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Abstract

We present a novel algorithm, implemented in the software ARGinfer, for probabilistic infer-

ence of the Ancestral Recombination Graph under the Coalescent with Recombination. Our

Markov Chain Monte Carlo algorithm takes advantage of the Succinct Tree Sequence data

structure that has allowed great advances in simulation and point estimation, but not yet

probabilistic inference. Unlike previous methods, which employ the Sequentially Markov

Coalescent approximation, ARGinfer uses the Coalescent with Recombination, allowing

more accurate inference of key evolutionary parameters. We show using simulations that

ARGinfer can accurately estimate many properties of the evolutionary history of the sample,

including the topology and branch lengths of the genealogical tree at each sequence site,

and the times and locations of mutation and recombination events. ARGinfer approximates

posterior probability distributions for these and other quantities, providing interpretable

assessments of uncertainty that we show to be well calibrated. ARGinfer is currently limited

to tens of DNA sequences of several hundreds of kilobases, but has scope for further

computational improvements to increase its applicability.

Author summary

One of the important challenges in population genetics is to reconstruct the historical

mutation, recombination and shared ancestor events that underly a sample of DNA

sequences drawn from a population. Aspects of this history can inform us about evolu-

tionary processes, ages of mutations and times of common ancestors, and historical popu-

lation sizes and migration rates. Performing such inferences is difficult, and progress has

been slow over the past two decades. Recently, a new and more efficient way to store

sequence data has led to improved simulations and also a fast way to reconstruct some

aspects of the history. We augment the new data structure to infer many more details of

the history, including the times of events. We also provide approximations of the full

probability distributions for all the unknowns, not just plausible values. Because this task

is highly challenging, we are limited to relatively small data sets, but we show that our
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inference algorithm represents an important step forward over those currently available

in terms of the accuracy of its inferences.

This is a PLOS Computational Biology Methods paper.

Introduction

A core problem of population genetics is to infer the genealogical history of a sample of homol-

ogous DNA sequences, including the recombination, mutation and branching events that pro-

duced the currently-observed sample. The Coalescent with Recombination (CwR) [1] provides

a simple yet powerful prior distribution for the genealogical history of a set of sequences. A

sample path of the CwR can be represented in an Ancestral Recombination Graph (ARG) [2],

which embeds the genealogical trees at each genome site into a single graph, incorporating

information about the recombination events that cause the genealogy to differ between sites.

Knowledge of the true ARG underlying a sample facilitates many evolutionary and demo-

graphic inferences [3], and hence inferring the ARG from a set of sequences has been a major

challenge for over two decades [4–6]. Note that the term ARG was originally introduced for a

stochastic process equivalent to the CwR, but we will here follow the current practice of using

the term to refer to a realization of the CwR, a fixed graph that represents a possible genealogi-

cal history of the sample.

The CwR includes many discrete and continuous parameters with complex relationships

among them. The sequence data can be poorly informative about some parameters, so that

multiple topologically-different ARGs have similar likelihoods. For these reasons, only limited

progress has been made in the ARG inference problem, resulting in little use of ARG-based

inference in population genetics. Instead, inference is often based on summary statistics, lead-

ing to both information loss and lack of the quantification of uncertainty that model-based

probabilistic inference offers.

Early efforts to tackle the ARG inference problem used importance sampling based on CwR

simulations, or Markov Chain Monte Carlo (MCMC) with the CwR as prior [7–12]. Although

they produced useful ideas for ARG inference, the algorithms scaled poorly both with sample

size and sequence length. The Sequentially Markov Coalescent (SMC) model [13], which sim-

plifies the CwR by assuming that the genealogical trees at each site form a Markov process

along the genome, allowed computational advances. However, the SMC does not model

“trapped” non-ancestral material (TNAM, genome segments that connect ancestral segments

but are not ancestral to the observed sample). By adopting the more realistic CwR, we model

the evolution of TNAM due to coalescence and recombination events, which provides infor-

mation about their rates that is unavailable to SMC-based inference.

