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Abstract

Allele-specific expression (ASE) analysis, which quantifies the relative expression of two

alleles in a diploid individual, is a powerful tool for identifying cis-regulated gene expression

variations that underlie phenotypic differences among individuals. Existing methods for

gene-level ASE detection analyze one individual at a time, therefore failing to account for

shared information across individuals. Failure to accommodate such shared information not

only reduces power, but also makes it difficult to interpret results across individuals. How-

ever, when only RNA sequencing (RNA-seq) data are available, ASE detection across indi-

viduals is challenging because the data often include individuals that are either

heterozygous or homozygous for the unobserved cis-regulatory SNP, leading to sample het-

erogeneity as only those heterozygous individuals are informative for ASE, whereas those

homozygous individuals have balanced expression. To simultaneously model multi-individ-

ual information and account for such heterogeneity, we developed ASEP, a mixture model

with subject-specific random effect to account for multi-SNP correlations within the same

gene. ASEP only requires RNA-seq data, and is able to detect gene-level ASE under one

condition and differential ASE between two conditions (e.g., pre- versus post-treatment).

Extensive simulations demonstrated the convincing performance of ASEP under a wide

range of scenarios. We applied ASEP to a human kidney RNA-seq dataset, identified ASE

genes and validated our results with two published eQTL studies. We further applied ASEP

to a human macrophage RNA-seq dataset, identified genes showing evidence of differential

ASE between M0 and M1 macrophages, and confirmed our findings by results from cardio-

metabolic trait-relevant genome-wide association studies. To the best of our knowledge,

ASEP is the first method for gene-level ASE detection at the population level that only

requires the use of RNA-seq data. With the growing adoption of RNA-seq, we believe ASEP

will be well-suited for various ASE studies for human diseases.

PLOS GENETICS

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1008786 May 11, 2020 1 / 23

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Fan J, Hu J, Xue C, Zhang H, Susztak K,

Reilly MP, et al. (2020) ASEP: Gene-based

detection of allele-specific expression across

individuals in a population by RNA sequencing.

PLoS Genet 16(5): e1008786. https://doi.org/

10.1371/journal.pgen.1008786

Editor: Xiaofeng Zhu, Case Western Reserve

University, UNITED STATES

Received: October 31, 2019

Accepted: April 21, 2020

Published: May 11, 2020

Copyright: © 2020 Fan et al. This is an open access

article distributed under the terms of the Creative

Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in

any medium, provided the original author and

source are credited.

Data Availability Statement: ASEP R package is

available at https://github.com/Jiaxin-Fan/ASEP.

The human kidney dataset is available at GEO

under accession number GSE115098. Allele-

specific read counts for the human macrophage

RNA-seq data are available at DRYAD with

identifier doi:10.5061/dryad.866t1g1nb.

Funding: This work was supported by the following

grants: NIH R01GM108600, R01GM125301 and

R01EY030192 (to ML), R01HL113147 (to ML and

MPR), R01DK076077 (to KS), R01DK087635 (to

http://orcid.org/0000-0003-2852-7675
http://orcid.org/0000-0002-8829-7659
http://orcid.org/0000-0002-1005-3726
http://orcid.org/0000-0002-3035-9386
http://orcid.org/0000-0003-2422-9494
https://doi.org/10.1371/journal.pgen.1008786
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1008786&domain=pdf&date_stamp=2020-05-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1008786&domain=pdf&date_stamp=2020-05-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1008786&domain=pdf&date_stamp=2020-05-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1008786&domain=pdf&date_stamp=2020-05-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1008786&domain=pdf&date_stamp=2020-05-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1008786&domain=pdf&date_stamp=2020-05-21
https://doi.org/10.1371/journal.pgen.1008786
https://doi.org/10.1371/journal.pgen.1008786
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://github.com/Jiaxin-Fan/ASEP
https://doi.org/10.5061/dryad.866t1g1nb


Author summary

Allele-specific expression (ASE) quantifies the relative expression of two alleles in a dip-

loid individual, and such expression imbalance potentially contributes to phenotypic vari-

ation and disease pathophysiology among individuals. Since the two alleles used to

measure ASE come from the same cellular environment and genetic background, they

can serve as internal control and eliminate the influence of trans-acting genetic and envi-

ronmental factors. Existing ASE detection methods analyze one individual at a time,

therefore not only wasting shared information across individuals, but also posing a chal-

lenge for result interpretation across individuals. To overcome this limitation, we devel-

oped ASEP, a method that is able to detect gene-level ASE under one condition, as well as,

ASE difference between two conditions (e.g., pre- vs post-treatment) in a population. We

have demonstrated ASEP’s convincing performance through extensive simulations.

Application of ASEP to human kidney and macrophage RNA-seq datasets have further

illustrated its ability to uncover ASE genes related to kidney functions and cardiometa-

bolic traits. With the wide application of large-scale transcriptome sequencing in biomedi-

cal studies, there is an urgent need to learn a comprehensive picture of ASE in diverse

populations. We believe ASEP will be well-suited for this purpose and can guide future

ASE studies.

Introduction

Genome-wide association studies (GWAS) are successful in identifying candidate loci for

complex human diseases and traits [1, 2]. Despite the impressive success for disease suscepti-

bility loci discovery, few, if any, results from GWAS have led to the delivery of new therapies

[3]. The association peaks from GWAS typically identify a handful of gene candidates, but it is

often unclear whether these candidates are expressed in relevant tissues and cell types. Further

complicating the picture, we now know that most GWAS signals are probably the result of reg-

ulatory variants that impact gene expression, rather than amino acid changes. Data on gene

expression from tissues and cell types directly involved in disease are critically important to

find causative genes.

A commonly used approach to understand the functional roles of GWAS identified genetic

variants is expression quantitative trait loci (eQTL) analysis [4, 5]. The rationale is that, a

genetic variant, known as an eQTL, influences the expression level of a gene, and differences

in gene expression levels among individuals may lead to different phenotypes. Studies have

found that many GWAS identified single nucleotide polymorphisms (SNPs) are significantly

enriched for eQTLs, compared to control SNPs matched by allele frequencies [6]. eQTL analy-

sis identifies both cis- and trans-regulatory SNPs, in which cis-eQTLs affect gene expression in

an allele-specific manner, with implications on underlying mechanism, whereas trans-eQTLs

affect gene expression in an allele independent manner [5]. Although eQTL analysis has suc-

cessfully uncovered functional variant loci that regulate gene expression, typical eQTL analysis

only tells local versus distal association [7, 8]. The lack of explicit information on cis- versus

trans- makes it difficult to directly link to the underlying mechanism, and the requirement of a

relatively large sample size for eQTL analysis further makes it impractical for studies that

involve difficult-to-collect tissues [9].

To identify cis-regulated gene expression variation, analysis of allele-specific expression

(ASE) is required. ASE refers to unequal expression between paternal and maternal alleles of a
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gene in a diploid individual, driven by cis-regulatory variants located near the gene [10]. The

allelic imbalance of gene expression may explain phenotypic variation and disease pathophysi-

ology. Since the two alleles used to measure ASE are expressed in the same cellular environ-

ment and genetic background, they can serve as internal control and eliminate the influence of

trans-acting genetic and environmental factors. It has been shown that ASE analysis requires

8-fold less samples than eQTL analysis to reach the same power in detecting cis-regulatory

SNPs, and is less sensitive to SNPs with low minor allele frequencies (MAFs) compared to

eQTL analysis [11].

