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Abstract: Mannose-diester lauric diacid-cholesterol (Man-DLD-Chol), as a liposomal target ligand,
was synthesized by lipase catalyzed in a non-aqueous medium. Its chemical structure was confirmed
by mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy. Glycyrrhetinic
acid (GA) liposomes containing Man-DLD-Chol (Man-DLD-Chol-GA-Lp) were prepared by the
film-dispersion method. We evaluated the characterizations of liposomes, drug-release in vitro,
the hemolytic test, cellular uptake, pharmacokinetics, and the tissue distributions. The cellular
uptake in vitro suggested that the uptake of Man-DLD-Chol-modified liposomes was significantly
higher than that of unmodified liposomes in HepG2 cells. Pharmacokinetic parameters indicated
that Man-DLD-Chol-GA-Lp was eliminated more rapidly than GA-Lp. In tissue distributions, the
targeting efficiency (Te) of Man-DLD-Chol-GA-Lp on liver was 54.67%, relative targeting efficiency
(RTe) was 3.39, relative uptake rate (Re) was 4.78, and peak concentration ratio (Ce) was 3.46. All these
results supported the hypothesis that Man-DLD-Chol would be an efficient liposomal carrier, and
demonstrated that Man-DLD-Chol-GA-Lp has potential as a drug delivery for liver-targeting therapy.

Keywords: lipase-catalytic acylation; mannose-diester lauric diacid-cholesterol; glycyrrhetinic acid
liposomes; mannose receptor; liver-targeting

1. Introduction

Liver diseases can be caused by various factors that damage the liver. There are four major liver
diseases, including fatter liver, cirrhosis, hepatitis, and hepatocellular carcinoma, while the latter
two belong to serious public health issues [1–3]. According to 2015 cancer statistics, the incidence
of hepatocellular carcinoma was fourth in all cancers and its mortality rate was the third highest in
China [4]. However, most conventional anti-tumor drugs for treatment of hepatocellular carcinoma
have little or no specificity, which results in systemic toxicity, causing undesirable side effects [5].
Therefore, a drug delivery system targeting hepatic cells would be an attractive approach to cure
hepatic diseases.
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18β-Glycyrrhetinic acid (GA), serving as an aglycone and active metabolite of glycyrrhizic
acid, shows a variety of pharmacological effects, such as a potential anti-hepatotoxic agent [6],
hepatoprotective effect [7,8], inhibition of hepatocellular carcinoma [9,10], anti-inflammation [11],
and anti-viral [12] and interferon induction [13]. These findings suggested that GA may become a
suitable candidate for the clinical treatment of hepatic diseases. However, GA is a lipophilic drug
with a very low solubility in water, which may result in poor bioavailability. In addition, GA may
cause unwanted sodium retention and potassium loss [14]. A liposomal drug delivery system is a
suitable strategy to avoid the side effects and maintain an effective concentration of the drug [15].
Liposomes are considered to be a mainstream drug delivery technology due to the relative stability in
the blood, the high cell affinity, and tissue compatibility without immunosuppressive effects to the
human body [16,17].

Receptor-mediated delivery is a favorable method employing novel carriers to insert the drug into
specific targeted tissues or cells [18]. Some literatures reported that PEG-modified liposome loading
GA, and a review on GA receptor and GA-delivering carriers [19–21]. However, this study was novel
because it provided a new kind of mannosylated conjugate for liposomal modification that resulted in
better liver-targeting of GA. It was reported that mannose receptors (MR) are highly expressed on the
liver endothelial cells and dendritic cells [22,23]. The carbohydrate-recognition domains of MR have
the ability to recognize compounds containing terminal mannose, fucose or N-acetyl-glucosamine
residues [24–26]. This mechanism would be a promising approach to achieve target specificity of
liver endothelial cells. Liposomes have good cell affinity and biocompatibility and the capacity for
surface modification [27–29]. The surface modification of liposomes could also decorate with various
targeting ligands to increase the amount of drug delivery and reduce side effects. Thus, using modified
liposomes with ligands for receptors on hepatic cells is considered to be an efficient method for the
targeted delivery of drugs.

The ability of mannose receptor to recognize mannosylated liposomes depends on three factors:
a hydrophilic mannosylated group with high affinity for hepatic mannose receptor on the liposomal
surface [30], a hydrophobic part enhancing the stability of incorporation in the lipid bilayer of the
liposomes and reducing untimely exchange to other lipid compartments [31,32], a spacer length
between the mannose moiety and the liposome [33,34], and several mannosylated cholesterol
conjugates synthesized successfully have been reported [35–37]. However, these mannosylated
cholesterol derivatives were synthesized by conventional chemical methods. The applications could be
somewhat hampered due to the multiple synthesis steps, complicated conditions, the tedious product
isolation, and the environmental concern of the process [38]. Meanwhile, the enzymatic synthesis
has distinct advantages, such as mild reaction conditions, high regioselectivity, desirable productivity
and environmental benign [39–41]. Thus, we chose the method to achieve enzymatic synthesis of
mannose-dister lauric diacid-cholesterol (Man-DLD-Chol) in non-aqueous medium.