The current state-of-art ARG-inference algorithm ARGweaver [14] assumes the SMC

model and also discretizes time. These assumptions, combined with an ingenious ‘re-thread-

ing’ algorithm, allow ARGweaver to be relatively efficient, at the cost of the SMC and time

approximations. Arbores [15] is another MCMC algorithm that also uses the SMC. It takes a

different approach that does not discretize time, and performs similarly to ARGweaver.
The Succinct Tree Sequence data structure [16, 17], or tree sequence for short, has recently

revolutionised simulation of the CwR and some ARG-based inferences [18], due to enormous
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efficiency gains obtained by storing only a single copy of a subtree conserved across multiple

sites. More recently, the tsinfer software [18] exploits the efficiency of the tree sequence to esti-

mate the ARG for very large sample sizes (*105 sequences). However, tsinfer only generates a

single point estimate, with no underlying statistical model to assess uncertainty, and it does

not infer branch lengths. Relate [19], another recent heuristic algorithm, can also generate

point estimates for marginal trees, but not the full ARG, and also lacks measures of

uncertainty.

ARGinfer is the first probabilistic ARG inference method that exploits the efficiencies of the

tree sequence. However, the original tree sequence structure is not sufficiently rich for ARG

inference, and we first develop the augmented tree sequence (ATS) data structure to remedy

this deficiency. Our other key developments are algorithms to construct an initial ARG com-

patible with the observed data, to evaluate the likelihood, and to traverse ARG space within an

MCMC algorithm. We show in a simulation study that ARGinfer can accurately infer, with

well-calibrated probability intervals, ARG properties including the topology and branch

lengths of each genealogical tree, the number of recombinations, both ancestral and non-

ancestral, time since common ancestors and mutation age. We provide detailed comparisons

with ARGweaver, showing that our algorithm provides gains in accuracy at some cost in

computational effort.

Results

We simulated data sets under the CwR using msprime [16], discretizing the continuous

genome axis into L = 105 sites. We set the mutation rate at μ = 1 × 10−8/site/generation, and

(haploid) population size N = 10000. At each site, the allelic state was recorded as ancestral or

derived. We assigned three values to the per-site recombination rate r, such that R = μ/r = 1, 2,

and 4. For each R, we generated 150 data sets, each with 10 sequences. We rejected and

resimulated < 0.5% of data sets that had > 1 mutation at any site.

Convergence diagnostics

We applied ARGinfer to each of the 450 simulated data sets, with run length 2 × 106 iterations,

of which 4 × 105 (20%) are discarded as burn-in, after which every 400th sample is retained,

resulting in an output chain of length 4 000.

We assessed the convergence of ARGinfer using two heuristics applied to four ARG proper-

ties: total branch length, numbers of ancestral and of non-ancestral recombinations, and

log(posterior density). First, we ran the MCMC algorithm 10 times on the same data and cal-

culated the Gelman R̂ [20]. For all four properties, j1 � R̂j < 0:002, indicating that each run

reaches approximately the same posterior distribution. (S2 and S3 Figs). We also measured

mixing by T0, the first lag for which the empirical autocorrelation was� 0 (Fig 1). When R = 1,

the median T0 is around 100, decreasing to roughly 50 and 25 when R = 2 and R = 4. We con-

clude that convergence is good for R = 2 or 4, and adequate for output chain lengths�103

when R = 1 (See S1 Fig for the other two ARG properties).

Comparison with ARGweaver

We also applied ARGweaver to the same 450 simulated data sets, with run length 2 × 104 itera-

tions, of which the first 10% are discarded as burn-in, and every 10th sample is retained, result-

ing in 1800 samples. All parameters were set to their default values, including the number of

time points (default value 20). Both methods assumed the true values of μ, r, and N underlying

the simulations.
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Tables 1, 2 and 3 show that ARGinfer requires more computational time than ARGweaver
for the parameter settings chosen, yet ARGweaver tends to generate larger Effective Sample

Sizes (ESS) for the two ARG properties. We estimated the coverage of 50% equal-tailed poste-

rior intervals as the fraction of the 150 data sets for which the true (simulation) ARG property

value lies in the interval. The equal-tailed 95% interval for the coverage is (0.42, 0.58), and

from Tables 2 and 3 we see that both methods appear well calibrated for all combinations of

parameter and R shown. Lower root mean square error (RMSE) and higher ESS and Pearson

coefficient are all indicators of better performance. For credible intervals, shorter length is bet-

ter provided that coverage remains close to the target value of 0.5.

