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Space-time wave packets localized in all
dimensions

Murat Yessenov 1 , Justin Free2, Zhaozhong Chen 3, Eric G. Johnson2,
Martin P. J. Lavery 3, Miguel A. Alonso 4,5 & Ayman F. Abouraddy 1

Optical wave packets that are localized in space and time, but nevertheless
overcome diffraction and travel rigidly in free space, are a long sought-after
field structurewith applications ranging frommicroscopy and remote sensing,
to nonlinear and quantum optics. However, synthesizing such wave packets
requires introducing non-differentiable angular dispersion with high spectral
precision in two transverse dimensions, a capability that has eluded optics to
date. Here, we describe an experimental strategy capable of sculpting the
spatio-temporal spectrum of a generic pulsed beam by introducing arbitrary
radial chirp via two-dimensional conformal coordinate transformations of the
spectrally resolved field. This procedure yields propagation-invariant ‘space-
time’ wave packets localized in all dimensions, with tunable group velocity in
the range from 0.7c to 1.8c in free space, and endowed with prescribed orbital
angular momentum. By providing unprecedented flexibility in sculpting the
three-dimensional structure of pulsed optical fields, our experimental strategy
promises to be a versatile platform for the emerging enterprise of space-time
optics.

Creating spatio-temporally localized optical wave packets that over-
come diffraction and propagate rigidly in free space has been a long-
standing yet elusive goal in optics. Such wave packets can have appli-
cations ranging from remote optical sensing and biological imaging, to
nonlinear and quantum optics. To date, this challenge has been
addressed via nonlinear optical effects that sustain solitons1, wave-
guiding structures2, or by exploiting particularly shaped waveforms
such as Bessel-Airy wave packets in linear dispersive media3. Propaga-
tion invariance in a linear nondispersive medium necessitates incul-
cating a precise spatio-temporal spectral structure into the field by
introducing angular dispersion (AD)4,5; i.e., associating each wavelength
with a single propagation direction6,7. Examples of such wave packets
date back to Brittingham’s focus-wave mode8, X-waves9,10, and more
recently the general class of ‘space-time’ (ST) wave packets11–19. The
challenge of producing the AD necessary for propagation-invariant
wave packets localized in all dimensions (referred to hereon as 3D ST

wave packets) is twofold. First, the AD must be inculcated in two
transverse dimensions rather than in one as typically realized via grat-
ings or prisms4,5. Second, non-differentiable AD is required20; i.e., it is
necessary that the derivative of thewavelength-dependent propagation
angle not be defined at some wavelength21,22 – a field configuration that
cannot be directly produced with conventional optical components.
Consequently, with the exception of X-waves that are AD-free, no
propagation-invariant optical wave packets that are localized in all
dimensions have been observed in free space7.

The challenge of introducing arbitrary AD into a generic pulsed
beam along one transverse dimension has been recently addressed by
constructing a universal AD synthesizer23. This experimental strategy
has enabled the realization of ST wave packets in the form of light
sheets16 (referred to hereon as 2D ST wave packets), which exhibit a
broad host of sought-after effects, such as long-distance propagation
invariance24, tunable group velocities13,25–29, anomalous refraction at
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planar interfaces30, and the space-time Talbot effect31. Although this
arrangement produces non-differentiable AD with high spectral reso-
lution, these features cannot be extended to both transverse dimen-
sions. Crucially, the centerpiece of this configuration is a spatial light
modulator thatmodifies the temporal spectrum along one dimension,
leaving only one dimension to manipulate the field spatially – a lim-
itation that is shared by other recently investigated spatio-temporal
field structures32–39. Therefore, the fundamental challenge of produ-
cing non-differentiable AD encompassing both transverse dimensions
remains outstanding.

Here, we demonstrate a spatio-temporal modulation strategy
that efficiently produces arbitrary yet precise AD in two transverse
dimensions, and thus yields ST wave packets localized in all
dimensions –while preserving all the key attributes of its reduced-
dimension counterpart. This modulation scheme is implemented
in three stages. In the first stage, the spectrum of a generic plane-
wave pulse is spatially resolved along one dimension after a
double-pass through a volume chirped Bragg grating. In the sec-
ond stage, a spectral transformation ‘reshuffles’ the wavelengths
into a prescribed sequence. In the third stage, a log-polar-to-
Cartesian conformal coordinate transformation converts the
spatial locus of each wavelength from a line into a circle40,41. A lens
finally converts the spectrally resolved wave front into a 3D ST
wave packet localized in all three dimensions. Utilizing this
approach, we produce 3D ST wave packets with ≈30 μm transverse
beam width and ≈6 ps pulse width that propagate for over 50 mm.
Moreover, by modulating the spatio-temporal spectral structure,
we realize group velocities extending from the subluminal to the
superluminal regimes over the range from 0.7c to 1.8c (c is the
speed of light in vacuum). Furthermore, by providing access to
both transverse dimensions in a ST wave packet, new degrees of
freedom of the optical field can be accessed, such as orbital
angular momentum (OAM)42–44. Specifically, by encoding a helical
phase structure in the spatio-temporal spectrum, we demonstrate
propagation-invariant pulsed OAMwave packets with controllable
group velocity in free space, which we refer to as ST-OAM wave
packets. In addition to the propagation-invariance and arbitrary
group velocities of ST-OAM wave packets, their underlying spatio-
temporal structure may lead to variations of some of the recently
uncovered behaviors of conventional OAM pulses, such as the
trade-off between the topological charge and pulse duration43,45,46.
Such 3D ST wave packets that are fully localized in all dimensions
have potential uses in areas such as free-space optical commu-
nications, imaging, and nonlinear optics.

Results
Theory of 3D space-time wave packets
A useful conceptual tool for understanding the characteristics of ST
wave packets and the requirements for their synthesis is to visualize
their spectral support domainon the surfaceof the light cone. The light-
cone is the geometric representation of the free-space dispersion rela-
tionship k2

x + k
2
y + k

2
z = ðωcÞ2, where ω is the temporal frequency, c is the

speed of light in vacuum, (kx, ky, kz) are the components of the wave
vector in the Cartesian coordinate system (x, y, z), x and y are the
transverse coordinate, and z is the axial coordinate. Although this
relationship corresponds to the surface of a four-dimensional hyper-
cone, a useful representation follows from initially restricting our
attention to azimuthally symmetric fields in which kx and ky are com-
bined into a radial wave number kr =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
x + k