We designed Man-DLD-Chol byenzymatic acylation in organicmedia. The Man-DLD-Chol
consisted of three parts: mannose, diester lauric diacid (DLD), and cholesterol. Mannose, a hydrophilic
part, was regarded as a recognition moiety to MR in hepatocytes. Cholesterol, one of the components
of liposomes, was embedded into the lipid bilayer of liposomes to improve the stability of the drug
delivery system [42]. DLD, a spacer part of the linker between cholesterol and mannose, was chosen to
ensure an efficient exposure of the mannose function and a tight association of the liposomes with the
mannose receptor.

This was the first time our experimental team to synthesize the Man-DLD-Chol conjugate and
used Man-DLD-Chol-modified GA liposomes. In this study, Man-DLD-Chol was synthesized under
the lipase-catalyst. The 3-hydroxyl group in cholesterol had the advantage of acylation, forming a
stable structure with the P-π conjugated system, and while DLD was excessive, the diester compound
could be inhibited. Therefore, the enzymatic synthesis with high substrate conversion and high
regioselectivity was reacted successfully. The chemical structures of Man-DLD-Chol were confirmed
by mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy. We aimed to confirm
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whether the GA liposome containing Man-DLD-Chol has liver-targeting efficiency or not. We prepared
conventional GA liposomes (GA-Lp) and GA-Lp containing Man-DLD-Chol (Man-DLD-Chol-GA-Lp).
GA-Lp and Man-DLD-Chol-GA-Lp were evaluated, including the preparation, characterizations,
GA release in vitro, hemolytic test, and cellular uptake in vitro. We deeply investigated the
pharmacokinetics and tissue distributions of Man-DLD-Chol-GA-Lp, GA-Lp, and GA solution (GA-S)
by intravenous injection. The pharmacokinetic parameters and bio-distribution data were calculated.
The detection method of high-performance liquid chromatography-tandem mass spectrometry
(LC-MS/MS) was more sensitive, selective, and accurate in comparison with detecting techniques. The
LC-MS/MS method for detection of GA in plasma and tissues was rarely reported. The in vitro
and in vivo evaluations provided important evidences for the further clinical development of
Man-DLD-Chol-GA-Lp. These results would favor the hypothesis that GA liposomes containing
targeted ligands of Man-DLD-Chol enhanced the liver-targeting efficiency.

2. Results and Discussion

2.1. Synthesis of Man-DLD-Chol

The synthesis of Man-DLD-Chol was a lipase-catalyzed reaction in a non-aqueous phase.
Both enzymatic synthesis steps generated vinyl alcohol, which could turn into acetaldehyde.
The acetaldehyde was easily volatile because of its low boiling point. Thus, the reactions were
irreversible and complete. DLD-cholesterol (DLD-Chol) and Man-DLD-Chol were synthesized
successfully by enzymatic acylation in organic media.

The molecular weight detected was 305.17 [M + Na]+ by ESI-MS (positive-ion mode), which
indicated that the identical product of DLD (molecular weight: 282.17) was obtained. In the 13C NMR
spectrum of the product showed that the chemical shift values of vinyl ester group at C1 and C2 atom
were 98.3 ppm and 141.7 ppm, the carbonyl groups at the C3 atom were shifted to a higher magnetic
field about δ 3.6 ppm (from δ 174.4 ppm to δ 170.8 ppm), which indicated esterification proceeded
between vinyl acetate and laurel acid.

The molecular weight detected was 647.50 [M + Na]+ in positive-ion mode, which suggested
that the identical intermediate of DLD-Chol (molecular weight: 624.50) was synthesized successfully.
There are two carbonyl groups in DLD-Chol, the chemical shift values were 173.1 ppm and δ 170.7 ppm.
The chemical shift of acylation at a hydroxyl group has been reported to show a downfield shift in 13C
NMR [43]. The chemical shift value at the C3 atom was shifted to a lower magnetic field (δ 73.5 ppm),
about a 2 ppm shift. Meanwhile, neighboring carbon atoms (C2 and C4) were shifted to a higher
magnetic field, about 2.8 ppm (from δ 31.7 ppm to δ 28.9 ppm) and a 2.8 ppm ( δ 42.4 ppm to δ 39.6 ppm),
indicating that the acylation proceeded between the hydroxyl group in cholesterol and DLD.