We ran the algorithms on Spartan, the University of Melbourne high performance comput-

ing system [21], with one Xeon(R) Gold 6154 CPU (1 core) and 15 GB RAM for each data set.

Total branch length. ARGinfer performs similarly to ARGweaver, with slightly better

RMSE but longer credible intervals (Table 2A). Both methods show shrinkage towards the

prior mean for both small and large values (Fig 2A).

Fig 1. Plots of T0, the first time lag with autocorrelation� 0, for the total branch length and number of ancestral recombinations

for all 450 data sets.

https://doi.org/10.1371/journal.pcbi.1009960.g001

Table 1. Computation time for ARGinfer and ARGweaver.

Method Iterations CPU time (hours)

R = 1 R = 2 R = 4

ARGinfer 2 × 106 19 6.5 3

ARGweaver 2 × 104 5 4 3

https://doi.org/10.1371/journal.pcbi.1009960.t001
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Number of ancestral recombination events. ARGinfer shows better RMSE than ARG-
weaver for all three R values, but its 50% credible intervals are again longer (Table 2B). Once

again, both methods show shrinkage towards the prior mean (Fig 3), which in [14] was sug-

gested to be due to the time discretization of ARGweaver but we suggest is inherent to Bayesian

inference.

Recombination rate. Estimating the recombination rate r as the ratio of the number of

ancestral recombinations to the total branch length, ARGinfer is accurate for all three R values,

whereas ARGweaver significantly underestimates (Fig 4 and S1 Table). When the number of

time intervals in ARGweaver was increased from 20 to 40 to reduce the impact of time discreti-

zation, the level of bias was reduced but remained substantial (S1 Table).

Time since the most recent common ancestor (TMRCA) at each genome site. ARGinfer
has a higher correlation between the posterior mean and true TMRCA, lower RMSE, and

shorter 50% credible intervals than ARGweaver for all R (Table 3A). One reason for its superior

Table 2. The root mean square error (RMSE), coverage and average length of the posterior 50% equal-tailed intervals, and Effective Sample Size (ESS) for two ARG

properties inferred by ARGinfer and ARGweaver.

R Method RMSE 50% credible interval ESS

Coverage Average length

A. Total branch length per site (in generations) 1 ARGinfer 6729 0.44 8300 360

ARGweaver 6620 0.41 7889 317

2 ARGinfer 6191 0.53 8714 1177

ARGweaver 6430 0.52 8496 675

4 ARGinfer 6877 0.51 8827 2478

ARGweaver 6931 0.51 8730 932

B. Number of Ancestral recombination events 1 ARGinfer 9.45 0.49 12.09 171

ARGweaver 9.53 0.54 11.73 565

2 ARGinfer 5.34 0.57 7.57 438

ARGweaver 5.70 0.49 7.35 1086

4 ARGinfer 3.72 0.53 4.78 970

ARGweaver 3.83 0.52 4.67 1398

https://doi.org/10.1371/journal.pcbi.1009960.t002

Table 3. The root mean square error (RMSE), coverage and average length of the posterior 50% equal-tailed intervals, for two ARG properties inferred by ARGinfer
and ARGweaver. The ESS (reported in Table 2) is not available from ARGweaver for TMRCA and allele age, we report instead the Pearson correlation coefficient between

posterior means and true values.

R Method RMSE 50% credible interval Pearson coef.