2
y

q
, so that the light-cone

can be then visualized in ðkr ,kz ,
ω
cÞ-space (Fig. 1). The spectral support

domain for 3D ST wave packets is restricted to the conic section at the
intersection of the light-cone with a spectral plane that is parallel to the
kr-axis and makes an angle θ (the spectral tilt angle) with the kz-axis,
which is given by the equationΩ = ðkz � koÞc tanθ; hereΩ=ω−ωo, ωo

is a carrier frequency, and ko =ωo/c. It can be readily shown that such a

construction in the narrowband paraxial regime results in a
propagation-invariant 3D ST wave packet Eðr, z; tÞ = eiðkoz�ωotÞψðr, z; tÞ,
where the slowly varying envelope ψ(r, z; t) travels rigidly at a group
velocity ev = c tanθ, ψðr,z; tÞ = ψðr,0; t � z=evÞ, where ψðr,0; tÞ =R

dkr kr
eψðkrÞJ0ðkrrÞe�iΩt , and eψðkr Þ is the spectrum. Here kr andΩ are

no longer independent variables, but are instead related via the parti-
cular spectral trajectory on the light-cone (Supplementary Note 1).
Although this spectral trajectory is a conic section whose kind is
determined by the spectral tilt angle θ, it can nevertheless be approxi-
mated in the narrowband paraxial regime by a parabola in the vicinity
of kr =0:

Ω

ωo
=

k2
r

2k2
oð1� enÞ

, ð1Þ

where en = cotθ is the wave-packet group index in free space. By
setting kr = k sinφðωÞ, where φ(ω) is the propagation angle for ω as
shown in Fig. 1a, we have φðωÞ≈η

ffiffiffiffiffi
Ω
ωo

q
, which is not differentiable at

Ω = 020,23; here en = 1� σ
2 η

2, σ = 1 in the superluminal regime, and σ = − 1
in the subluminal regime. In other words, non-differentiable AD is
required to produce a propagation-invariant ST wave packet. This
result is similar to that for ST light-sheets16 except that the transverse
coordinate x is now replaced with the radial coordinate r.

The representation in Fig. 1 is particularly useful in identifying a
path towards synthesizing 3DSTwave packets.When 45° < θ < 90°, the
ST wave packet is superluminal ev> c, Ω is positive, and ωo is the
minimum allowable frequency in the spectrum. When viewed in
ðkx ,ky,

ω
cÞ-space, the wavelengths are arranged in concentric circles,

with long wavelengths (low frequencies) at the center, and shorter
wavelengths (higher frequencies) extending outward. On the other
hand, when 0° < θ < 45°, the ST wave packet is subluminal ev< c, Ω is
negative, andωo is themaximum allowable frequency in the spectrum.
The wavelengths are again arranged in concentric circles in
ðkx ,ky,

ω
cÞ-space – but in the opposite order: short wavelengths are

close to the center and longer wavelengths extend outward. For both
subluminal and superluminal 3D ST wave packets, eachω is associated
with a single radial spatial frequency kr(ω), and is related to it via the
relationship in Eq. (1). This representation indicates the need for
arranging the wavelengths in concentric circles with square-root radial
chirp, and then converting the spatial spectrum into physical space via
a spherical lens. Moreover, adding a spectral phase factor eiℓχ, where ℓ
is an integer and χ is the azimuthal angle in spectral space, produces
OAM in physical space (Supplementary Note 1B).

Closed-form expressions can be obtained for 3D ST wave packets
by applying Lorentz boosts to an appropriate initial field47–50. For
example, starting with a monochromatic beam Eo(r, z; t), a subluminal
3D ST wave packet at a group velocity ev is obtained by the Lorentz

boost Eðr, z; tÞ = Eoðr, z�evtffiffiffiffiffiffiffiffi
1�β2

p ; t�evz=c
2

ffiffiffiffiffiffiffiffi
1�β2

p Þ, where β = ev
c is the Lorentz factor.

On the other hand, closed-form expressions for superluminal 3D ST
wave packets can be obtained by applying a Lorentz boost to the
‘needle beam’ in12. The time-averaged intensity is Iðr,φ,zÞ =
2πk2

oð1� enÞ R dkrk
2
r ∣eψðkrÞ∣2J2‘ ðkrrÞ, which is independent of φ even if

the field is endowed with OAM. In the case of 2D ST light-sheets, the
time-averaged intensity separates into a sumof a constant background
pedestal and a spatially localized feature at the center16. A similar
decomposition is not possible for 3D STwave packets. However, using
the asymptotic form for Bessel functions that is valid far from r =0, we
have:

IðrÞ≈ 2πk2
0ð1� enÞ
πr

Z
dkr
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where the first term is a pedestal decaying at a rate of 1r, and the second
term tends to be localized closer to the beam center. In the vicinity of
r =0, the two terms merge and cannot be separated. The spatio-
temporal intensity profile of such a 3D ST wave packet is depicted in

Fig. 1c: two conic field structures emanate from the wave-packet
center, such that the profile is X-shaped in any (meridional plane
containing the optical axis, and the intensity profile is circularly
symmetric in any transverse plane.

Fig. 1 | Visualization of the spectral support domain for 3D ST wave packets on
the surface of the free-space light-cone. a The spectral support domain for a
superluminal 3D ST wave packet at the intersection of the light-cone k2

r + k
2
z = ðωcÞ2

with a spectral plane that is parallel to the kr-axis andmakes an angle θ > 45∘ with the
kz-axis. The conic section at the intersection is a hyperbola. In ðkx ,ky,

ω
cÞ-space the

spectrum is one half of a two-sheet hyperboloid (an elliptic hyperboloid). b Same as

a for a subluminal STwavepacketwithθ < 45∘, where the spectral support domainon
the light-cone in ðkr ,kz ,

ω
cÞ-space is an ellipse. In ðkx ,ky,

ω
cÞ-space, the spectrum is an

ellipsoid of revolution (a spheroid, which may be prolate or oblate according to the
value of θ). c Plot of the spatio-temporal intensity profile I(x, y, z =0; t) at a fixed axial
plane z =0, the intensity profile in a meridional plane I(0, y, z =0; t), and the trans-
verse profiles at the wave-packet center I(x, y, 0; 0) and off-center I(x, y, 0; t >0).
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Synthesizing ST wave packets localized in all dimensions
Central to converting a generic pulsed beam into a ST wave packet
localized in all dimensions is the construction of an optical scheme that
can associate each wavelength λ with a particular azimuthally sym-
metric spatial frequency kr(λ) and arrange the wavelengths in con-
centric circles with the order prescribed in Eq. (1) (Fig. 2a). This system
realizes two functionalities, producing a particular wavelength
sequence, and changing the coordinate system, which are imple-
mented in succession via the three-stage strategy outlined in Fig. 2b. In
thefirst stage, the spectrumof a plane-wave pulse is resolved alongone
spatial dimension. At this point, the field is endowed with linear spatial
chirp and the wavelengths are arranged in a fixed sequence. The sec-
ond stage rearranges the wavelengths in a new prescribed sequence.
This spectral transformation is tunable; that is, a wide range of spectral
structures can be obtained from a fixed input. In the third stage, a 2D
conformal transformation converts the coordinate system to map the
rectilinear chirp into a radial chirp; i.e., lines corresponding to different
wavelengths at the input are converted into circles at the output40,41.
Because the spectral transformation in the second stage is tunable, the
2D coordinate transformation can be held fixed. In this way, we obtain
arbitrary (including non-differentiable) AD in two dimensions.