To measure ASE, we exploit allelic imbalance by RNA sequencing (RNA-seq), which pro-

vides allele-specific read counts at exonic SNPs distinguished by heterozygous sites [12]. Exist-

ing methods for ASE detection report evidence of ASE in single individuals, in which the ASE

is quantified for each SNP (e.g., QuASAR [13]), and a gene-level ASE is obtained by integrat-

ing effects across SNPs in the same gene for an individual (e.g., MBASED [14] and GeneiASE

[15]). However, evidence of ASE is often shared across individuals. Failure to accommodate

such shared information not only loses power, but also makes it difficult to interpret results

across individuals. It is desirable to have a method that simultaneously models both multi-SNP

and multi-individual information.

ASE detection across individuals, however, is challenging when only RNA-seq data are

available, because the data often include individuals that are either heterozygous or homozy-

gous for the unobserved cis-regulatory SNPs, leading to heterogeneity in ASE. Such heteroge-

neity complicates the analysis because only heterozygous individuals are informative for ASE,

whereas those homozygous individuals have balanced expression. Further, when analyzing

multiple SNPs in the same gene, haplotype phase information is needed to separate the pater-

nal and maternal alleles. Although it is possible to infer haplotype phase from DNA genotype

data, most studies do not have such data available. Even when phase information is available,

cross-individual read count alignment is still needed when performing cross-individual analy-

sis, which is complicated as the cis-regulatory SNP is not observed. Fig 1 illustrates these ana-

lytical challenges in cross-individual gene-based ASE analysis.

To properly perform cross-individual gene-based ASE analysis using only the RNA-seq

data, we propose ASEP (Allele-Specific Expression analysis in a Population), a generalized lin-

ear mixed-effects model based method with subject-specific random effect to account for cor-

relation of multiple SNPs within the same gene. ASEP is able to detect gene-level ASE under

one condition and differential ASE between two conditions (e.g., pre- versus post-treatment).

Through extensive simulations and analysis of real RNA-seq datasets from human transcrip-

tomic studies, we demonstrate that combining shared ASE information across SNPs and indi-

viduals leads to easier interpretation and improved power in identifying genes with ASE.

Results from our analysis shed light on the functional roles of GWAS identified genetic

variants.

Results

Methods overview

The primary goal of ASEP is to perform gene-based ASE analysis across individuals using only

the RNA-seq data. However, the population includes individuals that are either heterozygous

or homozygous for the unobserved cis-regulatory SNP, and ASE is present only in those het-

erozygous individuals. To account for such heterogeneity and simultaneously aggregate multi-

individual and multi-SNP information, we develop ASEP, a generalized linear mixed-effects

model based method, in which the subject-specific random effect is used to account for corre-

lation of multiple SNPs within the same gene, and sample heterogeneity is modeled by a two-
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component mixture distribution. Our method can be applied to detect gene-level ASE

under one condition and differential ASE between two conditions across individuals in a

population.

ASEP utilizes allele-specific read counts across transcribed SNPs of a given gene obtained

from RNA-seq. For a given gene g, let rSNP be its unobserved cis-regulatory SNP with alleles R
and r, where we assume the R allele leads to increased expression level of the residing haplo-

type as compared to the r allele. The haplotype with higher expression is denoted as the major

haplotype, and the alleles on this haplotype are referred as the major alleles. For individuals

homozygous or heterozygous at the rSNP, we denote them as ‘Hom’ or ‘Het’, respectively. Let

tSNP be an observed transcribed SNP within the gene of interest detected from the RNA-seq

data. Individuals that are homozygous for the tSNPs are excluded from analysis since they do

not provide information on allelic expression.

When haplotypes are inferred and properly aligned with the unobserved rSNP alleles across

individuals, for one condition ASE analysis, we detect evidence of ASE by testing the existence

of a mixture distribution within the samples, i.e., group-level ASE difference between ‘Hom’

and ‘Het’ samples. For paired two-condition analysis, we test for the difference of ASE between

two conditions for the ‘Het’ individuals. However, RNA-seq data alone do not provide infor-

mation on haplotype phase or rSNP. To address these issues, we adopt a pseudo-phasing pro-

cedure originally proposed by MBASED [14], which is a ‘majority voting’ procedure based on

allele-specific read counts, to infer the major haplotype for each individual. Details of ASEP

can be found in Materials and Methods.

Fig 1. Challenges in cross-individual gene-based ASE analysis. Heterogeneity of the ASE effect exists across

individuals in a population. Because the cis-regulatory SNP (rSNP) is often unobserved, the bulk RNA-seq data include

individuals (ID) that are either heterozygous or homozygous at the rSNP. The mRNA expression levels differ between

two haplotypes only in those heterozygous individuals. Additionally, a gene may have multiple heterozygous

transcribed SNPs (tSNPs). To differentiate paternal and maternal alleles, haplotype phase information is needed, which

is often not available in most studies. Further complicating the analysis, to aggregate ASE effects across individuals,

haplotypes that reside on the same allele of the unobserved rSNP need to be aligned across individuals.

https://doi.org/10.1371/journal.pgen.1008786.g001
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Detecting ASE under one condition

We evaluated the performance of ASEP to detect gene-level ASE as a function of the number

of individuals (N), the number of tSNPs (nSNP), sequencing depth (Y), and pre-specified

minor allele frequency (MAF) of the unobserved rSNP. When haplotype phase among tSNPs
was known, our simulations showed that type I error rate of ASEP was controlled at the 1%

level under all scenarios we investigated. As expected, the power increased as the number of

individuals, sequencing depth or the number of heterozygous tSNPs increased. Among these

three factors, the sequencing depth and the number of tSNPs were more influential as com-

pared to the sample size. With high sequencing depth and more tSNPs, our method had suffi-

cient power to detect an ASE effect of 0.6. Further, increasing the proportion of ‘Het’

individuals in the sample, determined by the MAF of the unobserved rSNP, improved the

power under all scenarios considered. The model performed similarly when MAF = 0.3 or 0.5,

and outperformed the model when MAF = 0.1 with other factors held constant. This is

expected since only 18% of the individuals were heterozygous at the rSNP when MAF = 0.1

under Hardy-Weinberg equilibrium (HWE), whereas more than 40% of the individuals were

heterozygous when MAF = 0.3 or 0.5, leading to a much larger effective sample size in ASE

detection. However, when the sequencing depth, the number of tSNPs and the MAF of the

rSNP were all at low level, increasing sample size resulted in decreased power. This is likely

due to higher uncertainty when aligning haplotypes across multiple individuals with increased

sample size but with less information on allelic read counts (Fig 2A and S1A Fig).