The molecular weight detected was around 783.54 [M + Na]+ in positive-ion mode, which proved
that the product obtained was identical with Man-DLD-Chol (molecular weight: 760.54). According to
some published literature, the acylation of a hydroxyl group of sugar had been reported to show a
downfield shift of the peak corresponding to O-acylated carbon atom and a higher magnetic shift of the
peak corresponding to a neighboring carbon atom [44,45]. The product of the Man-DLD-Chol structure
was determined by 13C NMR at 100 MHz. The methylene group at the C-6” atom was shifted to a
lower magnetic field, about 2.1 ppm (from δ 63.4 ppm to δ 65.5 ppm), and the neighboring carbon atom
(C5”) was shifted to a higher magnetic field, about 3.1 ppm (from δ 75.1 ppm to δ 72.0 ppm), indicating
the acylation took place at the C6” atom, and the lipase of Novozym 435 showed an outstanding
selectivity to the hydroxyl group at the C6” position. The product was proved to be Man-DLD-Chol.
Man-DLD-Chol was synthesized from mannose and DLD-Chol in a non-aqueous phase with the lipase
of Novozym 435.
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2.2. Characterization of Liposomes

Scanning electron microscopy (SEM) images of GA-Lp and Man-DLD-Chol-GA-Lp are shown
in Figure 1. The mean particle sizes of liposomes (GA-Lp and Man-DLD-Chol-GA-Lp) are less than
150 nm with a polydispersity index about 0.14 (Table 1). The particle size of Man-DLD-Chol-GA-Lp
is slightly larger than that of GA-Lp because of Man-DLD-Chol, in which the DLD-Chol fraction of
molecule was inserted in the lipid bilayer and the mannose fraction was floated on the surface of
the liposomes. The zeta potential of GA-Lp and Man-DLD-Chol-GA-Lp are −32.47 ± 1.78 mV and
−38.63 ± 1.07 mV (Table 1), respectively. The existence of Man-DLD-Chol might be responsible for
the increased zeta potential value of Man-DLD-Chol-GA-Lp, which was beneficial for stability in the
liposomes. The particle size plays an important role in drug distribution in vivo. It has been reported
that the particle size of the liposomes was larger than 400 nm, which was rapidly captured by the
reticuloendothelial system within minutes [46,47]. In addition, liposomes ranging from 100–200 nm
in diameter were significantly accumulated in the tissue on account of permeability improvement
and retention effect [48]. The encapsulation efficient (EE) of both liposomes was above 85% (Table 1).
The result indicated that the incorporation of Man-DLD-Chol did not affect the EE of GA liposomes
and destroy the structure of the liposomes.
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diacid-cholesterol (Man-DLD-Chol-GA-Lp) (B).

Table 1. The characterizations of the liposomes (mean ± SD, n = 3).

Sample Particlesize(nm) Zeta Potential (mV) PDI EE (%)

GA-Lp 124.37 ± 1.43 −32.47 ± 1.78 0.13 ± 0.00 86.34 ± 2.34
Man-DLD-Chol-GA-Lp 148.10 ± 0.95 −38.63 ± 1.07 0.14 ± 0.01 88.18 ± 1.31

2.3. Hemolytic Study

Hemolysis data is shown in Figure 2. For the groups of GA-Lp (Figure 2B) and Man-DLD-Chol-
GA-Lp (Figure 2C), we observed that hemolysis of erythrocyte suspensions only occurred obviously
in the positive control (the ninthtube). However, erythrocyte suspensions containing GA-S (the fifth
through seventh tubes) and the positive control (the ninthtube) appeared in different degrees of
hemolysis. In addition, the data of the hemolytic rate is shown in Figure 3. Hemolytic rates of
Man-DLD-Chol-GA-Lp and GA-Lp were less than 10% at the maximum GA concentration (200 µg/mL),
but the hemolytic rate reached up to 34% in GA-S. These hemolytic results suggest that GA liposome
would be a safe formulation for injection; meanwhile, Man-DLD-Chol was a safe drug carrier for
targeted drug delivery.
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2.4. Drug Release of Liposome In Vitro

The GA release profile from GA-S, GA-Lp and Man-DLD-Chol-GA-Lp is shown in Figure 4.
GA-Lp and Man-DLD-Chol-GA-Lp were released more slowly than GA-S. The total amount of GA
released from GA-S was approximately 91% in 48 h. However, we found that nearly 31% of the total
drug was released from Man-DLD-Chol-GA-Lp in 12 h, and then followed by the release of 65% within
48 h. The result indicated that GA could be released slowly from the liposomes. In addition, there
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was no significant difference between the GA release from Man-DLD-Chol-GA-Lp and GA-Lp under
the same condition. This result also suggested that the Man-DLD-Chol did not affect the structure of
liposomes. To further evaluate the rule of liposomes’ release in vitro, the release data was calculated by
using different formula models. The correlation coefficients in different model are listed in Table 2. It
was demonstrated that the release feature of GA-S was fitted for the first-order formula model because
of correlation coefficient −0.992, while the GA-Lp and Man-DLD-Chol-GA-Lp were suited to the
Higuchi formula model. These results indicated that GA-S was released at a constant rate, which was
related to the time. However, the GA-Lp and Man-DLD-Chol-GA-Lp were released at a non-constant
rate, and the rate of drug releases was slower.Molecules 2017, 22, 1598 6 of 20 
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Table 2. Fitting coefficient of GA-S, GA-Lp and Man-DLD-Chol-GA-Lp in different release models.