The layout of the experimental setup is depicted in Fig. 3.We start
off in the first stage with pulses from a Ti:sapphire laser (pulse
width ≈ 100 fs and bandwidth ≈10 nm at a central wavelength of ≈800
nm). Because aflat-phase front is critical for successfully implementing
the subsequent transformations, the use of conventional surface
gratings is precluded, and we utilize instead a double-pass configura-
tion through a volume chirped Bragg grating (CBG). The CBG resolves
the spectrumhorizontally along the x-axis and introduces linear spatial
chirp so that x1(λ) = α(λ − λo); whereα is the linear spatial chirp rate51, λo
is a fixed wavelength, and the bandwidth utilized is Δλ ≈0.3 nm. It is
crucial that this task be achieved with high spectral resolution. Pre-
vious studies have shown that the critical parameter determining the
propagation distance of ST wave packets is the ’spectral uncertainty’

δλ, which is the finite spectral uncertainty in the association between
spatial and temporal frequencies52. Our measurements indicate that
the optimal spectral uncertainty after the CBG arrangement is δλ ~ 35
pm, which is achieved for a 2-mm input beam width (Supplemen-
tary Fig. 11).

The second stage of the synthesis strategy is a 1D spatial trans-
formation along the x-axis to rearrange the wavelength sequence,
thereby implementing a spectral transformation. Specifically, each
wavelength λ is transposed from x1(λ) at the input via a logarithmic
mapping to x2ðλÞ = A lnðx1ðλÞB Þ at the output. This transformation is
realized via two phase patterns implemented by a pair of spatial light
modulators (SLMs) to enable tuning the transformation parameters A
and B. This particular ‘reshuffling’ of the wavelength sequence pre-
compensates the exponentiation included in the subsequent coordi-
nate transformation. By tuning the value of B, we can vary the group
velocity ev over the subluminal and superluminal regimes (Supple-
mentary Table 1).

In the third stage we perform a log-polar-to-Cartesian coordinate
transformation: (x2, y2)→ (r,φ) via the 2Dmapping: rðλÞ = C expð� x2ðλÞ

D Þ
and φ= y2

D
40,41. The exponentiation here is pre-compensated by the

logarithmic mapping in the 1D spectral transformation, and the
wavelength at position x2(λ) at the input is converted into a circle of
radius rðλÞ / ðλ� λoÞA=D at the output. This 2D coordinate transfor-
mation was developed decades ago40,41, and was recently revived as a
methodology for sorting OAM modes53,54. We operate the system in
reverse (lines-to-circles, rather than the more typical circles-to-lines53),
andwemake use of a polychromaticfield (rather thanmonochromatic
field). The exponent of the chirp rate depends only on the ratio A

D, so
that setting D = 2A yields rðλÞ /

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ� λo

p
in accordance with Eq. (1).

The wavelengths are arranged with square-root radial chirp, thereby
realizing the required non-differentiable AD. Finally, a spherical con-
verging lens of focal length f generates the 3D ST wave packets in
physical space, equivalently mapping r ! kr = k r

f .
The 2D coordinate transformation is performed with two differ-

ent embodiments: using a pair of diamond-machined refractive phase
plates54, and using a pair of diffractive phase plates55, which yielded
similar performance. Because both of these realizations are stationary,
the values of C and D are fixed. The data reported in Fig. 4 through
Fig. 7 made use of the refractive phase plates with C = 4.77 mm and
D = 1mm.Moreover, fixing the value ofD entails in turnfixing the value
of A to maintain A =D/2. The group velocity ev = c=en is tuned over the
subluminal and superluminal regimes by varying B, whereby
en≈ 1� 2:24

B , with B in units of mm [Supplementary Note 2].
This experimental strategyprovides twopathways for introducing

OAM into the 3D STwave packet. Onemay utilize a conventional spiral
phase plate to imprint an OAM order ℓ after the 2D coordinate trans-
formation and before the final Fourier-transforming lens. Another
approach, which we implemented here, is to add at the output of the
1D spectral transformation a linear phase distribution along y
extending from 0 to 2πℓ, which is subsequently wrapped around the
azimuthal direction after traversing the 2D coordinate transformation,
thereby realizing OAM of order ℓ55.

For the sake of benchmarking, we also synthesized pulsed Bessel
beamswith separable spatio-temporal spectrum by circumventing the
spectral analysis and 1D spectral transformation, and sending the input
laser pulses directly to the 2D coordinate transformation. Tomatch the
temporal bandwidth of the pulsed Bessel beams to that of the 3D ST
wave packets, we spectrally filter Δλ =0.3 nm from the input spectrum
via a planar Fabry-Pérot cavity.

Characterizing 3D ST wave packets
To verify the structure of the synthesized 3D ST wave packet, we
characterize the field in four distinct domains: (1) the spatio-temporal
spectrum to verify the square-root radial chirp (Fig. 4]; (2) the time-
averaged intensity to confirm diffraction-free propagation along z

Fig. 2 | Synthesis strategy for 3D STwavepackets. a Startingwith a generic plane-
wave pulse, we aim at constructing an angular-dispersion synthesizer in two
dimensions that arranges the wavelengths in circles in a prescribed order. S1 cor-
responds to a subluminal wave packet, whereas S2 and S3 correspond to super-
luminal wave packets of different group velocities. b The proposed strategy
comprises spectral analysis followed by a tunable 1D spectral transformation that
rearranges the initial wavelength sequence in the spectrally resolved wavefront.
The 1D spectra L1, L2, and L3 are rectilinear counterparts of S1, S2, and S3 in a. In the
third stage, a fixed 2D conformal coordinate transformation converts vertical lines
into circles, thereby realizing the targeted spatio-temporal spectra S1, S2, and S3.
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(Fig. 5); (3) time-resolved intensity measurements to reconstruct the
wave-packet spatio-temporal profile and estimate the group velocity
(Fig. 6); and (4) complex-field measurements to resolve the spiral
phase of the ST-OAM wave packets (Fig. 7).

Spectral-domain characterization. We measure the spatio-temporal
spectrum by scanning a single-mode fiber connected to an optical
spectrum analyzer across the spectrally resolved field profile. We scan
the fiber along x1 after the spectral analysis stage and verify the linear
spatial chirp (Supplementary Fig. 10), and then scan the fiber along x2
after the 1D spectral transformation to confirm the implemented
change in spatial chirp. Themeasurement is repeated for superluminal
(B = 10 mm, ev≈ 1:37c) and subluminal (B = −10 mm, ev≈0:83c) wave
packets, both with temporal bandwidth Δλ ≈0.3 nm, pulse width of ~ 6
ps, and λo = 796.1 nm. After the 2D coordinate transformation, the
spectrum is arranged radially along an annulus rather than a rectilinear
domain, as shown in Fig. 4a. By calibrating the conversion x2→ r
engendered by the 2D coordinate transformation, and combining with
the measured spatial chirp x2(λ) at its input, we obtain the radial chirp
kr(λ) as shown in Fig. 4b (Supplementary Fig. 15). We find at each radial
position a narrow spectrum (δλ ≈ 50 pm) whose central wavelength λc
shifts quadratically with r, but with differently signed curvature for the
superluminal and subluminal cases (Fig. 4c).