Coverage Average length

A. TMRCA 1 ARGinfer 7862 0.49 8949 0.54

ARGweaver 7968 0.49 9485 0.53

2 ARGinfer 6355 0.52 7769 0.61

ARGweaver 6518 0.51 8113 0.60

4 ARGinfer 5271 0.51 6366 0.55

ARGweaver 5517 0.45 6386 0.51

B. Allele Age 1 ARGinfer 4096 0.49 4225 0.85

ARGweaver 4697 0.49 4925 0.77

2 ARGinfer 3299 0.51 3517 0.90

ARGweaver 3799 0.49 4077 0.85

4 ARGinfer 2528 0.50 2695 0.92

ARGweaver 3109 0.46 3027 0.86

https://doi.org/10.1371/journal.pcbi.1009960.t003
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performance is that ARGinfer assumes the CwR with continuous time, whereas the impact

of the time-discretized version of the SMC adopted by ARGweaver can be seen in the box-

shaped 50% credible intervals in Fig 5, reflecting that the interval endpoints are limited to a rel-

atively small number of pre-specified time points. For some genomic intervals, the 0.25 and

0.75 quantiles are identical, reflecting a high concentration of probability at a single time

point.

Allele age. We define the age of an allele as the mid-point of the tree branch on which the

mutation occurred. In Table 3B, we observe that ARGinfer outperforms ARGweaver in terms

of all four statistics for each value of R. The larger uncertainty for ARGweaver is due to the

time discretization, because its time points are on a logarithmic scale so that more recent times

are inferred more accurately, whereas Fig 6 shows that ARGweaver does not perform well for

older mutations because older branch lengths are poorly measured.

Fig 2. Posterior mean and 50% equal-tailed intervals for the total branch length, measured in generations and averaged

over the 105 sites, inferred by ARGinfer and ARGweaver in 50 randomly-chosen data sets. (A) R = 1 and (B) R = 4.

https://doi.org/10.1371/journal.pcbi.1009960.g002
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Discussion

ARGinfer represents important progress on a core problem in population genetics: inferring

the evolutionary history underlying a sample of DNA sequences. It is the first practical method

for inference under the CwR prior, rather than the SMC approximation. The CwR provides

one of the simplest realistic models for the genealogy of a sample, under neutrality, constant

population size, and random mating (no population structure). In our simulation study,

ARGinfer estimates ARG parameters accurately and with well-calibrated credible intervals,

improving on ARGweaver for inferences about the recombination rate, TMRCA, and allele

age, while remaining approximately as accurate for other parameters.

The key innovation of ARGinfer is the ATS data structure, which extends the highly-suc-

cessful tree sequence to incorporate mutation events and all details of the ancestral recombina-

tion graph (ARG). Other key developments include proposal steps that efficiently explore the

ARG space, and algorithms for efficient likelihood evaluation and constructing an initial ARG

compatible with the sequence data.

Fig 3. True versus inferred number of ancestral recombination events for the 50 data sets in Fig 2 for (A) R = 1 and (B)

R = 4. The vertical line segments are 50% credible intervals. The green vertical line indicates the prior mean.

https://doi.org/10.1371/journal.pcbi.1009960.g003
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The main benefit of ARGinfer is well-calibrated probability distributions for features of the

genealogical history of a set of DNA sequences. These include the topology and branch lengths

of the genealogical tree at each site, allele age (time since mutation) at each polymorphic site,

and the number of recombinations. By exploiting the efficiency properties of the ATS, ARGin-
fer is the first practical method to model trapped non-ancestral material (TNAM), which does

not affect the marginal distributions at individual sites but is informative about multi-site joint

distributions, including recombination rate and linkage disequilibrium (LD). Use of TNAM

information helps ARGinfer improve recombination rate inferences, whereas ARGweaver
ignores TNAM and underestimates the recombination rate.

The current implementation of ARGinfer can handle about 15 sequences of length up to

5 × 105 sites, compared with the original MCMC for CwR algorithm [12] that (at the time)

handled 10 sequences with length� 103 sites. This efficiency gain is largely due to the follow-

ing reasons:

• Recording mutations in the ATS allows likelihood evaluation without comparing sequences

site by site.

• Proposed ARGs that are incompatible with the dataset are rejected immediately, without

costly likelihood evaluation.

Our simulation study shows that ARGinfer provides better inferences than the current

state-of-art ARGweaver for evolutionary parameters, and in particular the recombination rate.