Next, we examined the performance of ASEP when haplotype phase was unknown under

similar scenarios. The type I error rate of ASEP was still well controlled at the 1% level across all

scenarios. The power increased as the sequencing depth or the number of tSNPs increased, with

the read depth having higher impact on power as compared to the number of tSNPs. Notably,

we observed a dramatic power increase as the read depth increased when there were only a few

tSNPs in the gene. Increasing sample size only improved the power when at least two of the

three above-mentioned factors, sequencing depth, number of tSNPs and MAF, were at moder-

ate to high level. With low level of sequencing depth and MAF of the rSNP, we observed that the

power decreased slightly when the sample size increased. This is because we assigned alleles

with larger read counts to the major haplotype, thus the estimated ASE level for the ‘Hom’

group deviated more from 0.5 when the number of ‘Hom’ individuals increased with smaller

MAF. This led to smaller ASE difference between the ‘Hom’ and ‘Het’ groups and hence

decreased the detection power. Similarly, with small number of tSNPs and low level of sequenc-

ing depth and MAF, less information on the SNP level read counts was available, which led to

increased phasing errors and resulted in decreased detection power (Fig 2B and S1B Fig).

Detecting differential ASE between two conditions

Next, we evaluated the performance of ASEP to detect ASE difference between two conditions.

When haplotype phase information was known, the type I error rate of ASEP was well con-

trolled at the 1% level across a variety of settings. Similar to the one condition analysis, when

MAF of the rSNP was fixed, the power increased as the number of individuals, the sequencing

depth or the number of tSNPs increased. Among these three factors, the sequencing depth, fol-

lowed by the number of tSNPs and the sample size, had the largest impact on power. More-

over, a specific factor increased the power more when accompanied by the increase of either of

the other two factors. Further, increasing MAF of the rSNP also improved the power to detect

differential ASE between two conditions. With MAF = 0.3, when any two of the three factors

were at high level, ASEP had an adequate power to detect a, as small as, 0.05 ASE difference

between two conditions (Fig 3A and S2A Fig).
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When the haplotype phase was unknown, the type I error rate was still under control at the

1% level across all scenarios. For power evaluation, we set the ASE difference between two con-

ditions to 0.075 to achieve an adequate power. Overall, the detection power followed similar

pattern as what we observed under phase known scenarios. The power increased as the

sequencing depth, the sample size or the number of tSNPs increased, with the sequencing

depth being the most influential factor among the three as it led to much higher power

improvement when the other two factors were fixed. Increasing the number of ‘Het’ individu-

als also dramatically improved the power. With MAF of 0.3, ASEP had sufficient power to

detect a 0.075 ASE difference between two conditions when any two of the three above-men-

tioned factors were at high level (Fig 3B and S2B Fig).

Application to a human kidney RNA-seq dataset

We applied ASEP to a human kidney RNA-seq dataset generated from an eQTL study by Qiu

et al. [16], which includes 121 tubule compartment samples. Details of sample characteristics,

RNA-seq data processing and read mapping were described in the original paper [16]. Allele-

specific read counts for SNPs in exonic regions were obtained using WASP [17], which is

robust to mapping bias in the presence of SNPs. For each tSNP, an individual was filtered out

Fig 2. Simulation results for one-condition analysis. Type I error rate (left) and power (right) evaluated as a function of the number of individuals (N), sequencing

depth (Y), number of heterozygous transcribed SNPs (nSNP) and MAF of the cis-regulatory SNP. For each scenario, the type I error rate was examined with 10,000

simulations, and the power with 1,000 simulations at significance level α = 0.01. Performance of ASEP (A) when haplotype phase is known and (B) when haplotype

phase is unknown with the population-level ASE equals 0.6 for power evaluation.

https://doi.org/10.1371/journal.pgen.1008786.g002
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if the minor allele count was less than 5, or the total read count was less than 20, or the minor

allele count was less than 5% of the total read count. In addition, we only analyzed genes that

were expressed in three or more individuals in order to have enough information for parame-

ter estimation.

In total, we analyzed 6,540 genes and detected 304 genes with significant ASE effect after

FDR multiple testing adjustment (S1 Table). To validate our findings, we first compared our

results with eGenes identified using the same kidney RNA-seq dataset by Qiu et al. [16]. Here

an eGene refers to a gene with cis-eQTLs at 5% FDR, where a cis-eQTL is defined as an eQTL

located within 1 megabase (Mb) from the transcription start site of the gene [18]. 179 (59%) of

our ASE genes were also detected as eGenes by Qiu et al. [16]. We further compared the 304

genes with another eQTL study performed on a different human kidney cortex RNA-seq data-

set of 96 samples [18], and found that 97 (32%) of our ASE genes were detected as eGenes in

their analyses, among which 85 were also detected as eGenes by Qiu et al. [16]. Among genes

detected as eGenes by both eQTL studies, GSTM3 showed strong evidence of ASE (FDR

adjusted P< 0.0003). It has been reported that GSTM3 may function as a tumor suppressor in

renal cell carcinoma [19]. Fig 4 shows the estimated SNP-level ASE, i.e., the proportion of

major allele read count relative to the total count of both alleles of each SNP, for each

Fig 3. Simulation results for two-condition analysis. Type I error rate (left) and power (right) evaluated as a function of the number of individuals (N), sequencing

depth (Y), number of heterozygous transcribed SNPs (nSNP) and MAF of the cis-regulatory SNP. For each scenario, the type I error rate was examined with 10,000

simulations, and the power with 1,000 simulations at significance level α = 0.01. (A) Performance of ASEP when haplotype phase is known. For power evaluation, the

population-level ASE takes values of 0.7 and 0.65 for the two conditions. (B) Performance of ASEP when haplotype phase is unknown. For power evaluation, the

population-level ASE takes value of 0.7 and 0.625 for the two conditions.

https://doi.org/10.1371/journal.pgen.1008786.g003
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individual, sorted by their median of estimated ASE levels among heterozygous individuals for

the analyzed tSNPs in the gene. We observed that about one-third of the individuals have esti-

mated ASE level below 0.6, which presumably are individuals that are homozygous for the

Fig 4. SNP-level ASE for selected genes showing ASE in the kidney RNA-seq dataset. We selected three genes, GSTM3 (A), APOC3 (B) and PGAP3 (C), to show their

estimated SNP-level ASE for each SNP and individual. The ASE level was estimated as the major allele proportion, i.e., the proportion of major allele read count relative

to the total count of both alleles of each SNP, in each sample after haplotype phase alignment. The individuals were sorted by the median ASE level across all transcribed

SNPs in each individual.

https://doi.org/10.1371/journal.pgen.1008786.g004
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unobserved cis-regulatory SNP, whereas the rest of the individuals showed strong ASE effect.

The reason that the estimated ASE level was greater than 0.5 is due to the ‘majority voting’

phasing procedure used to assign major alleles across SNPs. By aggregating information across

individuals, ASEP was able to detect a significant ASE signal for this gene (Fig 4A).

We also detected significant ASE in APOC3 (FDR adjusted P = 0.0003). APOC3 is known

to encode protein apolipoprotein C-III, which is highly associated with hypertriglyceridemia

and its altered metabolism may lead to dyslipidemia in chronic kidney disease (CKD) [20].

The RNA-seq data suggest that even though each individual only has a few transcribed SNPs

in this gene, with consistent signals across individuals, ASEP was able to aggregate ASE infor-

mation across individuals to facilitate the detection of a population-level ASE effect (Fig 4B).