Propagation-invariance of the intensity distribution. The time-
averaged intensity profile I(x, y, z)∝ ∫dt∣E(x, y, z; t)∣2 is captured by
scanning a CCD camera along the propagation axis z after the Fourier
transforming lens (Fig. 3). For each wave packet, we plot in Fig. 5 the
intensity distribution (at a fixed axial plane z = 30 mm) in transverse
and meridional planes. As a point of reference, we start with a pulsed

Bessel beam whose spatio-temporal spectrum is separable, where the
spatial bandwidth isΔkr =0.02 rad/μmand is centered at kr ≈0.06 rad/
μm (Fig. 5a). Here, the full temporal bandwidth Δλ is associated with
each spatial frequency kr. The finite spatial bandwidth Δkr renders the
propagation distance finite56, and we observe a Bessel beam compris-
ing a main lobe of width Δr ≈ 30μm (FWHM) accompanied by several
side lobes, which propagates for a distance Lmax ≈ 50 mm. For com-
parison, the Rayleigh range of a Gaussian beam with a similar size and
central wavelength is zR ≈ 1 mm. By further increasing Δkr to
0.07 rad/μmwhile remaining centered at kr ≈0.06 rad/μmas shown in
Fig. 5b, the axial propagation distance is reduced proportionately to
Lmax ≈ 15 mm, and the side lobes are diminished.

Now, rather than the separable spatio-temporal spectra for pulsed
Bessel beams (Fig. 5a, b), we utilize the structured spatio-temporal
spectra associated with 3D ST wave packets in which each kr is asso-
ciated with a single λ (Fig. 4), whose spatial bandwidths are all Δkr =
0.07 rad/μm centered at kr ≈0.06 rad/μm, similarly to the pulsed
Bessel beam in Fig. 5b. Despite the large spatial bandwidth, the one-to-
one correspondence between kr and λ curtails the effect of diffraction,
leading to an increase in the propagation distance (Fig. 5c–e). The
subluminal 3D ST wave packet (ev = 0:83c) in Fig. 5c propagates for
Lmax ≈60 mm, which is a 4 × improvement compared with the separ-
able Bessel beam and a 60 × improvement compared with a Gaussian
beamof the same spatial bandwidth.We observe a similar behavior for
a superluminal 3D ST wave packet (ev = 1:37c) in Fig. 5d, and a super-
luminal ST-OAM wave packet (ev = 1:16c) with ℓ = 1 in Fig. 5e.

Reconstructing the spatio-temporal profile and measuring the
group velocity. The spatio-temporal intensity profile I(x, y, z; t) =
∣E(x, y, z; t)∣2 of the 3D ST wave packet is reconstructed by placing the

Fig. 3 | Schematic of the setup for synthesizing 3D ST wave packets. Starting
with a plane-wave pulse on the left, spectral analysis resolves the spectrum in space
and produces linear spatial chirp, x1(λ) =α(λ − λo). The spectrally resolved field
enters a tunable 1D spectral transformation formed of two spatial light modulators
`reshuffles' the wavelengths, x2ðλÞ = A lnðx1 ðλÞB Þ. Opposite signs of chirp along x2 are
required for subluminal and superluminal wave packets. Next, a fixed 2D

coordinate transformation (implementedwith two fixed phase plates) converts the
vertical lines corresponding to different wavelengths into circles of radius
rðλÞ = C expð� x2 ðλÞ

D Þ. Finally, a converging spherical lens produces the 3D ST wave
packet. On the top, we plot the implemented spectral and spatial transformations;
on the bottom, we illustrate the field structure at different points along the setup.

Article https://doi.org/10.1038/s41467-022-32240-0

Nature Communications |         (2022) 13:4573 5



synthesizer (Fig. 3) in one arm of a Mach-Zehnder interferometer,
while the initial 100-fs plane-wave pulses from the laser traverse an
optical delay line τ in the reference arm (Fig. 6a). By scanning τ we
reconstruct the spatio-temporal intensity profile in a meridional plane
from the visibility of spatially-resolved interference fringes recorded
by a CCD camera when the 3D ST wave packet and the reference pulse
overlap in space and time. The reconstructed time-resolved intensity
profile I(0, y, z; t) of the 3D ST wave packets corresponding to those in
Fig. 5c–e are plotted in Fig. 6b–d at multiple axial planes, which reveal

clearly the expected X-shaped profile that remains invariant over the
propagation distance Lmax. In all cases, the on-axis pulse width, taken
as the FWHM of I(0, 0, 0; t), is Δt ≈ 6 ps. The spatio-temporal intensity
profile of the superluminal ST-OAM wave packet with ℓ = 1 in Fig. 6d
reveals a similar X-shaped profile, but with a central null instead of a
peak, as expected from the helical phase structure associated with the
OAM mode.

A subtle distinction emerges between the subluminal and super-
luminal wave packets regarding the axial evolution of their spatio-

Fig. 4 | The spatio-temporal spectral structure of 3D ST wave packets. Mea-
surements for a superluminal wave packet (ev≈ 1:37c) are plotted in the left column,
and those for its subluminal counterpart (ev≈0:83c) are plotted in the column on
the right. a Measured spatial spectrum ∣eψðkx ,ky,λÞ∣2 by a wavelength-insensitive
camera showing an annular structure. b Measured temporal spectra at selected

radial positions revealing the radial chirp and the spectral uncertainty. cMeasured
radial chirp by plotting the central wavelength λc of the spectrumwith radial spatial
frequency kr. Error bars in c represent the spectral resolution of the optical spec-
trum analyzer (OSA; Advantest AQ6317B) we made use to perform spectral
measurements.
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temporal profile. It can be shown that in presence of finite spectral
uncertainty δλ, the realized ST wave packet can be separated into the
product of an ideal STwavepacket traveling indefinitely atev and a long
‘pilot envelope’ traveling at c. The finite propagation distance Lmax is
then a consequence of temporal walk-off between the ST wave packet
and the pilot envelope52. For subluminal ST wave packets, this results
initially in a ‘clipping’ of the leading edge of the wave packet in (Fig. 6b
at z = 20 mm), and ultimately a clipping of the trailing edge of the ST
wave packet as the faster pilot envelope catches up with it (Fig. 6b at
z = 40 mm). The opposite behavior occurs for the superluminal ST
wave packet in Fig. 6c, d.

This experimental methodology also enables us to estimate the
group velocity ev28,30. After displacing the CCD camera until the inter-
ference fringes are lostdue to themismatchbetweenev = c tanθ for the
STwave packets and the reference pulses traveling atev = c, we restore
the interference by inserting a delay Δt (Fig. 6e), which allows us to

estimate ev for the 3D ST wave packet. By tuning B, we record a broad
span of group velocities in the range from ev ≈ 0:7c to ev ≈ 1:8c in free
space (Fig. 6f). The continuous tunability of the groupvelocity of 3DST
wave packets over the subluminal and superluminal ranges allows
them to be exploited in applications previously proposed for ST light-
sheets, such as for constructing in-line optical delay lines for all-optical
communications29, whereby the localization of 3D ST wave packets in
both transverse dimensions can provide a significant advantage with
regards to efficiently coupling into optical fibers.