This appears to be the result of directly modelling TNAM in ARGinfer: the non-ancestral

recombinations ignored by ARGweaver are typically much more numerous than the ancestral

recombinations, though more difficult to infer. ARGinfer is somewhat more computationally

demanding than ARGweaver, but as the approach is novel we expect further advances, particu-

larly in the proposal steps.

ARGinfer assumes that the ancestral allele is known at each site, which can often be accu-

rately inferred from related species. It would be possible to also infer the ancestral allele at

Fig 4. Estimated recombination rates for 150 simulated data sets from ARGinfer and ARGweaver for R = 1, 2, and

4. The red dashed lines (“Truth”) show the mean of the true number of ancestral recombination events divided by the

true total branch length. See S1 Table for p-values from testing equality of true and inferred values.

https://doi.org/10.1371/journal.pcbi.1009960.g004
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substantial computational cost. ARGinfer also assumes at most one mutation event in the his-

tory of each site, similar to the infinite-sites mutation model. This assumption means that

ARGinfer cannot analyse data sets with more than two alleles at a site, Further, back-mutation

(two mutation events, the second reversing the first) can adversely affect inferences. In the

short term, these limitations can be addressed by removing sites with more than two alleles or

that show signs of back-mutation. The resulting bias in estimates of the mutation rate will be

low in human data of the scale considered here. A better, but computationally costly, solution

is to use a mutation model that allows multiple hits per site, such as the Jukes-Cantor model

[22] adopted by ARGweaver, which requires integration over all possible mutation events on

each tree branch.

The current proposal steps in ARGinfer are relatively small rearrangements of the ARG,

which helps to verify reversibility but can contribute to poor mixing for large sample sizes.

This issue can be overcome, at least in principle, by employing non-reversible methods for

sampling the posterior. An example is the zig-zag process, which has recently been introduced

for the coalescent [23]. The zig-zag process resembles Probabilistic Path Hamiltonian Monte

Carlo [24] in that continuous branch lengths and discrete tree topologies are embedded in a

common continous space. Extensions of any of these methods to include recombination

would present a significant challenge, but also potentially substantial gains.

Fig 5. True (black dashed line) TMRCA, in units of 104 generations, and posterior mean (red line) inferred by ARGinfer (left)

and ARGweaver (right) for randomly-selected, simulated data sets. (A) R = 1, (B) R = 4, and red shading shows 50% credible

intervals.

https://doi.org/10.1371/journal.pcbi.1009960.g005
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In summary, the MCMC algorithm developed in this paper is the first probabilistic method

that uses the tree sequence in the ARG inference problem based on the CwR. ARGinfer pro-

vides accurate estimates with well-calibrated measures of uncertainty for ARG parameters.

Knowledge of these parameters can help understanding of biological processes such as gene-

phenotype associations, disease processes, and genome structure [5, 25].

ARGinfer is useful for genome regions on the scale of 0.5 megabase, and can be used to

infer both evolutionary parameters and properties of the genealogical history, such as the

recombination rate and allele ages. It may also be useful to extend ARGinfer to multi-popula-

tion models in order to estimate demographic parameters, including divergence times and

effective population sizes. The fact that ARGinfer does not rely on a discretization of time facil-

itates ancient DNA studies with samples obtained at different times [4].

Methods

The coalescent with recombination

We begin by briefly reviewing the CwR and introducing some definitions. The CwR [1] is a

stochastic process that reduces to the standard coalescent [26] at each site, but it includes

recombination to allow joint modelling of all the coalescent trees in a genome interval. The

Hudson algorithm [1] simulates the CwR backwards in time with two possible events:

Fig 6. True (red dashed line) allele ages, in units of 104 generations, and posterior mean (blue line) inferred by ARGinfer (left)

and ARGweaver (right) for the simulated data sets used in Fig 5. Along the x axis SNPs are ordered by increasing value of true

allele age. (A) R = 1, (B) R = 4, and blue shading shows 50% credible intervals.

https://doi.org/10.1371/journal.pcbi.1009960.g006

PLOS COMPUTATIONAL BIOLOGY Bayesian inference of ancestral recombination graphs

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009960 March 9, 2022 10 / 15

https://doi.org/10.1371/journal.pcbi.1009960.g006
https://doi.org/10.1371/journal.pcbi.1009960


recombination and common ancestor (CA). A CA event merges two sequences into their com-

mon ancestor; if the sequences share ancestral material, we call it a coalescence event.