An additional example is PGAP3, which showed strong evidence of ASE by ASEP (FDR

adjusted P< 0.0003). PGAP3 encodes the glycosylphosphatidylinositol (GPI)-specific phos-

pholipase that is crucial for protein sorting and trafficking [21]. A previous study has shown

that aged PGAP3 knockout mice developed the phenotype such as enlarged renal glomeruli

with deposition of immune complexes and matrix expansion [22]. In this dataset, we observed

that many individuals showed small ASE effect at a few transcribed SNPs. However, by

leveraging information across multiple SNPs and individuals, ASEP was able to uncover the

ASE signal shared across individuals (Fig 4C).

Although 113 ASEP detected ASE genes (37%) were not identified as eGenes in either of

the two eQTL studies, many of these genes are related to kidney functions, especially with

chronic kidney disease (CKD). For example, SOD3 (FDR adjusted P< 0.0003) is an antioxi-

dant highly expressed in normal kidneys and is protective in CKD progression [23]. SPSB1
(FDR adjusted P< 0.0003) has been found as a novel regulator of the transforming growth fac-

tor-β (TGF-β) signaling pathway [24], which mediates fibrosis and plays an important role in

CKD [25]. Changes in CYP24A1 (FDR adjusted P< 0.0003) expression have been shown to be

related with dysfunctional vitamin D metabolism. Vitamin D deficiency may trigger renal

osteodystrophy and lead to other complications of renal disease [26]. PIGR (FDR adjusted

P< 0.0003) is expressed in renal tubule epithelial cells and is related to innate immune system

and IL4-mediated signaling events pathways [27]. LBH (FDR adjusted P< 0.0003) may act in

mitogen-activated protein kinase (MAPK) signaling pathway [27], which is relevant to renal

cell function and pathophysiology [28]. APOE (FDR adjusted P = 0.0005) modulates lipopro-

tein metabolism and is significantly related with CKD progression [29] (S3 Fig).

Application to a human macrophage RNA-seq dataset

Next, we applied ASEP to a paired macrophage RNA-seq dataset generated from 48 healthy

individuals (S2 Table). Human peripheral blood mononuclear cell (PBMC) can be cultured

and differentiated to macrophages, and polarized in vitro to functionally and molecularly dis-

tinct M1-like inflammatory macrophages by IFN-γ and Lipopolysaccharide (LPS), an impor-

tant and widely-used experimental model to study macrophage biology in homeostasis and

diseases [30, 31]. M0 and M1 macrophages from each individual were subject to 2x101 bp

paired-end RNA-seq. Reads were aligned to human genome hg19 using STAR 2.6.0a [32].

Reads from each pair were required to map to the same chromosome with distance <500,000

bp. Only uniquely mapped reads were retained for downstream analysis. The RNA-seq data

were processed using WASP [17] to remove possible mapping bias and extract allele-specific

read counts.

We first applied ASEP for one condition analysis to M0 and M1 macrophage samples sepa-

rately to detect ASE genes under each condition. Similar filtering criteria to the human kidney

RNA-seq analysis were applied. In total, we analyzed 5,961 genes for the M0 and 5,465 genes
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for the M1 macrophage samples, with 4,783 genes in both. We identified 2,503 genes with sig-

nificant ASE (P< 0.05) in M0 and 2,580 genes in M1. Among these genes, 1,223 were detected

only in M0, with 408 of them not expressed in M1, and 1,300 genes detected only in M1, with

334 of them not expressed in M0. Additionally, 1,280 genes showed evidence of ASE under

both conditions. After multiple testing adjustment with FDR, 2,402 genes remained significant

(FDR adjusted P< 0.05) in M0 and 2,489 genes in M1 (S3 and S4 Tables), and 1,223 genes

were found to have ASE under both conditions (Fig 5A).

To validate our findings, we first compared our results to an eQTL study based on mono-

cytes from 134 healthy males [33]. The monocytes were stimulated with three prototypical

microbial ligands, LPS was used to activate Toll-like receptor 4 (TLR4), muramyl-dipeptide

(MDP) to stimulate Nucleotide-binding oligomerization domain-containing protein 2

(NOD2), and 50-triphosphate RNA to activate retinoic acid-inducible gene I (RIG-I). RNAs

from these samples were sequenced at baseline, 90 minutes and 6 hours after stimulation. We

Fig 5. Genes analyzed for ASE and differential ASE analysis in the macrophage RNA-seq dataset. (A) Total number of genes analyzed, and number of significant

ASE genes in M0 (pink) and M1 (green) macrophages obtained from one-condition analysis. Solid circles indicate the nominal significant (left) and FDR-adjusted

significant (right) ASE genes detected under each condition. (B) Total number of genes analyzed for two-condition analysis. Genes were selected from significant

(nominal) ASE genes for M0 (pink) and M1 (green) macrophages that expressed under both conditions. Genes with less than three matched reads, i.e., the tSNP has

read counts for both M0 and M1 macrophages of the same individual, were further excluded from the analysis. Solid circle indicates the FDR-adjusted significant

differential ASE genes detected between M0 and M1.

https://doi.org/10.1371/journal.pgen.1008786.g005
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found 460 (19%) of the FDR significant ASE genes for M0 macrophages overlapped with the

eGenes identified at the baseline, and 493 (20%) of the ASE genes for M1 macrophages overlapped

with the eGenes identified at either 90 minutes or 6 hours using one of the three microbial ligands

as the stimuli. To examine if the percent overlapping eGenes (pobserved) is more than expected by

chance, we performed resampling based enrichment analysis. For the 2,402 ASE genes detected

for M0, we randomly sampled 2,402 genes from the remaining 3,559 genes that did not show evi-

dence of ASE, and recorded the percentage of genes (presampled) overlapping with eGenes in the

monocyte eQTL study [33]. We repeated this resampling procedure 10,000 times and the eGene

enrichment p-value was calculated as
#ðpresampled�pobservedÞ

10;000
. Similar analysis was performed for ASE

genes detected for M1. Both M0 and M1 ASE genes have enrichment p-values less than 0.0001,

suggesting the observed overlap with eGenes is more than expected by chance.

Encouraged by these results, we next performed differential ASE analysis between M0 and

M1 by selecting the 2,714 candidate genes that were found to show evidence of ASE (P< 0.05)

in M0 or M1 from the one condition analysis. Since haplotype phase is unknown, to reduce

phasing error, for each gene, we chose the condition with higher estimated ASE effect as the

‘reference’ to phase the data from the other condition. In total, we detected 826 genes showing

evidence of differential ASE (P< 0.05), with 582 genes still being significant after multiple test-

ing adjustment (FDR adjusted P< 0.05) (Fig 5B and S5 Table). We compared the differential

ASE genes with response eQTLs identified in the monocyte eQTL study, where a response

eQTL was defined as an eQTL with different effect between baseline and stimulated cells [33].