Field amplitude and phase measurements. Lastly, we modify the
measurement system in Fig. 6a by adding a small relative angle between
the propagation directions of the 3D STwave packets and the reference
pulses, and make use of off-axis digital holography57 to reconstruct the
amplitude ∣ψ(x, y, z; τ)∣ and phase ϕ(x, y, z; τ) of their complex field
envelope ψ(x, y, z; t) = ∣ψ(x, y, z; t)∣eiϕ(x, y, z; t) (Supplementary Note 3D). We

Fig. 5 | Measured transverse and axial time-averaged intensity for separable
pulsed Bessel beams and 3D ST wave packets. In the first column, we illustrate
the spatio-temporal structure; in the second, we plot the measured transverse
intensity I(x, y, z) at z = 30 mm, in addition to sections through x =0 and y = 0
(white curves); and, in the third, we plot the measured intensity in a meridional
plane I(0, y, z). The white curve at the bottom of the panels in the last column is
the on-axis intensity I(0, 0, z), except in e where we use y = 30 μm. For all cases,

Δλ = 0.3 nm. a A separable pulsed Bessel beam with Δkr = 0.02 rad/μm. b A pulsed
Bessel beam with Δkr = 0.07 rad/μm. c–e In all cases Δkr = 0.07 rad/μm as in b. c A
subluminal (ev = 0:83c) 3D ST wave packet; d a superluminal (ev = 1:37c) 3D ST
wave packet; and e a superluminal (ev = 1:16c) 3D ST-OAM wave packet with ℓ = 1
(the inset in the first column is the associated transverse spectral phase dis-
tribution). The dotted vertical white lines in the third column in c-e identify the
axial planes for the time-resolved measurements in Fig. 6.
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Fig. 6 | Reconstructing the spatio-temporal intensityprofile and estimating the
group velocity for 3D ST wave packets. a Schematic of the interferometric con-
figuration for reconstructing I(x, y, z; t) and estimating ev. b Measured I(0, y, z; τ) at
z = 20, 30, and 40 mm for a subluminal (ev = 0:83c) wave packet; c for a super-
luminal (ev = 1:37c) wave packet; and d for a superluminal (ev = 1:16c) wave packet
endowed with the OAM mode ℓ = 1. We also plot the section y =0 through the
intensity profile (white curve at the bottom of each panel), except in d where we

use y = 30 μm. e Measured group delay Δt at different axial planes for subluminal
and superluminal 3D ST wave packets. The straight lines are theoretical expecta-
tions and the symbols are data points. f Plot of the estimated group velocity ev with
the 1D spectral transformation parameter B. The curve is the theoretical expecta-
tion ev = c=en, with en≈ 1� 2:24

B (B inmm). Error bars correspond to the uncertainty in
the measurement of ev due to the finite pulse width of 3D ST wave packets; see
Supplementary Note 3C.
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reconstruct the complex field at a fixed axial plane z = 30 mm for the
time delays: τ = −5, 0, and 5 ps (Fig. 7). First, we plot the results for
∣ψ(x, y, z; τ)∣ and phase ϕ(x, y, z; τ) for a superluminal 3D ST wave packet
(ev= 1:1c) with no OAM (ℓ =0). At the pulse center τ =0, the field is
localized on the optical axis, whereas at τ = ±5 ps the field spreads away
from the center (Fig. 7a)]. For τ ≠0 we find a spherical transverse phase
distribution that is almost flat at τ =0, similar to what one finds during
the axial evolution of a Gaussian beam in space through its focal plane14.

After adding the OAM mode ℓ = 1 to the field structure, a similar
overall behavior is observed for the superluminal ST-OAMwave packet
except for two significant features. First, a dip is observed on-axis in
Fig. 7b, in lieu of the central peak in Fig. 7a, as a result of the phase
singularity associated with the OAM mode. Second, the phase at the
wave-packet center ϕ(x, y, z; 0) at z = 30 mm is almost flat, while a
helical phase front corresponding to OAMof order ℓ = 1 emerges as we
move away from τ =0. Finally, we plot in Fig. 7c, d iso-amplitude sur-
face contours (0.6 × and 0.15 × the maximum amplitude Imax) for the
two 3D ST wave packets in Fig. 7a, b.We find a closed surface in Fig. 7c
when ℓ =0, and a doughnut structure in Fig. 7d when ℓ = 1 for the first
contour I = 0:6Imax that captures the structure of the wave-packet
center. The second contour for I = 0:15Imax captures the conic struc-
ture emanating from thewave-packet center that is responsible for the
characteristic X-shaped spatio-temporal profile of all propagation-
invariant wave packets in the paraxial regime.

Discussion
We have demonstrated a general procedure for spatio-temporal
spectral modulation of pulsed optical fields that is capable of syn-
thesizing 3D ST wave packets localized in all dimensions. At the
heart of our experimental methodology lies the ability to sculpt the
angular dispersion of a generic optical pulse in two transverse
dimensions. Crucially, this approach produces the non-
differentiable angular-dispersion necessary for propagation
invariance21. Because such a capability has proven elusive to date,
AD-free X-waves have been the sole class of 3D propagation-
invariant wave packets conclusively produced in free space.
Unfortunately, X-waves can exhibit only minuscule changes in the
group velocity with respect to c (typically Δev ~ 0:001c) in the
paraxial regime, and only superluminal group velocities are sup-
ported. Furthermore, ultrashort pulses of width < 20 fs are required
to observe a clear X-shaped profile10, and OAM-carrying X-waves
have not been realized to date. Even more stringent requirements
are necessary for producing focus-wave modes, and consequently
they have not been synthesized in three dimensions to date. By
realizing instead propagation-invariant 3D ST wave packets, an
unprecedented tunable span of group velocities has been realized,
clear X-shaped profiles are observed with pulse widths in the
picosecond regime, and they outperformed spectrally separable
pulsed Bessel beams of the same spatial bandwidth with respect to
their propagation distance and transverse side-lobe structure. In
addition, we demonstrated propagation-invariant ST-OAM wave
packets with tunable group velocity in free space.

Further optimization of the experimental layout is possible. We
madeuse of four phase patterns to produce the target spatio-temporal
spectral structure. It is conceivable that this spectral modulation
scheme can be performed with only three phase patterns, or perhaps
even fewer. Excitingly, a new theoretical proposal suggests that a sin-
gle non-local nanophotonic structure canproduce 3DSTwave packets
through a process of spatio-temporal spectral filtering58. This theore-
tical proposal indicates the role nanophotonics is poised to play in
reducing the complexity of the synthesis system, potentially without
recourse to filtering strategies.

