shRNAs targeted the 

following sequences: shPAR1#1: 5′-GCCTCCCACTAAACATCA-3′, shPAR-1#3: 5′-

GCGCATTACTCATTCCTT-3′, shPAR-1#4: 5′-CCAAGGGAATATTGCCAA-3′. 
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VMM12 cells were transfected with the PAR-1 shRNA constructs using Lipofectamine 

2000, and stable transfectants were selected using 500μg/mL zeocin (Invivogen). Clones 

with >80% knock-down of PAR-1 expression, measured by realtime RT-PCR (below), were 

pooled.

PAR-1 cleavage assays

For the AP-PAR1 assay, VMM12 cells were co-tranfected with AP-PAR1 (Ludeman et al., 

2005) and pCMV-eGFP (Wyatt et al., 2005) expression constructs using Lipofectamine 

2000. After 24hr, 5×104 cells were plated in 24-well dishes in regular growth media for an 

additional 24hr. Cells were washed with PBS and treated with VMM12 conditioned serum-

free media, or non-conditioned serum-free media (control). After 1hr, media were collected 

and used in the Attophos Alkaline Phosphatase Assay kit (Promega, Madison, WI, USA) to 

determine the amount of AP-PAR-1 that had been cleaved. Data were normalized to the 

GFP fluorescence in each well. For calcium flux assays, VMM12 cells (104) were plated in 

96-well dishes in regular growth media for 24hr, then treated with Fluro-4-NW dye 

(Invitrogen) according to manufacturer's directions. Cells were treated for 1hr with serum-

free media conditioned for 24hr by the VMM12 cells, or non-conditioned serum-free media 

as a negative control. VMM12 cells were also treated with 10nM thrombin in serum-free 

media as a positive control. All media were treated with trypsin/SBTI as described above.

Gene expression analysis

Cells (105) were plated in 6-well dishes. Bowes cells were treated with either 5nM MMP-1 

or PBS for 24hr in media containing only 1% FBS, and other cell lines were treated for 24hr 

with media containing 1% FBS that had been previously conditioned for 24hr by the same 

cell line, and had MMPs activated. RNA was harvested using the RNeasy RNA isolation kit 

(Qiagen, Valencia, CA, USA), and 5μg total RNA was used in the Human Cancer Pathway 

RT2 Profiler PCR array (SA Biosciences, Frederick, MD, USA), following the 

manufacturer's protocol. For other experiments, realtime RT-PCR was performed as 

described (Blackburn et al., 2007), using the primer sets listed in Supplementary Table I. All 

data were analyzed using the 2ΔΔC(t) method, normalized to GAPDH.

Immunoblotting

Cells (105) were plated in 6-well plates in regular growth media for 24hr, then media were 

switched to 1mL serum-free media. Cells were lysed in 2× Laemmeli buffer, and proteins 

were precipitated from the media using 10% trichloroacetic acid. Western blots were 

performed as described (Petrella et al., 2005). All antibodies were used at a 1:1000 dilution.

Proliferation assay

Cells (104) were plated in 12-well dishes in media containing 1% FBS that had been 

conditioned by the same cell line for 24hr, and had MMPs activated. Every 48hr, cells were 

harvested, stained with trypan blue, and viable cells were counted. For some experiments, 

cells were treated with 50μM SCH79797 or DMSO.

Blackburn et al. Page 10

Oncogene. Author manuscript; available in PMC 2010 June 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Collagen degradation and invasion assays

Collagen degradation assays were performed as described (Wyatt et al., 2005), using 105 

cells in 500μl buffered type I collagen (Organogenesis, Boston, MA, USA), supplemented 

with 20μL/mL 0.05% trypsin (Mediatech, Manassas, VA, USA) to activate MMP-1. Media 

released due to collagen degradation were collected after 48hr and weighed. Invasion assays 

were performed as described (Petrella et al., 2005), using fluroblock transwells (BD 

Biosciences) coated with 1mg/mL type I collagen or 1mg/mL Matrigel (BD Biosciences). 

Cells were plated in the upper well in serum-free media conditioned by the same cell line, 

with MMPs activated, and media containing 10% FBS was used in the lower well as a 

chemoattractant. For some experiments, 5nM thrombin was added to the upper chamber. 

After 24hr, invaded cells were stained with CalceinAM (BD Biosciences). Fluorescent cells 

were counted in 3 fields per transwell at 20× magnification, and micrographs taken. Images 

were converted to grey scale and colors inverted.