We found 15 (3%) of our differential ASE genes had response eQTLs identified between

monocytes at baseline and monocytes stimulated using at least one of the three microbial

ligands sequenced at either 90 minutes or 6 hours: TRABD, AGTRAP, TMEM9, IRF5, AAK1,

EIF2AK1, GBP3, GLRX, JUP, MBNL1, MCM7, MS4A7, PTGER4, SLFN5, TMEM110. For

example, IRF5 has been demonstrated to promote inflammatory macrophage polarization

[34]; GBP3 encodes a protein from the guanylate-binding protein family that is expressed in

response to interferons and other pro-inflammatory cytokines and mediates innate immune

responses against intracellular pathogens [35]; SLFN5 belongs to the schlafen family and plays

an important role in the regulation of human T cell quiescence [36].

Since macrophages are important regulators and promoters of many cardiovascular disease

programs, we further examined whether the 582 genes showing significant differential ASE

overlap with findings from GWAS for cardiovascular disease (CVD), coronary artery disease

(CAD) and acute coronary syndrome (ACS) [37]. Among these 582 genes, 323 (56%) over-

lapped with loci that reached GWAS significance (P<5×10−8) (S6 Table). The differential ASE

genes were marginally enriched for GWAS findings of selected traits as compared to those

non-differential ASE genes (P = 0.078). For example, CCL3 (FDR adjusted P< 0.00002)

encodes the macrophage inflammatory protein-1α that is known as a macrophage-derived

inflammatory mediator and plays a well-known role in inflammatory responses [38]. Fig 6

shows the estimated SNP-level ASE difference for each individual, i.e., the difference in major

allele proportion of each SNP after haplotype phasing between M1 and M0 for each individual.

After sorting individuals by their median of estimated ASE difference across all heterozygous

transcribed SNPs, we observed that, the majority individuals have negative ASE difference

with a few having positive ASE difference, which might be due to potential phasing error.

About one-third of the individuals have median ASE difference around zero, and these indi-

viduals are presumably homozygous for the unobserved rSNP. However, since more individu-

als have negative ASE difference, ASEP was able to detect evidence of differential ASE at the

population level by aggregating information across individuals and multiple transcribed SNPs

within the gene (Fig 6A).
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We also detected differential ASE in CASP8 (FDR adjusted P = 0.0003) in the macrophage

data. A previous study has shown that loss of CASP8 expression in macrophages led to onset of

a mild systemic inflammatory disease [39]. CASP8 can control the response to TLR activation

and macrophage polarization in a RIPK-dependent manner. Our RNA-seq data suggest that

even though each SNP may have small effect, by aggregating information across SNPs and

individuals, ASEP was able to uncover the consistent differential ASE signal between condi-

tions in the population (Fig 6B).

Additionally, we detected differential ASE for IL1RN (FDR adjusted P< 0.00002), which

encodes protein interleukin-1 receptor antagonist (IL-1RA) that modulates a variety of inter-

leukin 1 related immune and inflammatory responses [27, 40]. Although each individual only

has a few transcribed SNPs in this gene, by accumulating evidence across multiple individuals,

we were able to detect a consistent signal of differential ASE (Fig 6C). Further, we detected dif-

ferential ASE in ABHD16A (FDR adjusted P< 0.00002). A study has shown that ABHD16A
dynamically regulates the metabolism of lysophosphatidylserines (lyso-PS), a class of signaling

lipids that regulate (neuro)immunological processes [41]. Although heterozygous sites in

ABHD16A varied across individuals and most of them are heterozygous for only one tran-

scribed SNP in this gene, for each SNP the ASE effect was consistently larger in M1 than in

M0. By aggregating information across multiple SNPs and individuals, ASEP was able to detect

a population-level differential ASE effect (Fig 6D).

Other genes that showed significant differential ASE include those from the cluster of dif-

ferentiation, e.g., CD226 (FDR adjusted P< 0.00002), CD68 (FDR adjusted P< 0.00002) and

CD44 (FDR adjusted P = 0.004)), RCAN1 (FDR adjusted P< 0.00002), TSPO (FDR adjusted

P< 0.00002), AKT1 (FDR adjusted P = 0.00008), and PIEZO1 (FDR adjusted P = 0.001) (S4

Fig).

Although 259 of the differential ASE genes did not overlap with GWAS findings, some of

them may play a relevant role in inflammation. For example, MAPK14 (FDR adjusted

P = 0.0009) (Fig 6E), is involved in the production of inflammatory mediators, and play an

essential role in mediating cellular responses to injurious stress and immune signaling [42,

43]. Other genes of interest include DDX24 (FDR adjusted P< 0.00002), GRK3 (FDR adjusted

P< 0.00002), GBP2 (FDR adjusted P = 0.00002), EEF2 (FDR adjusted P = 0.00009) and SLFN5
(FDR adjusted P = 0.005), where SLFN5 was also identified as having response eQTL in the

monocyte study [33] (S4 Fig). For example, DDX24 negatively regulates the RIG-I-Like Recep-

tors (RLR) pathway and type I IFN production, which may in turn negatively regulate the

innate immune signaling [44]. A study has shown that GRK3−/− mice exhibit numerous fea-

tures of human WHIM syndrome, a rare congenital immune deficiency, indicating its poten-

tial effects on attenuating inflammatory responses. GBP2, similar to GBP3, belongs to the GBP

family, which is mainly induced by IFN-γ and may play an important role in defense against

pathogens [35]. EEF2 has been found to be overexpressed in a wide variety of cancers as an

antigen that can elicit both humoral and cellular immune responses [45].

Discussion

ASE detection is an important step towards the understanding of genetic polymorphisms on

gene expression variation. However, existing ASE detection methods mainly focus on

Fig 6. SNP-level ASE difference between M0 and M1 macrophage samples for selected genes showing differential

ASE in the macrophage RNA-seq dataset. We selected five genes, CCL3 (A), CASP8 (B), IL1RN (C), ABHD16A (D)

and MAPK14 (E), to show their estimated SNP-level ASE difference for each SNP and individual. The estimated ASE

difference was calculated as the difference in the major allele proportion between M1 and M0 samples after haplotype

phase alignment. The individuals were sorted by the median ASE difference across all SNPs of each individual.

https://doi.org/10.1371/journal.pgen.1008786.g006
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individual-based ASE effect. To better utilize shared ASE information across individuals, we

proposed ASEP, a novel method that can detect allelic imbalance in gene expression across

individuals under one condition, and differential ASE between two conditions using only

RNA-seq data. The main advantage of ASEP lies in its ability to leverage information across

multiple individuals and SNPs within the same gene. Existing methods, such as MBASED

[14], detect ASE effect through individual-based analysis, which makes it difficult to aggregate

information across subjects. GeneiASE [15] uses Fisher’s meta-analysis method to combine p-

values across subjects, however, the resulted p-value is driven by extremely small p-values,

which may lead to a significant combined p-value even when ASE is absent in the majority of

subjects.