Finally, efforts in the near future will be directed to reducing the
spectral uncertainty δλ and concomitantly approaching θ→ 45° to
increase the propagation length to the kilometer range24. The

experimental procedure presented here can in principle be extended to
the synthesis of other exotic variants of ST wave packet, such as
abruptly focusing needle pulses59 among other possibilities19,60. With
access to 3D ST wave packets, previous work on guided ST modes in
planar wave-guides61 can be extended to conventional single-mode and
multi-mode waveguides62, and potentially to optical fibers63–66. More-
over, the localization in both transverse dimensions provided by 3D ST
wave packets opens new avenues for nonlinear optics by increasing the
intensity with respect to 2D ST wave packets, for introducing topolo-
gical features such as spin texture in momentum space58, and for the
exploration of spatio-temporal vortices and polarization singularities67.
Our findings point therefore to profound new opportunities provided
by the emerging field of space-time optics58,61,62,68–71.

Methods
The 2D transformation used to construct the 3D STWP can be imple-
mented bymaking use of diffractive optics53,55,72,73 or refractive optics54.
We exploited both types of phase plates in our experiments to imprint
the desired phase profiles: diamond-edged refractive phase plates54

and analog diffractive phase plates55.

Refractive phase plates
The refractive optical elements used in our experiments are similar
to those outlined by Lavery et al. in54, in which the transformation
parameters are C = 4.77 mm, D = 3:2

π ≈ 1 mm, and d2 = 310 mm. Each
phase plate is made of the polymer PMMA (Poly methyl methacry-
late) with accurately manufactured height profiles Z1(x3, y3) and
Z2(x4, y4) to imprint the required phase profiles. The phase
encountered by light at a wavelength λ traversing a height Z of a
material of refractive index n – with respect to the phase encoun-
tered over the same distance in vacuum – is given by Φ = 2π(n − 1)
Z/λ. Thus, the height profile of the first element is
Z 1ðx3, y3Þ= λ

2πðn�1ÞΦ3ðx3, y3Þ (Supplementary Fig. 14a) and that of the
profile of the second element is Z2ðx4, y4Þ= λ

2πðn�1ÞΦ4ðx4, y4Þ (Sup-
plementary Fig. 14b). Note that each surface height is wavelength-
independent, and dispersion effects in the material manifest
themselves as a change in the focal length d2 of the integrated lens
for different wavelengths. Hence, in the experiment the system can
be tuned to a specific wavelength by changing the distance between
the two elements.

The elements were diamond-machined using a Natotech, 3-axis
(X,Z,C) ultra precision lathe (UPL) in combination with a Nanotech
NFTS6000 fast tool servo (FTS) system. Themachined PMMA surfaces
had a radius of 5.64mm, angular spacing 1°, radial spacing of 5 μm, a
spindle speed of 500 RPM, a roughing feed rate 5 mm/minute with a
cut depth of 20μm, and a finishing feed rate of 1mm/minutewith a cut
depth of 10 μm74. The total sag height difference for each part was
relatively small (≈115 μm for surface 1 and ≈144 μm for surface 2). The
transmission efficiency of the combination of the elements is ≈85%.

Diffractive phase plates. The diffractive phase plates were fabricated
in fused silica using Clemson University facilities. The fabrication
process is outlined in75, which involves writing a binary phase grating
on a stepper mask with an electron-beam and subsequently transfer-
ring this analog mask into a fused silica substrate with projection
lithography. The phase grating period is designed to be larger than the
cutoff periodof the projection stepper for higher diffractionorders, so
only the zeroth-order diffracted light from the stepper can be trans-
mitted. The transmission coefficient of the stepper light is then a
function of the duty cycle of the electron-beam-patterned binary
phase grating. The spatial intensity distribution of light in the wafer
plane can be controlled with a spatial duty cycle function, which then
exposes the I-line resist with a spatially varying analog intensity profile.
This allows fabrication of analog diffractive optics with a single expo-
sure from the stepper rather than binary 2n diffractive optics, resulting
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Fig. 7 | Measured complex-field amplitude and phase profiles for 3D ST wave
packets with and without OAM. a Measured amplitude ∣ψ(x, y)∣ (first row) and
phase ϕ(x, y) (second row) at a fixed axial plane z = 30 mm (see Figs. 5 and 6) at
delays τ = −5 ps, τ =0 corresponding to the wave-packet center, and τ = 5 ps for a

superluminal 3D ST wave packet with ℓ =0 and a ℓ = 1. c Iso-amplitude contour
I =0:6Imax for the 3D ST wave packet from (a) and ST-OAM from (b). d Same as
c but for the iso-amplitude contour I =0:15Imax.
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in high-efficiency optics. The transmission efficiency of the combina-
tion of the two faces is ≈ 92%.

The design parameters for the analog diffractive phase plates
are chosen as follows: D = 7

π ≈ 2:2 mm, C = 6 mm, λo = 798 nm, and
d2 = 225 mm. These design parameters were optimized so the
paraxial approximation remains valid over the desired transfor-
mation range of 5 mm.

Data availability
The data that support the plots within this paper and other findings of
this study are available from the corresponding author upon reason-
able request.

Code availability
The software code used for data acquisition and data analysis are
available from the corresponding author upon reasonable request.

References
1. Malomed, B. A., Mihalache, D., Wise, F. & Torner, L. Spatiotemporal

optical solitons. J. Opt. B 7, R53–R72 (2005).
2. SalehM, B.E.A. & Teich, C. Principles of Photonics (Wiley, 2007)
3. Chong, A., Renninger, W. H., Christodoulides, D. N. & Wise, F. W.

Airy-Bessel wave packets as versatile linear light bullets. Nat. Pho-
ton. 4, 103–106 (2010).

4. Fülöp, J.A., &Hebling, J.Applications of tilted-pulse-front excitation,
in Recent Optical and Photonic Technologies (ed. K. Y. Kim)
(InTech, 2010).

5. Torres, J. P., Hendrych, M. & Valencia, A. Angular dispersion: an
enabling tool in nonlinear and quantumoptics.Adv. Opt. Photon. 2,
319–369 (2010).

6. Donnelly, R. & Ziolkowski, R. W. Designing localized waves. Proc. R.
Soc. Lond. A 440, 541–565 (1993).

7. Turunen, J. & Friberg, A. T. Propagation-invariant opticalfields.Prog.
Opt. 54, 1–88 (2010).

8. Brittingham, J. N. Focus wave modes in homogeneous maxwell’s
equations: Transverse electric mode. J. Appl. Phys. 54,
1179–1189 (1983).

9. Saari, P. & Reivelt, K. Evidence of X-shaped propagation-invariant
localized light waves. Phys. Rev. Lett. 79, 4135–4138 (1997).

10. Grunwald, R. et al. Generation and characterization of spatially and
temporally localized few-cycle optical wave packets. Phys. Rev. A
67, 063820 (2003).

11. Kondakci, H. E. & Abouraddy, A. F. Diffraction-free pulsed optical
beams via space-time correlations. Opt. Express 24,
28659–28668 (2016).

12. Parker, K. J. & Alonso, M. A. The longitudinal iso-phase condition
and needle pulses. Opt. Express 24, 28669–28677 (2016).