Tumor growth and analysis of metastasis

Cells were stained with trypan blue, viable cells were counted using a hemocytometer, and 

then 107 live cells were resuspendend in 500μL PBS. Female nude mice (strain nu/nu, 

Charles River, Wilmington, MA, USA) were injected intradermally (106 cells, 50μL) into 

the right flank, 8 mice per group. Tumors were measured weekly with calipers. When 

tumors reached 10mm diameter, or after 12 weeks, mice were sacrificed, and the draining 

and contralateral lymph nodes and the right lung were fixed, sectioned and stained with anti-

human MART1 to visualize metastases (Department of Research Pathology, Dartmouth-

Hitchcock Medical Center). To quantify the human DNA in the lung due to metastases, 

DNA was prepared from the left lung of each mouse, and PCR for human ALU sequences 

was performed (Blackburn et al., 2007). Animal studies were approved by the Institutional 

Animal Care and Use Committee at Dartmouth College.

Statistical analysis

All experiments were done in triplicate, at least 3 separate times. All numerical values 

represent the mean ± SD. Statistical significance was calculated using the Student's t-test 

and was assigned to values <0.05.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
PAR-1 cleavage by MMP-1 occurs in VMM12 VGP melanoma cells.

(a) Western blot analysis of MMP-1 protein production by normal melanocytes, Bowes RGP 

melanoma cells, and VMM12 VGP melanoma cells, and analysis PAR-1 protein expression 

by normal endothelial cells, Bowes and VMM12 cells. PAR-1 blots were re-probed for 

actin, as a loading control. MMP-1 band is 54kD, PAR-1 is 61kD, actin is 43kD. (b) 

VMM12 cells were transfected with AP-PAR1, and treated with media conditioned for 24hr 

by either Bowes or VMM12 cells. The amount of alkaline phosphatase in the media, due to 

PAR-1 cleavage, was measured after 1hr. (c) VMM12 conditioned media (CM) were treated 

with either DMSO, 0.05U/mL hirudin (thrombin inhibitor), 5μM MMP inhibitor II, which 

blocks activity of MMP-1,-3,-7,-9 or 5μM MMP inhibitor V, which blocks 

MMP-2,-3,-8,-9,-12,-13 activity. MMP-1 neutralizing antibody or anti-FLAG (IgG control) 

were added at the indicated concentration to VMM12 CM. Media were used to treat AP-

PAR1 transfected VMM12 cells for 1hr. Alkaline phophatase activity was measured to 

quantify PAR-1 cleavage. *p=0.02 and **p<0.001, compared to anti-FLAG IgG treatment, 

***p<0.001, compared to DMSO treatment. (d) Calcium flux in VMM12 cells was 

measured using Fluro-4-NW dye. Cells were loaded with dye, and then treated for 1hr with 

10nM thrombin in serum-free media (positive control) or VMM12 conditioned media (CM). 

Calcium flow into the cells was measured by quantifying the fluorescence in each well. CM 

were also treated with DMSO, 1μg/mL anti-FLAG, 0.05 hirudin, 1μg/mL anti-MMP-1, or 

VMM12 cells were treated with 50nM SCH79797. Because data were not significantly 

different between VMM12 CM, DMSO and anti-FLAG treatments, results were pooled as 

“VMM12 CM” to simplify the graph. For all experiments, MMPs in the CM were activated 
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as described, and data are representative of at least 3 individual experiments. #p<0.001, 

compared to VMM12 CM.
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Figure 2. 
MMP-1 induces gene expression in VMM12 cells via PAR-1 activation.

(a) Western blot analysis of MMP-1 and PAR-1 protein production by VMM12 cells stably 

transfected with scrambled control shRNA (shMAMMX), MMP-1 shRNAs (shMMP-1) and 

PAR-1 shRNAs (shPAR-1). PAR-1 blots were re-probed for actin, as a loading control. 

MMP-1 band is 54kD, PAR-1 is 61kD, actin is 43kD. (b) shMAMMX, shMMP-1 and 

shPAR-1 cells were treated with media conditioned by the same cell line for 24hr, with 

MMPs activated as described. Gene expression was measured by realtime RT-PCR. 

*p≤0.002, compared to shMMP-1 gene expression, **p≤0.025, compared to shMAMMX 

gene expression. (c) shMMP-1 cells were treated with either DMSO (control), 5nM 

activated MMP-1 or 5nM MMP-1+50nM SCH79797. After 24hr, cells were harvested and 

gene expression measured by realtime-RT PCR. #p≤0.003 compared to shMMP-1 control, 

##p≤0.005, compared to treatment with 5nM MMP-1. For all, data were normalized to 

GAPDH, and were analyzed by the 2ΔΔC(t) method, and are representative of 3 experiments.
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Figure 3. 
Both the collagenase and PAR-1 activating functions of MMP-1 are required for melanoma 

cell invasion.