A major challenge for cross-individual ASE analysis based on RNA-seq data alone is due to

the difficulty in differentiating ‘Hom’ and ‘Het’ individuals as the underlying cis-rSNP is unob-

served in the absence of DNA genotype data. By employing a mixture model, ASEP is able to

aggregate ASE effects contributed by those ‘Het’ individuals while accounting for heterogene-

ity introduced by those ‘Hom’ individuals. As a result, ASEP is not only more powerful, but its

results are also easier to interpret compared to traditional ASE tests that consider one individ-

ual at a time. Through extensive simulations, we showed that ASEP is sensitive in detecting

small ASE effect under a wide range of scenarios. We further demonstrated that the ASE

effects uncovered by ASEP are convincing through the analysis of RNA-seq datasets on

human kidney and macrophages.

ASEP can be applied when haplotype phase information in the transcribed SNPs is known

or unknown. When sequencing depth is high, the haplotype phase reconstruction approach

employed by ASEP is able to correctly recover the true major haplotype. For genes with rela-

tively low sequencing depth, correct assignment of haplotype phase will increase the power to

detect ASE. Since rSNP is unobserved, paired RNA-seq data are needed for two-condition

analysis in order to correctly phase the haplotypes and align them consistently across samples

from both conditions. If DNA genotype data and phase information are available, then based

on alleles of a candidate regulatory SNP, we not only can differentiate the ‘Het’ individuals but

also can easily align ‘major’ haplotypes that reside on the same haplotype with the expression-

increasing allele across individuals. This way, our method can be easily modified to detect ASE

difference using all available data or even for unpaired samples, such as case-control study, to

detect differential ASE between two independent groups. ASEP is a regression-based frame-

work for ASE analysis, which is flexible and can be easily extended to adjust for additional

covariates or confounders in the model if necessary.

As a method designed for analysis of bulk RNA-seq data, we cannot tell if the detected ASE

is driven by cell-type composition change or cell-type-specific ASE. Therefore, for future

study, investigating cell-type-specific ASE will help provide extra information and will be

more powerful especially for genes expressed in rare cell types.

In summary, we have developed ASEP, a gene-based ASE detection method by aggregating

information across individuals and SNPs within the same gene. ASEP can detect genes with

shared ASE effect or differential ASE across individuals in a population, which leads to easier

interpretation and improved power as compared to traditional individual-based ASE detection

methods. With the wide application of RNA-seq in biomedical studies, more and more sam-

ples of the same tissue from different individuals become available to study gene-phenotype

correlation. There is an urgent need to learn a comprehensive picture of ASE in the broad pop-

ulation instead of focusing on individual-level effect. We believe ASEP, which, to the best of

our knowledge, is the first method for population-based ASE detection, will be well-suited for

various ASE studies for human diseases.
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Material and methods

Detection of ASE under one condition

We assume that only RNA-seq data are available for ASE analysis. For individual i at a tran-

scribed tSNP j of gene g, let Xij be the read count for the reference allele in the genome, and Yij

be the total read count at the SNP. Assume haplotype phase information is known, i.e., the

paternal and maternal alleles can be differentiated when there are more than one tSNP of the

gene. We further assume the major haplotype, defined as the haplotype resides with the R allele

of the rSNP that has higher expression than the other haplotype, is known, and Mij is the read

count for the corresponding allele that resides on the major haplotype. Mij is assumed to follow

a binominal distribution, Binomial(Yij,Pi), where Pi is the ASE level, representing the underly-

ing transcript frequency of the major haplotype for individual i. When there is no gene-level

ASE, Pi = 0.5, and Pi>0.5 otherwise. The allele-specific read counts of the major haplotypes are

then aligned across all individuals. To account for correlations across multiple tSNPs within

the gene, we employ a generalized linear mixed-effects model:

logitðPiÞ ¼ gi

where the random effect, γi, represents the individual-specific true underlying transcript fre-

quency of the major haplotype on a logit scale, and is assumed to follow some unknown distri-

bution denoted as g(γi).
The likelihood of the above model can be written as:

L ¼
Y

i

Y

j
f ðMij;Yij; PiÞ ¼

Y

i

Z Y

j
f ðMij;YijjgiÞgðgiÞdgi

where f(�)represents the probability density function of a binomial distribution. However, the

integral does not have a closed form because g(γi) is unknown. We approximate it by a finite

mixture over two mass points μ1, μ2 with probabilities π, 1−π, respectively, since ‘Hom’ and

‘Het’ individuals are expected to have different ASE levels under the alternative hypothesis

(i.e., existence of ASE). The likelihood can then be written as:

L ¼
Q

i½p
Q

jf ðMij;Yijjm1Þ þ ð1 � pÞ
Q

jf ðMij;Yijjm2Þ� ð1Þ

Here, μ1 and μ2 indicate the population-level major allele transcript frequency of individu-

als that are heterozygous and homozygous for the unobserved rSNP, respectively. Based on

our assumption, μ1, which represents the gene-level ASE effect, will deviate from 0, i.e., logit
(0.5), whereas μ2, which represents the situation of no ASE, will be around 0. To avoid impos-

ing any prior distributional assumptions on the random effect, parameters are estimated using

the non-parametric maximum likelihood estimation (NPML) approach, an Expectation-Maxi-

mization based method developed by Murray Aitkin [46, 47].

To detect gene-level ASE in the population, we test the following hypothesis:

H0 : m1 ¼ m2 vs H1 : m1 6¼ m2

We do not test H0: μ1 = 0 because we prefer to use individuals who are homozygous at the

rSNP as an internal control to reduce excessive false positive results due to errors from haplo-

type phasing and across-individual alignment. We employed the likelihood ratio test statistic

LRT ¼ � 2ðlogLH0
� logLH1

Þ, where the likelihood under H1, LH1
, is calculated using Eq (1),

and the likelihood under H0, LH0
, is obtained by fitting a standard generalized linear mixed-

effect model assuming a common mean μ for the random effect γi [48]. Since the null distribu-

tion of LRT does not follow standard χ2 distribution, we assess the statistical significance of the
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LRT through a resampling-based procedure. Specifically, for each individual i at tSNP j, we

randomly sample Mij from Binomial(Yij,0.5), and calculate the corresponding LRTn using the

sampled data. We repeat this procedure Nsim times, and calculate the gene-specific p-value as
#ðLRTn�LRTÞ

Nsim
.

In the above framework, we have assumed the haplotype phase is known and the major

allele can be inferred. However, in real studies, the haplotype phase is often unknown and the

observed data offer little or no information of which allele is the major allele. In the absence of

DNA genotype data, with only the Xij and Yij of the tSNP, it is challenging to infer which alleles

at different SNPs reside on the same haplotype. Even when haplotype phase is known, lacking

information of the rSNP makes it difficult to align read counts across individuals as we do not

know which allele resides on the same haplotype with the R allele. To overcome these chal-

lenges, we adapted a pseudo phasing procedure originally employed by MBASED [14]. This

procedure uses a ‘majority voting’ approach based on observed read counts. For each individ-

ual, when the haplotype phase information is known, we assign the haplotype with larger total

reads, obtained by summing up read counts across all SNPs on the same haplotype, as the

major haplotype. When haplotype phase is unknown, we assign the allele with larger read

counts of each SNP to the major haplotype, and alleles on the inferred major haplotype are

treated as major alleles.

Detection of differential ASE between two conditions

The previously described ASE detection procedure for one condition can be naturally

extended to detect gene-level ASE difference between two conditions (e.g., conditions A and

B) using paired RNA-seq data, where the same individual is sequenced under both conditions.