A recombination event breaks a sequence in two at a randomly-chosen point. Two newly-

created sequences carry ancestral material to the left and to the right of the breakpoint. Both of

the new sequences include sites that are not ancestral to any observed sequences (non-ances-

tral material, NAM). Sometimes a segment of NAM is trapped between two ancestral seg-

ments, called Trapped Non-ancestral Material (TNAM). Any sequence generated that consists

entirely of NAM can be discarded with no loss of information. If a recombination breakpoint

occurs either within ancestral material (ancestral recombination) or within a segment of

TNAM, it alters correlations in the data [27] and can contribute to inferences.

To simulate the ARG of n DNA sequences, the Hudson algorithm starts from the current

generation and simulates CA and recombination events backwards-in-time until a single

sequence remains. If we continue to keep track of NAM lineages and segments which have

reached their most common recent ancestor (MRCA), this is known as the “big ARG” [26, 28].

We keep track of a smaller “little ARG” (see [28]), which contains the same amount of infor-

mation for inference but discards non-informative sequences.

Augmented Tree Sequence

Representing an ARG so that the embedded information is easily accessible and redundancies

are avoided is challenging. Neighbouring coalescent trees within an ARG are often identical,

or differ in just a subtree. In SMC-based methods, it is common to store the marginal trees

separately, which results in much inefficient duplication. The tree sequence [16] represents

marginal trees so that shared, neighboring subtrees are stored only once. This idea leads to a

significant saving in storage and speed in processing and accessing ARG information [18].

Our goal is to employ this efficiency to improve the speed and accuracy of inferring the ARG

under the CwR.

The tree sequence, however, does not contain all the information required for ARG infer-

ence. To be able to evaluate the CwR prior and explore the ARG space, more information is

needed: recombination and non-coalescence CA events, recombination breakpoints and

times, and the parent sequences of recombinations. We augment the tree sequence, retaining

its efficient storage properties, to include this information, calling the new data structure the

Augmented Tree Sequence (ATS). The ATS is a collection of linked branches that connect the

ancestral sequences. Each branch consists of a sequence of segments that encode the genomic

regions of the ancestral sequence on that branch, which are linked to extract and update the

information efficiently.

Under the infinite sites model (ISM), there is exactly one mutation per segregating site [29].

The ATS assigns each mutation to a branch. If the mutation can be assigned to multiple

branches consistent with the allele data, we assign it to the lowest of these branches (closest to

the present time). This policy is useful for mixing and does not bias inferences of allele age, see

the “Augmented tree sequence” section in S1 Text for more details.

The Markov chain Monte Carlo method

We aim to sample from the posterior density

PðGjD;YÞ / PðDjG;YÞPðG;YÞ; ð1Þ

where D is a sample of n DNA sequences, G is the set of ARGs consistent with D, and Θ = (μ, r,
N), where N is the effective population size, while r and μ are recombination and mutation

rates, both per site per generation. The first term on the right-hand side of (1) is the likelihood.
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We use a discrete approximation of the ISM: the continuous genome interval is discretized

into a finite number of sites, and if this results in>1 mutation at any site, the dataset is rejected

and resimulated. The likelihood is calculated by

PðDjG;YÞ ¼
1

M!

Y

v2T

e� lvgvmðlvmÞ
jmvj; ð2Þ

where T is the set of all distinct tree branches (branches spanning multiple sites are recorded

only once), |mv| is the number of mutations on branch v, while lv is the branch length and gv is

the length of genomic interval of branch v.

The second term on the right-hand side of (1) is the prior probability given by the CwR.