13. Wong, L. J. & Kaminer, I. Ultrashort tilted-pulsefront pulses and
nonparaxial tilted-phase-front beams. ACS Photon. 4,
2257–2264 (2017).

14. Porras, M. A. Gaussian beams diffracting in time. Opt. Lett. 42,
4679–4682 (2017).

15. Efremidis, N. K. Spatiotemporal diffraction-free pulsed beams in
free-space of the Airy and Bessel type. Opt. Lett. 42,
5038–5041 (2017).

16. Kondakci, H. E. & Abouraddy, A. F. Diffraction-free space-time
beams. Nat. Photon. 11, 733–740 (2017).

17. Yessenov, M., Bhaduri, B., Kondakci, H. E. & Abouraddy, A. F. Clas-
sification of propagation-invariant space-time light-sheets in free
space: Theory and experiments. Phys. Rev. A 99, 023856 (2019).

18. Yessenov, M., Bhaduri, B., Kondakci, H. E. & Abouraddy, A. F.
Weaving the rainbow: Space-time optical wave packets. Opt.
Photon. N. 30, 34–41 (2019).

19. Wong, L. J. Propagation-invariant space-time caustics of light.Opt.
Express 29, 30682 (2021).

20. Hall, L. A. & Abouraddy, A. F. Consequences of non-differentiable
angular dispersion in optics: tilted pulse fronts versus space-time
wave packets. Opt. Express 30, 4817–4832 (2022).

21. Yessenov, M., Hall, L. A. & Abouraddy, A. F. Engineering the optical
vacuum: Arbitrary magnitude, sign, and order of dispersion in free
space using space-time wave packets. ACS Photon. 8,
2274–2284 (2021).

22. Hall, L. A., Yessenov, M. & Abouraddy, A. F. Space–time wave
packets violate the universal relationship between angular dis-
persion and pulse-front tilt. Opt. Lett. 46, 1672–1675 (2021).

23. Hall, L.A., & Abouraddy, F. A universal angular-dispersion synthe-
sizer, arXiv:2109.13987 (2021).

24. Bhaduri, B. et al. Broadband space-timewave packets propagating
70 m. Opt. Lett. 44, 2073–2076 (2019).

25. Salo, J. &Salomaa,M.M.Diffraction-freepulses at arbitrary speeds.
J. Opt. A 3, 366–373 (2001).

26. Valtna, H., Reivelt, K. & Saari, P. Methods for generating wideband
localized waves of superluminal group velocity. Opt. Commun.
278, 1–7 (2007).

27. Zamboni-Rached, M. & Recami, E. Subluminal wave bullets: Exact
localized subluminal solutions to the wave equations. Phys. Rev. A
77, 033824 (2008).

28. Kondakci, H. E. & Abouraddy, A. F. Optical space-time wave
packets of arbitrary group velocity in free space.Nat. Commun. 10,
929 (2019).

29. Yessenov, M., Bhaduri, B., Delfyett, P. J. & Abouraddy, A. F. Free-
space optical delay line using space-time wave packets. Nat.
Commun. 11, 5782 (2020).

30. Bhaduri, B., Yessenov, M. & Abouraddy, A. F. Anomalous
refraction of optical spacetime wave packets. Nat. Photon. 14,
416–421 (2020).

31. Hall, L. A., Yessenov,M., Ponomarenko, S. A. &Abouraddy, A. F. The
space-time Talbot effect. APL Photon. 6, 056105 (2021).

32. Vaughan, J. C., Feurer, T. & Nelson, K. A. Automated spatio-
temporal diffraction of ultrashort laser pulses. Opt. Lett. 28,
2408–2410 (2003).

33. Jhajj, N. et al. Spatiotemporal optical vortices. Phys. Rev. X 6,
031037 (2016).

34. Hancock, S. W., Zahedpour, S., Goffin, A. & Milchberg, H. M. Free-
space propagation of spatiotemporal optical vortices. Optica 6,
1547–1553 (2019).

35. Chong, A., Wan, C., Chen, J. & Zhan, Q. Generation of spatio-
temporal optical vortices with controllable transverse orbital
angular momentum. Nat. Photon. 14, 350–354 (2020).

36. Cao, Q. et al. Sculpturing spatiotemporal wavepackets with
chirped pulses. Photon. Res. 9, 2261–2264 (2021).

37. Wan, C., Cao, Q., Chen, J., Chong, A., & Zhan, Q. Photonic toroidal
vortex, arXiv:2109.02833 (2021).

38. Hancock, S. W., Zahedpour, S. & Milchberg, H. M. Second-
harmonic generation of spatiotemporal optical vortices and con-
servation of orbital angular momentum.Optica 8, 594–597 (2021).

39. Hancock, S. W., Zahedpour, S. & Milchberg, H. M. Mode structure
and orbital angular momentum of spatiotemporal optical vortex
pulses. Phys. Rev. Lett. 127, 193901 (2021).

40. Bryngdahl, O. Geometrical transformations in optics. J. Opt. Soc.
Am. A 64, 1092–1099 (1974).

41. Hossack, W. J., Darling, A. M. & Dahdouh, A. Coordinate transfor-
mations with multiple computer-generated optical elements. J.
Mod. Opt. 34, 1235–1250 (1987).

42. Allen, L., Beijersbergen, M. W., Spreeuw, R. J. C. &Woerdman, J. P.
Orbital angular momentum of light and the transformation of
Laguerre-Gaussian lasermodes. Phys. Rev. A45, 8185–8189 (1992).

43. Ornigotti, M., Conti, C. & Szameit, A. Effect of orbital angular
momentum on nondiffracting ultrashort optical pulses. Phys. Rev.
Lett. 115, 100401 (2015).

Article https://doi.org/10.1038/s41467-022-32240-0

Nature Communications |         (2022) 13:4573 11



44. Porras,M. A. &García-Álvarez, Raúl Broadband xwaveswithorbital
angular momentum. Phys. Rev. A 105, 013509 (2022).

45. Porras, M. A. Upper bound to the orbital angular momentum car-
ried by an ultrashort pulse. Phys. Rev. Lett. 122, 123904 (2019).

46. Porras, M. A. & Conti, C. Couplings between the temporal and
orbital angular momentum degrees of freedom in ultrafast optical
vortices. Phys. Rev. A 101, 063803 (2020).

47. Bélanger, P. A. Lorentz transformationof packetlike solutionsof the
homogeneous-wave equation. J. Opt. Soc. Am. A 3,
541–542 (1986).

48. Saari, P. & Reivelt, K. Generation and classification of localized
waves by Lorentz transformations in Fourier space. Phys. Rev. E69,
036612 (2004).

49. Longhi, S. Gaussian pulsed beams with arbitrary speed. Opt.
Express 12, 935–940 (2004).

50. Kondakci, H. E. & Abouraddy, A. F. Airy wavepackets accelerating
in space-time. Phys. Rev. Lett. 120, 163901 (2018).

51. Glebov, L. B. et al. Volume-chirped Bragg gratings: monolithic
components for stretching and compression of ultrashort laser
pulses. Opt. Eng. 53, 051514 (2014).