Similar to the one condition analysis, for individual i at tSNP j, let Xc
ij;Y

c
ij and Mc

ij be the condi-

tion-specific reference allele read count, total read depth and major allele read count accord-

ingly for individual i under condition c. Mc
ij is assumed to follow BinomialðYc

ij; P
c
i Þ, where Pc

i is

the condition-specific true underlying transcript frequency of the major haplotype. After align-

ing major alleles across individuals, by introducing a covariate of condition indicator Ic
i ,

defined as

Ic
i ¼

0 if sample i is from condition A

1 if sample i is from condition B

(

the model can be modified as the following:

logitðPc
i Þ ¼ gi þ ZiI

c
i

where the random intercept, γi, represents PA
i , the individual-specific true underlying tran-

script frequency of the major haplotype for condition A on a logit scale; and the random slope,

Zi, represents PB
i � PA

i , the difference in the transcript frequency between the two conditions

on a logit scale. γi and Zi are assumed to jointly follow some unknown distribution denoted as

g(γi,Zi).

The likelihood of the above model can be written as:

L ¼
Y

i

Y

j

Y

c
f ðMc

ij;Y
c
ij; I

c
i ; P

c
i Þ ¼

Y

i

Z Y

j

Y

c
f ðMc

ij;Y
c
ij; I

c
i jgi;ZiÞgðgi;ZiÞdgidZi

where f(�)represents the probability density function of the binomial distribution. Similar to

one condition analysis, we approximate the unknown distribution g(γi,Zi) by a finite mixture
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with modified likelihood as:

L ¼
Q

i½p
Q

j

Q
cf ðM

c
ij;Y

c
ij; I

c
i jm1; b1Þ þ ð1 � pÞ

Q
j

Q
cf ðM

c
ij;Y

c
ij; I

c
i jm2; b2Þ� ð2Þ

Here μ1 and μ2 represent the population-level transcript frequency of the major haplotype

under condition A, β1 and β2 represent the difference in the transcript frequency between two

conditions, for ‘Het’ and ‘Hom’ individuals, respectively. Similarly, the parameters are esti-

mated through the NPML approach [46, 47].

To test gene-level ASE difference between two conditions with the ‘Hom’ individuals as an

internal control, we consider the following hypothesis

H0 : b1 ¼ b2 vs H1 : b1 6¼ b2

Same as one condition analysis, the haplotype phase and major haplotype information

are often unknown in real studies when only RNA-seq data are available. Therefore, we

employ the pseudo phasing procedure to determine the major haplotype and align them

across individuals [14]. To ensure that the major haplotypes are identical for the same indi-

vidual under different conditions, we choose one condition as the ‘reference’, obtain its

phasing information, and phase the data from the other condition accordingly. To improve

phasing accuracy, following MBASED [14], the condition with larger ASE effect is used as

the ‘reference’.

Again, we consider the likelihood ratio test with LRT ¼ � 2ðlogLH0
� logLH1

Þ as the test sta-

tistic. Under H1, the observed data likelihood, LH1
, can be approximated using Eq (2). Under

H0, there is no ASE difference between the two conditions and the random slope Zi = 0. There-

fore, the model reduces to the one condition model and the likelihood, LH0
, can be approxi-

mated using Eq (1). We assess the significance of the LRT by resampling. To obtain the null

distribution of the LRT, for individual i at tSNP j, we resample Mc
ij from BinomialðYc

ij; p̂i0Þ,

where p̂i0 is the individual-specific estimate of the ASE level assuming no ASE difference

between the two conditions. A two-step procedure is employed to obtain p̂i0. First, for individ-

ual i, we combine data from both conditions, and calculate p̂i as the transcript frequency of the

major haplotype in the pooled sample, where

p̂i ¼

X

c

X

j
Mc

ij

.
X

c

X

j
Yc

ij

Because we perform pseudo alignment on the RNA-seq data based on a ‘reference’ condi-

tion, after the ‘majority voting’, for ‘Hom’ individuals, p̂i, as the pooled major allele frequency,

will always be larger than 0.5, which violates the assumption of no ASE effect under both con-

ditions. To make the resampled data represent the null, as a second step, p̂i0 is obtained

through a weighted sum as the following:

p̂i0 ¼ 0:5� p̂i;Hom þ p̂i � p̂i;Het

where p̂ i;Hom and p̂i;Het are the estimated posterior probabilities that individual i belongs to the

‘Hom’ and ‘Het’ group, respectively. If the individual is estimated as ‘Hom’ individual with

high probability, i.e., p̂ i;Hom is large, this mechanism will down weight p̂i and make p̂i0 to be

close to 0.5. If the individual is estimated as ‘Het’ individual with high probability, p̂i0 will bor-

row most of the information from p̂i and take a value similar as in the pooled sample. Based on

the resampled data, LRTn can be obtained accordingly. This procedure is repeated Nsim times,

and the p-value is calculated as
#ðLRTn�LRTÞ

Nsim
.
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ASEP is implemented as an R package and is freely available on Github (https://github.

com/Jiaxin-Fan/ASEP), with detailed tutorial and examples provided.

Simulation framework

Without loss of generality, we consider one gene only. To evaluate the performance of ASEP

across a wide range of scenarios, we simulated RNA-seq data for N individuals (20 or 50), each

with nSNP number of tSNPs (2, 4 or 6). For each individual, we generated the data with a pre-

specified minor allele frequency (MAF) of the rSNP (0.1, 0.3 or 0.5), and assigned ‘Hom’ or

‘Het’ based on the genotype of the rSNP. The haplo-genotype data were simulated assuming

HWE with assigned haplotype frequencies such that, for each tSNP, MAF = 0.3 with the link-

age disequilibrium (LD) coefficient between pairs of tSNPs set at 0.8.

Simulation scheme for ASE detection under one condition. The read count for the

major allele of each tSNP was sampled from Binomial(Yij, 0.5) for ‘Hom’ individuals and from

Binomial(Yij, Pi) for ‘Het’ individuals across all simulations. For simplicity, we assume Yij = Y for

all individuals across all tSNPs, where Y takes two possible values, 50 or 100. For ‘Het’ individuals,

when evaluating the type I error rate, we set Pi = 0.5 under both phase known and unknown sce-

narios. When evaluating power, to account for subject-specific random variation in ASE levels,

Pi, on the logit scale, was simulated from Normal(logit(P),0.032), where P is the pre-specified

ASE effect in the population. We set P = 0.6 under both phase known and unknown situations.

Simulation scheme for differential ASE detection between two conditions. Similar to

one condition analysis, for ‘Hom’ individuals, the major allele read count for each tSNP was

simulated from BinomialðYc
ij; 0:5Þ for both conditions across all evaluations. For ‘Het’ individ-

uals, the major allele read count was simulated from BinomialðYc
ij;P

c
i Þ, where c represents

condition (A or B). For simplicity, we assume Yc
ij ¼ Y , where Y is either 50 or 100. When eval-

uating the type I error rate, we set PA
i ¼ PB

i ¼ 0:7 under both phase known and unknown sce-

narios. When evaluating the power, PA
i and PB

i , on the logit scale, were sampled from Normal
(logit(PA),0.032) and Normal(logit(PB),0.032), respectively, where PA and PB are the pre-

specified condition-specific ASE effect in the population for condition A and condition B.