(a) VMM12 shRNA lines were used in a type I collagen degradation assay. Cells were 

embedded in type I collagen, and after 48hr, the media released from the collagen gel were 

weighed to determine the amount of collagen that had been degraded. #p<0.001, compared 

to collagen degradation by shMAMMX cells. (b) VMM12 shRNA lines were used in 

invasion assays. Cells were plated on fluroblock transwells coated with either 1mg/mL type 

I collagen or 1mg/mL Matrigel, as described in Materials and Methods. The lower chamber 

was filled with media containing 10% FBS, as a chemoattractant. For some experiments, the 

shMMP-1 cells were treated with 5nM thrombin in the upper chamber to activate PAR-1. 

After 24hr, invaded cells were stained with CalceinAM dye. Micrographs shown are 

representative of at least 3 experiments. Scale bar = 100μm. (c) Quantification of invaded 

cells from (b), with 3 fields counted per well. Data are representative of 4 individual 

experiments. *p<0.001, compared to invasion through type I collagen by shMAMMX cells, 

**p<0.001, compared to invasion through Matrigel by shMAMMX cells, NS, not significant 

compared to shMAMMX.
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Figure 4. 
MMP-1 expression in Bowes RGP cells induces some aspects of the VGP phenotype in 

vitro, via PAR-1 activation.

(a) Bowes cells were stably transfected with pCMV (empty vector control) or pCMV-

MMP1. MMP-1 and PAR-1 protein levels were measured by western blot. PAR-1 blots 

were re-probed for actin, as a loading control. MMP-1 band is 54kD, PAR-1 is 61kD, actin 

is 43kD. (b) Bowe-pCMV and Bowes-pCMV-MMP1 cells were serum-starved for 2hr, then 

treated for 15′ with media from the same cell line, with MMPs activated as described. Media 

were treated with either DMSO (-), 5μM MMP inhibitor II, or cells were pre-treated with 

50nM SCH79797, as indicated. The phosphorylation status of MEK1/2 and p38 were 

examined by western blot of the cell lysates. Blots were re-probed with antibodies against 

the corresponding total protein. MEK1/2 band size is 44kD, p38 is 38kD. (c) Realtime RT-

PCR was used to measure the expression of selected genes in cells treated with media 

conditioned by the same cell line, with MMPs activated. Cells were treated with either 

DMSO or 50nM SCH79797. Data are normalized to GAPDH expression and were analyzed 

using the 2-ΔΔC(t) method. *p≤0.002, compared to pCMV gene expression, **p≤0.015, 

compared to Bowes-MMP1 gene expression. (d) Cells were plated in media conditioned by 

the same cell line, with MMPs activated, and viable cells were counted after 48, 96, and 

144hr. Cells were treated with either DMSO or 50μM SCH79797. #p<0.001, compared to 

pCMV-MMP1+SCH79797. (e) Cells were used in a type I collagen degradation assay. 

Media released due to collagen degradation were quantified after 48hr. ***p<0.001, 

compared to pCMV transfected cells. (f) Cells were plated in type I collagen invasion assays 

as described. Cells were treated with either DMSO or 50nM SCH79797. †p<0.001, 
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compared to Bowes-pCMV, ††p<0.001, compared to Bowes-pCMV-MMP1. All data shown 

are representative of 4 individual experiments.
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Figure 5. 
MMP-1 expression in Bowes RGP cells promotes tumor growth and metastasis.

(a) Bowes, Bowes-pCMV and Bowes-pCMV-MMP1 cells were injected intradermally into 

nude mice (106 cells/injection). Tumor incidence was noted (table) and tumors were 

measured weekly with calipers. *p<0.01, compared to Bowes-pCMV. (b) Draning (DLN) 

and contralateral (CLN) lymph nodes from tumor bearing mice were stained with anti-

human MART-1. Micrographs are representative of DLN from each group. Scale 

bar=100μm. Lymph nodes positive for MART-1 staining were quantified (table). (c) ALU 

PCR was performed as described to quantify the amount of human DNA in the lungs of 

tumor bearing mice. Naïve mice were used as a negative control. Each point represents a 

sample from one mouse. Horizontal lines are the average for each group. Note that the data 

are in log scale.
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Figure 6. 
Factors in the tumor microenvironment may induce MMP-1 expression in Bowes RGP 

melanoma cells, and MMP-1 strongly induces MMP-1 expression via PAR-1.