Sample Zero-Order Formula
Model

First-Order Formula
Model

Higuchi Formula
Model

GA-S 0.753 −0.992 0.889
GA-Lp 0.941 −0.984 0.990

Man-DLD-Chol-GA-Lp 0.964 −0.990 0.993

2.5. Cellular Uptakes

The cellular uptakes are shown in Figure 5, the fluorescence intensity in cells incubated with
Man-DLD-Chol-C6-Lp was significantly higher than that in C6-Lp. In addition, the fluorescence
intensity was enhanced as the amount of Man-DLD-Chol increased. As shown in Figure 6; meanwhile,
the HepG2 cells’ association of Man-DLD-Chol-C6-Lp (10% Man-DLD-Chol) was inhibited by
pre-incubation with mannose. We found that the fluorescence decreased rapidly as the concentration
of mannose increased. This result indicated that the Man-DLD-Chol lost the superior targeting effect
on HepG2 cells since mannose previously inhibited mannose receptors to recognize Man-DLD-Chol.
Therefore, Man-DLD-Chol could enhance cell localization and interaction of liposomes by a specific
receptor-endocytosis mechanism in HepG2 cells.GA-Lp and Man-DLD-Chol-GA-Lp might be
transported into HepG2 cells by non-specific and receptor-mediated endocytosis, respectively, and
then exhibited the different target effect after being released from the carrier.
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2.6. Pharmacokinetics Study

Based on the cellular uptake of liposomes mediated with Man-DLD-Chol in vitro, the
pharmacokinetic properties of GA-S, GA-Lp, and Man-DLD-Chol-GA-Lp were studied by the detection
of the GA content in rabbit plasma. The mean plasma concentration-time curves of GA after
intravenous administration of GA-S, GA-Lp, and Man-DLD-Chol-GA-Lp are shown in Figure 7.
Compared with GA-S and GA-Lp, the plasma concentration of GA shows a steep drop after intravenous
injection of Man-DLD-Chol-GA-Lp. A non-compartment model was suitable to evaluate the plasma
drug concentration time curves obtained in rabbits on the basis of the analysis of models and
parameters. The main pharmacokinetic parameters are summarized in Table 3. Compared with
GA-S, the elimination half-life (t1/2z) of GA-Lp and Man-DLD-Chol-GA-Lp decreased, whose values
were 2.51 ± 0.44 h and 1.78 ± 0.08 h, respectively. The results indicated that the GA-Lp could rapidly
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distribute to tissue from blood, which agreed with the theory of the reticuloendothelial system. GA-Lp
was swallowed up by the reticuloendothelial system, then the immune function was active, and the
drug may distribute to some organs that are rich in reticular endothelia. The elimination rate of
Man-DLD-Chol-GA-Lp was the fastest, indicating that Man-DLD-Chol-GA-LP might be recognized
rapidly by mannose receptors. Meanwhile, the mean plasma clearance (CL) of Man-DD-Chol-GA-Lp
(5.81 ± 0.30 L/(h·kg)) was significantly higher than that of GA-Lp (5.00 ± 0.30 L/(h·kg)) and GA-S
(3.36 ± 0.11 L/(h·kg)). Moreover, the mean residence time (MRT0-∞) of Man-DLD-Chol-GA-Lp was
the shortest (1.35 ± 0.05 h). These results indicated that Man-DLD-Chol-GA-Lp was eliminated more
rapidly than GA-Lp and GA-S from the blood circulation system. In addition, the relative value of
distribution volume (Vd), GA-Lp (18.15 ± 3.42 L/kg) and Man-DLD-Chol-GA-LP (14.90 ± 0.55 L/kg),
compared with GA-S (12.83 ± 0.88 L/kg), suggesting GA liposomes were easily distributed into
tissue, which is beneficial to improving the therapeutic target effect. The area under the curve of
drug concentration (AUC0–∞) of Man-DLD-Chol-GA-Lp was about 1.16 times less than that of GA-Lp
(1053.55 ± 65.44 µg/L·h). The AUC of GA-Lp and Man-DLD-Chol-GA-Lp declined with a rising value
of CL, which indicated that there was a rapid removal of drug in plasma. These results demonstrated
that liposomes modified with Man-DLD-Chol had significant effects on the pharmacokinetics in
comparison of GA-Lp.
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Table 3. Pharmacokinetics parameters of GA-S, GA-Lp and Man-DLD-Chol-GA-Lp in rabbit plasma
(mean ± SD, n = 6).