When haplotype phase is known, we set PA
i ¼ 0:65 and PB

i ¼ 0:7, and PA
i ¼ 0:625 and

PB
i ¼ 0:7, otherwise. Condition B was used as the ‘reference’ for pseudo-phasing given its

stronger ASE effect.

Human macrophage differentiation and polarization and RNA sequencing

All of the protocols for this study were approved by the Human Subjects Research Institutional

Review Board at the University of Pennsylvania and Columbia University Irving Medical Cen-

ter. Peripheral blood mononuclear cell (PBMC) collected using BD VACUTAINER Mononu-

clear Cell Preparation Tube were cultured in macrophage culture media, 20% FBS in RPMI

1640 media with 100 ng/ml human macrophage colony-stimulating factor (M-CSF), for 7 days

on BD Primaria tissue culture plate to induce macrophage differentiation [49, 50]. Polarization

was obtained in the presence of M-CSF by 18–20 hour incubation with 20 ng/ml interferon-

gamma (IFN-γ) and 100 ng/ml lipopolysaccharide (LPS) for M1-like polarization [49, 50].

RNA samples of M0 and M1 macrophages were extracted using All Prep DNA/RNA/

miRNA Universal Kit (Qiagen, Valencia, CA) by batches and the samples were randomly

assigned to each batch [49, 50]. The RNA quality and quantity were determined by Agilent

2100 Bioanalyzer (Median RIN = 7.9, n = 96 samples from 48 subjects). With a minimum of

300 ng input RNA, libraries were prepared using the TruSeq RNA Sample Preparation Kit
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(Illumina, San Diego, CA), followed by 101 bp 60M paired-end sequencing on an Illumina’s

HiSeq 2500 at Columbia Genome Center.

Supporting information

S1 Fig. Simulation results for one-condition analysis. Type I error rate (left) and power

(right) evaluated as a function of the number of individuals (N), sequencing depth (Y), and the

number of heterozygous transcribed SNPs (nSNP) when the MAF of cis-regulating SNP is 0.5.

For each scenario, the type I error rate was estimated based on 10,000 simulations, and the

power was estimated based on 1,000 simulations at significance level α = 0.01. The population-

level ASE was pre-specified as 0.6 for power evaluation. (A) Performance of ASEP when haplo-

type phase is known. (B) Performance of ASEP when haplotype phase is unknown.

(TIF)

S2 Fig. Simulation results for two-condition analysis. Type I error rate (left) and power

(right) evaluated as a function of the number of individuals (N), sequencing depth (Y), and the

number of heterozygous transcribed SNPs (nSNP) when the MAF of cis-regulating SNP is 0.5.

For each scenario, the type I error rate was estimated based on 10,000 simulations, and the

power was estimated based on 1,000 simulations at significance level α = 0.01. (A) Perfor-

mance of ASEP when haplotype phase is known. For power evaluation, the population-level

ASE takes values of 0.7 and 0.65, respectively, for the two conditions. (B) Performance of

ASEP when haplotype phase is unknown. For power evaluation, the population-level ASE

takes values of 0.7 and 0.625, respectively, for the two conditions.

(TIF)

S3 Fig. SNP-level ASE for selected genes showing ASE in the kidney RNA-seq dataset. We

selected six genes, SOD3 (A), SPSB1 (B), CYP24A1 (C), PIGR (D), LBH (E) and APOE (F), to

show their estimated SNP-level ASE across SNPs and individuals. The estimated ASE was

obtained by calculating the major allele proportion in the kidney sample after haplotype phase

alignment. The individuals were sorted by the median ASE across all SNPs.

(TIFF)

S4 Fig. SNP-level ASE difference between M0 and M1 macrophage samples for selected

genes showing differential ASE in the macrophage RNA-seq dataset. We selected twelve

genes, CD226 (A), CD68 (B), CD44 (C), RCAN1 (D), TSPO (E), AKT1 (F), PIEZO1 (G),

DDX24 (H), GRK3 (I), GBP2 (J), EEF2 (K) and SLFN5 (L), to show their estimated SNP-level

ASE difference across SNPs and individuals. The estimated ASE difference was obtained by

calculating the major allele proportion difference between M1 and M0 samples after haplotype

phase alignment. The individuals were sorted by median ASE difference across all SNPs.

(TIF)

S1 Table. Significant ASE genes in kidney samples. We detected 304 significant ASE genes

(FDR adjusted P< 0.05).

(XLSX)

S2 Table. Subject demographics of the macrophage samples.

(XLSX)

S3 Table. Significant ASE genes in M0 macrophage samples. We detected 2,402 significant

ASE genes (FDR adjusted P< 0.05).

(XLSX)
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S4 Table. Significant ASE genes in M1 macrophage samples. We detected 2,489 significant

ASE genes (FDR adjusted P< 0.05).

(XLSX)

S5 Table. Significant differential ASE genes between M0 and M1 samples. We detected 582

significant differential ASE genes (FDR adjusted P< 0.05) between M0 and M1 macrophage

samples.

(XLSX)

S6 Table. Significant differential ASE genes between M0 and M1 macrophage samples that

overlap with GWAS loci. Among the 582 significant differential ASE genes, 323 genes overlap

with GWAS results (P< 5×10−8) for cardiovascular disease, coronary artery disease and acute

coronary syndrome.

(XLSX)
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48. Bates D., Mächler M., Bolker B., Walker S. Fitting Linear Mixed-Effects Models Using lme4. Journal of

Statistical Software. 2015; 67(1).

49. Zhang H, Xue C, Shah R, Bermingham K, Hinkle CC, Li W, et al. Functional analysis and transcriptomic

profiling of iPSC-derived macrophages and their application in modeling Mendelian disease. Circ Res.

2015; 117(1):17–28. https://doi.org/10.1161/CIRCRESAHA.117.305860 PMID: 25904599

50. Zhang H, Shi J, Hachet MA, Xue C, Bauer RC, Jiang H, et al. CRISPR/Cas9-Mediated Gene Editing in

Human iPSC-Derived Macrophage Reveals Lysosomal Acid Lipase Function in Human Macrophages-

Brief Report. Arterioscler Thromb Vasc Biol. 2017; 37(11):2156–60. https://doi.org/10.1161/ATVBAHA.

117.310023 PMID: 28882870

PLOS GENETICS gene-based allele-specific expression

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1008786 May 11, 2020 23 / 23

https://doi.org/10.1111/j.0006-341x.1999.00117.x
http://www.ncbi.nlm.nih.gov/pubmed/11318145
https://CRAN.R-project.org/package=npmlreg
https://doi.org/10.1161/CIRCRESAHA.117.305860
http://www.ncbi.nlm.nih.gov/pubmed/25904599
https://doi.org/10.1161/ATVBAHA.117.310023
https://doi.org/10.1161/ATVBAHA.117.310023
http://www.ncbi.nlm.nih.gov/pubmed/28882870
https://doi.org/10.1371/journal.pgen.1008786