52. Yessenov, M. et al. What is the maximum differential group delay
achievable by a space-time wave packet in free space? Opt.
Express 27, 12443–12457 (2019).

53. Berkhout, G.C. G., Lavery,M. P. J., Courtial, J., Beijersbergen,M.W.
& Padgett, M. J. Efficient sorting of orbital angular momentum
states of light. Phys. Rev. Lett. 105, 153601 (2010).

54. Lavery, M. P. J. et al. Refractive elements for the measurement of
the orbital angularmomentumof a single photon.Opt. Express 20,
2110–2115 (2012).

55. Li, W. & Johnson, E. G. Rapidly tunable orbital angular momentum
(OAM) system for higher order Bessel beams integrated in time
(HOBBIT). Opt. Express 27, 3920–3934 (2019).

56. Durnin, J., Miceli, J. J. & Eberly, J. H. Diffraction-free beams. Phys.
Rev. Lett. 58, 1499–1501 (1987).

57. Sánchez-Ortiga, E., Doblas, A., Saavedra, G., Martínez-Corral, M. &
Garcia-Sucerquia, J. Off-axis digital holographic microscopy:
practical design parameters for operating at diffraction limit. Appl.
Opt. 53, 2058–2066 (2014).

58. Guo, C., Xiao, M., Orenstein, M. & Fan, S. Structured 3D linear
space–time light bullets by nonlocal nanophotonics. Light.: Sci.
Appl 10, 1–15 (2021).

59. Wong, L. J. & Kaminer, I. Abruptly focusing anddefocusingneedles
of light and closed-form electromagnetic wavepackets. ACS Pho-
ton. 4, 1131–1137 (2017).

60. Wong, L. J., Christodoulides, D. N. & Kaminer, I. The complex
charge paradigm: A new approach for designing electromagnetic
wavepackets. Adv. Sci. 7, 1903377 (2020).

61. Shiri, A., Yessenov, M., Webster, S., Schepler, K. L. & Abouraddy, A.
F. Hybrid guided space-time optical modes in unpatterned films.
Nat. Commun. 11, 6273 (2020).

62. Guo, C. & Fan, S. Generation of guided space-time wave packets
using multilevel indirect photonic transitions in integrated photo-
nics. Phys. Rev. Res. 3, 033161 (2021).

63. Ruano, P. N., Robson, C. W. & Ornigotti, M. Localized waves car-
rying orbital angular momentum in optical fibers. J. Opt. 23,
075603 (2021).

64. Béjot, P. & Kibler, B. Spatiotemporal helicon wavepackets. ACS
Photon. 8, 2345–2354 (2021).

65. Kibler, B. &Béjot, P. Discretized conicalwaves inmultimodeoptical
fibers. Phys. Rev. Lett. 126, 023902 (2021).

66. P., BéjotB., Kibler, Quadrics for structuring space-time wavepack-
ets, arXiv:2202.00407 (2022).

67. Bliokh, K. Y. & Nori, F. Spatiotemporal vortex beams and angular
momentum. Phys. Rev. A 86, 033824 (2012).

68. Sainte-Marie, A., Gobert, O. & Quéré, F. Controlling the velocity of
ultrashort light pulses in vacuum through spatio-temporal cou-
plings. Optica 4, 1298–1304 (2017).

69. Froula, D. H. et al. Spatiotemporal control of laser intensity. Nat.
Photon. 12, 262–265 (2018).

70. Shaltout, A. M. Spatiotemporal light control with frequency-
gradient metasurfaces. Science 365, 374–377 (2019).

71. Zdagkas, A., Shen, Y., Papasimakis, N., & Zheludev, N.I. Observation
of toroidal pulses of light, arXiv:2102.03636 (2021)

72. Lavery, M. P. J., Berkhout, G. C. G., Courtial, J. & Padgett, M. J.
Measurement of the light orbital angular momentum spectrum
using an optical geometric transformation. J. Opt. 13,
064006 (2011).

73. Berkhout, G. C. G., Lavery, M. P. J., Padgett, M. J. & Beijersbergen,
M.W.Measuring orbital angularmomentumsuperpositions of light
by mode transformation. Opt. Lett. 36, 1863–1865 (2011).

74. Dow, T. A., Miller, M. H. & Falter, P. J. Application of a fast tool servo
for diamond turningof non-rotationally symmetric surfaces.Precis.
Eng. 13, 243–250 (1991).

75. Sung, J. W., Hockel, H., Brown, J. D. & Johnson, E. G. Development
of a two-dimensional phase-grating mask for fabrication of an
analog-resist profile. Appl. Opt. 45, 33–43 (2006).

Acknowledgements
We thank OptiGrate Company for making volume Bragg gratings, and
Dr. Peter J. Delfyett and Dr. Ivan Divliansky for lending equipment. We
thank L. A. Hall, A. Shiri, K. L. Schepler, L. Mach, M. G. Vazimali, I. Hati-
poglu, and M. Eshaghi for useful discussions. M.Y. and A.F.A. were
supported by the U.S. Office of Naval Research (ONR) under contracts
N00014-17-1-2458, N00014-19-1-2192, and N00014-20-1-2789. J.F. and
E.G.J. were supported by ONR contract N00014-20-1-2558. M.A.A. was
funded by the Excellence Initiative of AixMarseille University –A*MIDEX,
a French ‘Investissements d’Avenir’ programme.

Author contributions
A.F.A. andM.Y. developed the concept. M.Y. designed the experiments,
carried out the measurements, and analyzed the data. Z.C. and M.P.J.L.
designedandmanufactured thediamond-machined refractive elements
for the 2D coordinate transformation. J.F and E.G.J. designed and fab-
ricated the analog diffractive phase plates for the 2D coordinate trans-
formation. M.A.A. and A.F.A. developed the theoretical aspects. A.F.A.
supervised the research. All the authors contributed to writing
the paper.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary informationTheonline version contains supplementary
material available at
https://doi.org/10.1038/s41467-022-32240-0.

Correspondence and requests for materials should be addressed to
Murat Yessenov or Ayman F. Abouraddy.

Peer review informationNatureCommunications thanks Liang JieWong
and the other, anonymous, reviewer(s) for their contribution to the peer
review of this work.

Reprints and permission information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Article https://doi.org/10.1038/s41467-022-32240-0

Nature Communications |         (2022) 13:4573 12

https://doi.org/10.1038/s41467-022-32240-0
http://www.nature.com/reprints


Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2022

Article https://doi.org/10.1038/s41467-022-32240-0

Nature Communications |         (2022) 13:4573 13

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Space-time wave packets localized in all dimensions
	Results
	Theory of 3D space-time wave packets
	Synthesizing ST wave packets localized in all dimensions
	Characterizing 3D ST wave packets
	Spectral-domain characterization
	Propagation-invariance of the intensity distribution
	Reconstructing the spatio-temporal profile and measuring the group velocity
	Field amplitude and phase measurements

	Discussion
	Methods
	Refractive phase plates
	Diffractive phase plates

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