(a) Bowes cells were treated for 24hr in serum-free media with 5nM thrombin, 25ng/mL 

bFGF, 10ng/mL VEGF. MMP-1 expression was measured by realtime-RT PCR. Data were 

normalized to GAPDH, and analyzed by the 2ΔΔC(t) method. *p=0.015, **p=0.002, 

***p=0.042, compared to control. The corresponding western blot is also shown, with an 

exposure time of 5 minutes. The MMP-1 band size is 54kD. (b) Bowes cells were treated 

with DMSO, 5nM MMP-1 or 5nM MMP-1+50nM SCH79797. After 24hr, MMP-1 

expression was measured by realtime-RT PCR. Data were normalized to GAPDH 

expression and analyzed using the 2(-ΔΔCt) method. †p<0.001 compared to control, 

††p<0.001 compared to 5nM MMP-1. Media were also collected and used for western blot 

to measure MMP-1 protein (30 sec exposure). (c) Bowes cells were treated with 5nM 

thrombin for 24hr in media containing 1% FBS. Media were collected and MMPs activated, 

then treated with 1μg/mL MMP-1 neutralizing antibody or anti-FLAG IgG control, as 

indicated. Media were added back to cells for an additional 48hr, for 72hr total treatment. 

MMP-1 expression was examined using realtime RT-PCR. #p=0.02 compared to control, 

##p<0.001, and ###p=0.05, compared to treatment with thrombin for 24hr.
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Table I

MMP-1 induces gene expression in melanoma cells

Bowes VMM12

Gene Symbol Gene NameMMP-1 vs PBS shMX vs shMMP-1

Angiogenesis

3.81 3.27 ANGPT1 Angiopoietin 1

3.58 3.53 IL8 Interleukin 8

2.35 6.28 MMP9 Matrix metalloproteinase 9

2.27 3.29 TEK TEK tyrosine kinase

Cell Division/Apoptosis

4.08 NC BAD BCL2-antagonist of cell death

3.61 NC BAX BCL2-associated X protein

2.20 NC BCL2 B-cell CLL/lymphoma 2

2.55 NC BRCA1 Breast cancer 1, early onset

2.89 NC CCNE1 Cyclin E1

2.23 NC CDK2 Cyclin-dependent kinase 2

2.30 NC CDK4 Cyclin-dependent kinase 4

3.68 2.39 CDKN1A Cyclin-dependent kinase inhibitor 1A

2.62 2.27 CDKN2A Cyclin-dependent kinase inhibitor 2A

Growth Factors

2.33 2.95 ERBB2 V-erb-b2

NC 12.38 FGFR2 Fibroblast growth factor receptor 2

3.76 8.82 IGF1 Insulin-like growth factor 1

NC 2.35 PDGFA Platelet-derived growth factor alpha

3.23 NC TGFB1 Transforming growth factor, beta 1

2.50 2.06 TGFBR1 Transforming growth factor, beta receptor I

Inflammation

NC 2.50 IFNA1 Interferon, alpha 1

8.75 NC IFNB1 Interferon, beta 1, fibroblast

3.58 3.53 IL8 Interleukin 8

7.41 2.33 TNF Tumor necrosis factor

Transcription Factors

2.27 2.25 E2F1 E2F transcription factor 1

2.46 NC FOS V-fos FBJ murine osteosarcoma oncogene homolog

2.30 2.17 JUN Jun oncogene

2.32 2.72 MAP2K1 Mitogen-activated protein kinase kinase 1

2.97 2.13 MYC V-myc myelocytomatosis viral oncogene homolog

Oncogene. Author manuscript; available in PMC 2010 June 03.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Blackburn et al. Page 24

Bowes VMM12

Gene Symbol Gene NameMMP-1 vs PBS shMX vs shMMP-1

2.95 NC NFKB1 Nuclear factor of kappa gene enhancer in B-cells 1

2.22 NC NFKBIA NFKB alpha

Metastasis Associated

2.38 NC MDM2 Mdm2, transformed 3T3 cell double minute 2

23.92 66.26 MMP1 Matrix metalloproteinase 1

2.35 6.28 MMP9 Matrix metalloproteinase 9

2.60 NC MTA1 Metastasis associated 1

2.51 NC MTA2 Metastasis associated 1 family, member 2

NC 4.14 PLAU Plasminogen activator, urokinase

2.00 2.17 S100A4 S100 calcium binding protein A4

3.81 17.88 SERPINB5 Serpin peptidase inhibitor, clade B, member 5

2.14 2.75 SERPINE1 Serpin peptidase inhibitor, clade E, member 1

Values=fold increase in gene expression, NC=no change compared to control
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