Parameters GA-S GA-Lp Man-DLD-Chol-GA-Lp

AUC0–∞ (µg/L·h) 1562.72 ± 50.45 1053.55 ± 65.44 * 906.37 ± 48.99 *
MRT0-∞ (h) 2.68 ± 0.12 1.77 ± 0.06 * 1.35 ± 0.05 *

t1/2z (h) 2.65 ± 0.25 2.51 ± 0.44 1.78 ± 0.08 *
CLz (L/(h·kg)) 3.36 ± 0.11 5.00 ± 0.30 * 5.81 ± 0.30 *

Vd (L/kg) 12.83 ± 0.88 18.15 ± 3.42 * 14.90 ± 0.55

*, compared with GA-S, p < 0.05.
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2.7. Tissue Distribution Study

A further study of tissue distributions was needed to confirm whether the drug of
Man-DLD-Chol-GA-Lp was rapidly gathered in specific organs, or not, in vivo. The linearity of
the LC-MS/MS method for the detection of GA was established. Linear curves, linear coefficients, and
linear ranges of GA in plasma and tissues are listed in Table 4. The concentrations of GA in heart, liver,
spleen, lung, kidney, and plasma of mice were determined at various time points after intravenous
administration of GA-S, GA-Lp, and Man-DLD-Chol-GA-Lp. The concentration-time profiles in
various tissues and plasma are shown in Figure 8. This reflects the distribution trend of different GA
formulations in vivo for mice. We found that the liver concentration of Man-DLD-Chol-GA-Lp was
significantly higher than that of the other two. The result indicates that the liposome mediated with
Man-DLD-Chol can deliver the drug rapidly to the liver after intravenous administration and supports
our hypothesis that liposomes modified with mannosylated lipid would enhance liver-targeting
through the mannose receptor.

Molecules 2017, 22, 1598 9 of 20 

 

2.7. Tissue Distribution Study 

A further study of tissue distributions was needed to confirm whether the drug of Man-DLD-
Chol-GA-Lp was rapidly gathered in specific organs, or not, in vivo. The linearity of the LC-MS/MS 
method for the detection of GA was established. Linear curves, linear coefficients, and linear ranges 
of GA in plasma and tissues are listed in Table 4. The concentrations of GA in heart, liver, spleen, 
lung, kidney, and plasma of mice were determined at various time points after intravenous 
administration of GA-S, GA-Lp, and Man-DLD-Chol-GA-Lp. The concentration-time profiles in 
various tissues and plasma are shown in Figure 8. This reflects the distribution trend of different GA 
formulations in vivo for mice. We found that the liver concentration of Man-DLD-Chol-GA-Lp was 
significantly higher than that of the other two. The result indicates that the liposome mediated with 
Man-DLD-Chol can deliver the drug rapidly to the liver after intravenous administration and supports 
our hypothesis that liposomes modified with mannosylated lipid would enhance liver-targeting through 
the mannose receptor.  

 

Figure 8. Cont.



Molecules 2017, 22, 1598 10 of 20

Molecules 2017, 22, 1598 10 of 20 

 

 

 
Figure 8. Cont.



Molecules 2017, 22, 1598 11 of 20
Molecules 2017, 22, 1598 11 of 20 

 

 
Figure 8. Concentration of GA in various tissues and plasma of mice after intravenous administration 
(n = 5). (A) Heart; (B)liver; (C) spleen; (D) lung; (E) kidney; and (F) plasma. 

Table 4. Linear equation, linear coefficients, and linear ranges of GA in plasma and tissues. 

Biosample Linear Curve Linear Coefficient (r2) Linear Range (ng/mL) 
Plasma  Y = 0.0063X + 0.1950 0.9991 5–5000 
Heart Y = 0.0054X + 0.2093 0.9989 5–5000 
Liver Y = 0.0056X + 0.4971 0.9993 5–12,000 

Spleen Y = 0.0059X + 0.1126 0.9994 5–5000 
Lung Y = 0.0067X + 0.3202 0.9991 5–5000 

Kidney Y = 0.0050X + 0.2621 0.9990 5–5000 

Furthermore, the concentration-time data was quantitatively analyzed to define the liver-
targeting. Pharmacokinetic parameters of AUC0–∞ and Cmax in various tissues and plasma are 
summarized in Table 5. Then the important parameters for the evaluation of target ability, including 
targeting efficiency (Te), relative targeting efficiency (RTe), relative uptake rate (Re), and peak 
concentration ratio (Ce), were calculated according to the important pharmacokinetic parameters of 
AUC0–∞ and Cmax. The equations of Te, RTe, Re, and Ce are reported in the Pharmacopoeia of the 
People’s Republic of China 2015 [49]. The data is listed in Tables 6 and 7. Te reflects the selective rate 
in the targeted tissue. There was a positive correlation between the value of Te and the targeted ability. 
The Te of GA-S in the plasma and kidney were 30.27% and 29.14%, respectively, demonstrating the 
highest selection rate in the plasma and kidney. Compared with GA-S, the Te of GA-Lp in tissues 
was different; the high selective rate transferred into the liver and lung. The result was consistent 
with the theory of the reticuloendothelial system, that liposomes could be rich in the liver and lung, 
or might decrease the renal toxicity and side effects. With the liposome modified with Man-DLD-
Chol, the Te reached 54.67% to reflect the highest selective rate in the liver, indicating that Man-DLD-
Chol-GA-Lp was specifically recognized by mannose receptors; thus, the major drug was rapidly 
localized in the liver. In addition, RTe reflects the multiple of the targeted enhancement in the 
liposomal formulation compared to the solution formulation. Man-DLD-Chol-GA-Lp possessed 
outstanding liver-targeting with an RTe of 3.39 in comparison with GA-S. Re indicates the targeted 
ability of liposomal formulation. The Re of Man-DLD-Chol-GA-Lp was 3.34 times higher than that of 
GA-Lp, indicating that Man-DLD-Chol-GA-Lp had a great liver-targeting ability. A similar result 
regarding the Ce of Man-DLD-Chol-GA-Lp was in accordance with Te and Re, which illustrated that 
Man-DLD-Chol was more optimally recognized by the liver. Therefore, compared with GA-S and 
GA-Lp, the tissue distributions proved that Man-DLD-Chol-GA-Lp could enhance its bioavailability 
and targeted to the liver through mannose receptors. 