For an ARG with E events at times t1, . . ., tE (in generations), we have

PðG;YÞ ¼
YE

i¼1

Ic
e� li ti
2N
þ ð1 � IcÞre

� li ti

� �

; ð3Þ

where

li ¼
kiðki � 1Þ

4N
þ rk0i;

ki and k0i are the total number of lineages and recombination links (a gap between sites where a

recombination can occur) immediately before time ti, and Ic is an indicator function with

value 1 for a CA, and 0 for a recombination.

We refer to the posterior distribution P(G|D; Θ) as the CwR+ and develop an MCMC algo-

rithm to sample from it. The first step of the algorithm is to construct an initial ARG for D.

Finding an ARG compatible with D can be challenging because most ARGs are incompatible

with a given data set, even for a small number of sequences. Using some ideas from [30], we

devised a heuristic algorithm to construct a compatible ARG from D (details are given in the

“Initial ARG construction” section in S1 Text). The next step is to explore the state space of the

ARG using a random walk in which steps from the current ARG (Gj) to a new ARG (Gj+1) are

drawn from a proposal distribution Q(.). Gj+1 is accepted with probability

A ¼ minf1;
PðDjGjþ1;YÞPðGjþ1;YÞ

PðDjGj;YÞPðGj;YÞ
�

QðGjjGjþ1Þ

QðGjþ1jGjÞ
g; ð4Þ

otherwise, Gj is kept. After a burn-in period, each ARG visited by the Markov chain can be

regarded as a sample from the CwR+. The last term in Eq (4) is the Hastings term [31]. The

numerator is the reverse transition probability, and the denominator is the forward transition
probability.

We define Q(.) in terms of six proposal types (in short, proposals). Details of the proposals

are discussed in the “Proposal types” section in the S1 Text. In brief, the six proposals are:

1. Subtree-Pruning-and-Regrafting (SPR), in which a branch is pruned from the ARG and

reattached to the ARG at an older time. For this move to be reversible, we do not allow the

pruned lineage to experience recombination. Thus, an SPR keeps the number of recombi-

nations fixed.

2. Removing an existing recombination from the ARG, transferring the ancestry of one parent

to the other parent.

3. Adding a new recombination to a lineage. This is the reverse of the second proposal.

4. Resampling the breakpoint of a recombination event.
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5. Rearranging a subtree of the ARG in proportion to the prior probability, allowing changes

on the number of recombinations with no limitation. This is a modification of the proposal

introduced in [12] and we call it the “Kuhner move”.

6. Re-simulate the event times of the ARG, according to the CwR.

On average for our simulated data sets, the acceptance probability for ARGinfer is 0.3. The

proposal types 1 to 6 are chosen with probabilities 1/14, 1/14, 1/14, 1/14, 5/14, and 5/14,

respectively. We gave a higher chance to the time adjustment and the Kuhner move, because

the former is the only proposal type that resamples the event times, and the latter introduces

the biggest change to the ARG. We examined a range of values for these probabilities, and

while the current values gave the best acceptance rate among those we considered, further

improvement may be possible.

We calculated the ESS by

ESS ¼
T

1þ 2
PT0

h¼1
rðhÞ

;

where ρ(h) is the autocorrelation at lag h, T the number of MCMC outputs, and T0 the time

when the autocorrelation first becomes negative [32].

Further details on the algorithm are provided in S1 Text. It is implemented as a Python

package ARGinfer, available at https://github.com/alimahmoudi29/ARGinfer.
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the branch length (in generations) averaged over sites, inferred in each of 50 randomly-
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S6 Fig. True (black dashed line) TMRCA, in units of 104 generations, and posterior mean

(red line) inferred by ARGinfer (left) and ARGweaver (right) for a randomly-selected, sim-

ulated data set with R = 2. Red shading shows 50% credible intervals.
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S7 Fig. True (red dashed line) allele ages, in units of 104 generations, and posterior mean

(blue line) inferred by ARGinfer (left) and ARGweaver (right) for the simulated data set

used in S6 Fig. Along the x axis SNPs are ordered by increasing value of true allele age. Blue

shading shows 50% credible intervals.
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