Figure 8. Concentration of GA in various tissues and plasma of mice after intravenous administration
(n = 5). (A) Heart; (B)liver; (C) spleen; (D) lung; (E) kidney; and (F) plasma.

Table 4. Linear equation, linear coefficients, and linear ranges of GA in plasma and tissues.

Biosample Linear Curve Linear Coefficient (r2) Linear Range (ng/mL)

Plasma Y = 0.0063X + 0.1950 0.9991 5–5000
Heart Y = 0.0054X + 0.2093 0.9989 5–5000
Liver Y = 0.0056X + 0.4971 0.9993 5–12,000

Spleen Y = 0.0059X + 0.1126 0.9994 5–5000
Lung Y = 0.0067X + 0.3202 0.9991 5–5000

Kidney Y = 0.0050X + 0.2621 0.9990 5–5000

Furthermore, the concentration-time data was quantitatively analyzed to define the liver-targeting.
Pharmacokinetic parameters of AUC0–∞ and Cmax in various tissues and plasma are summarized
in Table 5. Then the important parameters for the evaluation of target ability, including targeting
efficiency (Te), relative targeting efficiency (RTe), relative uptake rate (Re), and peak concentration
ratio (Ce), were calculated according to the important pharmacokinetic parameters of AUC0–∞ and
Cmax. The equations of Te, RTe, Re, and Ce are reported in the Pharmacopoeia of the People’s
Republic of China 2015 [49]. The data is listed in Tables 6 and 7. Te reflects the selective rate in the
targeted tissue. There was a positive correlation between the value of Te and the targeted ability.
The Te of GA-S in the plasma and kidney were 30.27% and 29.14%, respectively, demonstrating
the highest selection rate in the plasma and kidney. Compared with GA-S, the Te of GA-Lp in
tissues was different; the high selective rate transferred into the liver and lung. The result was
consistent with the theory of the reticuloendothelial system, that liposomes could be rich in the liver
and lung, or might decrease the renal toxicity and side effects. With the liposome modified with
Man-DLD-Chol, the Te reached 54.67% to reflect the highest selective rate in the liver, indicating that
Man-DLD-Chol-GA-Lp was specifically recognized by mannose receptors; thus, the major drug was
rapidly localized in the liver. In addition, RTe reflects the multiple of the targeted enhancement in
the liposomal formulation compared to the solution formulation. Man-DLD-Chol-GA-Lp possessed
outstanding liver-targeting with an RTe of 3.39 in comparison with GA-S. Re indicates the targeted
ability of liposomal formulation. The Re of Man-DLD-Chol-GA-Lp was 3.34 times higher than that
of GA-Lp, indicating that Man-DLD-Chol-GA-Lp had a great liver-targeting ability. A similar result
regarding the Ce of Man-DLD-Chol-GA-Lp was in accordance with Te and Re, which illustrated that
Man-DLD-Chol was more optimally recognized by the liver. Therefore, compared with GA-S and



Molecules 2017, 22, 1598 12 of 20

GA-Lp, the tissue distributions proved that Man-DLD-Chol-GA-Lp could enhance its bioavailability
and targeted to the liver through mannose receptors.

Table 5. Pharmacokinetic parameters of GA-S, GA-Lp, and Man-DLD-Chol-GA-Lp in mice’s tissues
and plasma (mean ± SD, n = 5).

Parameters Tissues GA-S GA-Lp Man-DLD-Chol-GA-Lp

AUC0–t Heart 2.5973 ± 0.1435 1.4244 ± 0.0936 * 1.4482 ± 0.1024 *
(mg/L·h) Liver 4.0944 ± 0.2211 5.8582 ± 0.2376 19.5541 ± 0.6356 *

Spleen 0.9401 ± 0.0744 1.0280 ± 0.068 1.3993 ± 0.1322 *
Lung 2.6747 ± 0.1262 3.7460 ± 0.1737 3.0815 ± 0.1363

Kidney 7.3979 ± 0.2813 3.0836 ± 0.1424 * 3.053 ± 0.2258 *
Plasma 7.6867 ± 0.1673 7.5861 ± 0.5270 7.2320 ± 0.1950

Cmax (mg/L) Heart 2.1362 ± 0.2284 1.2913 ± 0.1100 * 1.1061 ± 0.1705 *
Liver 3.1618 ± 0.355 4.8747 ± 0.4704 10.9554 ± 0.9288 *

Spleen 0.9382 ± 0.0954 1.0545 ± 0.1058 1.5679 ± 0.1045 *
Lung 2.4842 ± 0.1903 3.8845 ± 0.3562 * 3.0607 ± 0.2937

Kidney 3.1537 ± 0.1802 2.6341 ± 0.2846 2.8216 ± 0.3714
Plasma 3.6551 ± 0.3398 3.8124 ± 0.3767 3.4521 ± 0.2840

*, compared with GA-S, p < 0.05.

Table 6. Targeting parameters (Te) of GA-S in mice tissues and plasma.

Parameter Heart Liver Spleen Lung Kidney Plasma

Te (%) 10.23 16.13 3.70 10.53 29.14 30.27

Table 7. Targeting parameters of GA-Lp, and Man-DLD-Chol-GA-Lp in mice tissues and plasma.

Parameter Formulation Heart Liver Spleen Lung Kidney Plasma

Te (%) GA-Lp 6.27 25.78 4.52 16.48 13.57 33.38
Man-DLD-Chol-GA-Lp 4.05 54.67 3.91 8.62 8.54 20.22

RTe GA-Lp 0.61 1.60 1.22 1.56 0.47 1.10
Man-DLD-Chol-GA-Lp 0.40 3.39 1.06 0.82 0.29 0.67

Re GA-Lp 0.55 1.43 1.09 1.40 0.42 0.99
Man-DLD-Chol-GA-Lp 0.56 4.78 1.49 1.15 0.41 0.94

Ce GA-Lp 0.60 1.54 1.12 1.56 0.84 1.04
Man-DLD-Chol-GA-Lp 0.52 3.46 1.67 1.23 0.89 0.94

3. Materials and Methods

3.1. Materials

D-(+)-Mannose (assay 97%), cholesterol and dodecanedioic acid were purchased from Aladdin
Industrial Corporation (Shanghai, China). GA (assay 97.0%) was supplied by China Resources
Sanjiu Medical and Pharmaceutical Co., Ltd. (Shanghai, China). Ursolic acid (assay 99.2%, the
internal standard, IS) was purchased from the National Institutes for Food and Drug Control (NIFDC)
(Guangzhou, China). Coumarin-6 was obtained from Beijing Norzer Pharmaceutical Co., Ltd.
(Beijing, China). Egg phosphatidylcholine (EPC, assay 98%) was purchased from Lipoid Co., Ltd.
(Ludwigshafen, Germany). Cholesterol (CHS, assay 98%) was purchased from Advanced Vehicle
Technology Pharmaceutical, Co., Ltd. (Shanghai, China). Candida rugosa lipase (CRL) and molecular
sieves (4Å) were purchased from Aladdin Industrial Corporation (Shanghai, China). Sephadex
G-50 was purchased from Amersham Pharmacia Biotech (Piscataway, NJ, USA). Sebacic acid (assay
99%) and Novozym 435 Lipase (CAL-B) were purchased from Novozymes Biotechnology Co., Ltd.
(Tianjin, China). Acetic acid vinyl ester, isooctane, pyridine, tetrahydrofuran, and other reagents were
purchased from Guangzhou Chemical Reagent Factory (Guangzhou, China). Methanol and acetonitrile
(HPLC grade) were obtained from Oceanpak Alexative Chemical., Ltd (Goteborg, Sweden). HPLC or
LC-MC/MS reagents were filtered through a 0.22 µm filter before analysis. Methanol, ethanol, ethyl
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acetate, and the other reagents in liquid-liquid extraction were of analytical grade and used without
further purification. Distilled water was used in all experiments.

GA-S: Sodium hydroxide (0.1 mol/L) was diluted with saline to adjust to a pH = 8.2, then 10 mg
of GA was dissolved in sodium hydroxide solution (pH = 8.2) to prepare the desired concentration.

3.2. Synthesis of Man-DLD-Chol

The synthetic reaction of Man-DLD-Chol was followed via three steps. For the first step, synthesis
of DLD (Scheme 1-I) was synthesized. Dodecanedioic acid (17.84 g), mercuric acetate (0.50 g), copper
acetate (0.10 g), and vinyl acetate (30.00 mL) were added into a round-bottom flask (250 mL) under
magnetic stirring for 30 min at 0 ◦C. Then sulfuric acid (0.06 mL) was added. The temperature of the
reaction mixtures was converted at 56 ◦C and the reaction time was 9 h. DLD was separated from the
synthetic liquid by the method of silica gel column chromatography. In the second step, DLD-Chol
(Scheme 1-II) was catalyzed by lipase, cholesterol, DLD (1:5, molar ratio), and isooctane (30 mL), which
were added into a 100 mL conical vial. The reaction mixtures were shaken for 30 min in a thermostat
oscillator and then Candida rugosa lipase (80.0 mg) was added into the vial. The reaction mixtures were
shaken at 250 rpm for 18 h (46◦C). DLD-Chol was obtained using ethanol recrystallization. For the
final step, the synthesis of Man-DLD-Chol (Scheme 1-III) was synthesized in non-aqueous medium.
Mannose, DLD–Chol (1:3.5, molar ratio), Novozym 435 (56.3 mg), pyridine, andtetrahydrofuran (2:3,
volume ratio) were added into a 25 mL conical vial. The vial was placed in a thermostat oscillator at
58 ◦C and the reaction mixtures were shaken at 250 rpm for 27 h. The purified DLD, DLD-Chol, and
Man-DLD-Chol were analyzed by MS and NMR spectroscopy. The data is shown below:

DLD: ESI-MS m/z: 305.17 [M + Na]+. 13C NMR (100 MHz, (CD3)2SO) δ: 98.3 (C1), 141.7 (C2), 170.8
(C3), 33.5 (C4), 24.5 (C5), 29.2 (C6), 29.1 (C7), 28.8 (C8). 1H NMR (400 MHz, (CD3)2SO) δ: 7.22 (1H, dd,
J = 14.0, 3.6 Hz, H2), 4.76 (2H, dd, J = 9.9, 10.1Hz, H1), 2.41 (2H, t, J = 7.4 Hz, H4), 1.54 (2H, dd, J = 14.2,
7.1 Hz, H5), 1.25 (6H, m, H6, H7, H8).

DLD-Chol: ESI-MS m/z: 647.50 [M + Na]+. 13C NMR (100 MHz, CDCl3) δ: 36.8 (C1), 28.9 (C2), 73.5
(C3), 39.6 (C4), 139.5 (C5), 122.4 (C6), 31.7 (C7), 31.7 (C8), 49.9 (C9), 36.4 (C10), 20.9 (C11), 39.3 (C12),
42.1 (C13), 56.5 (C14), 24.9 (C15), 28.9 (C16), 56.0 (C17), 11.7 (C18), 19.1 (C19), 35.6 (C20), 18.5 (C21),
36.0 (C22), 23.7 (C23), 38.0 (C24), 28.1 (C25), 22.6 (C26), 22.4 (C27), 173.1 (C1′), 34.5 (C2′), 24.4 (C3′),
29.2 (C4′), 29.0 (C5′), 27.8 (C6′), 27.6 (C7′), 29.0 (C8′), 29.2 (C9′), 24.1 (C10′), 33.8 (C11′), 170.7 (C12′),
141.0 (C13′), 97.3 (C14′). 1H NMR (400 MHz, CDCl3) δ: 7.28 (1H, dd, J = 14.0, 6.3 Hz, H13′), 5.37 (1H, d,
J = 4.1 Hz, H6), 4.87 (2H, dd, J = 14.0, 1.5 Hz, Hα14′), 4.61 (1H, m, H3), 4.56 (1H, dd, J = 6.5, 1.5 Hz,
Hβ14′), 2.01 (2H, m, H4), 1.34 (2H, d, J = 2.5 Hz, H2′), 1.28 (12H, s, H4′~H9′), 1.02 (3H, s, 19-CH3), 0.91
(3H, d, J = 6.5 Hz, 21-CH3), 0.87 (3H, d, J = 1.7 Hz, 26-CH3), 0.87 (3H, d, J = 1.7 Hz, 27-CH3), 0.68 (3H,
s, 18-CH3).

Man-DLD-Chol: ESI-MS m/z: 783.54 [M + Na]+. 13C NMR (100 MHz, Pry) δ: 37.4 (C1), 28.6 (C2), 74.0
(C3), 38.7 (C4), 140.1 (C5), 122.9 (C6), 32.3 (C7), 32.1 (C8), 50.4 (C9), 36.9 (C10), 21.4 (C11), 40.0 (C12),
42.6 (C13), 56.9 (C14), 24.6 (C15), 28.4 (C16), 56.5 (C17), 12.1 (C18), 19.5 (C19), 36.2 (C20), 19.1 (C21),
36.6 (C22), 24.3 (C23), 39.8 (C24), 28.3 (C25), 23.1 (C26), 22.8 (C27), 173.2 (C1′), 34.9 (C2′), 25.5 (C3′),
29.8 (C4′), 29.6 (C5′), 29.5 (C6′), 29.5 (C7′), 29.6 (C8′), 29.7 (C9′), 25.3 (C10′), 34.5 (C11′), 173.9 (C12′),
96.1 (C1′ ′), 73.3 (C2′ ′), 72.9 (C3′ ′), 69.3 (C4′ ′), 72.0 (C5′ ′), 65.5 (C6′ ′). 1H NMR (400 MHz, Pry) δ: 5.68
(1H, s, H1′ ′), 5.17 (1H, d, J = 3.1 Hz, H6), 4.88 (1H, s, Hα6′ ′), 4.66 (1H, dd, J = 11.0, 4.9 Hz, H3), 4.60
(1H, s, Hβ6′ ′), 4.55 (1H, d, J = 3.1 Hz, H5′ ′), 4.53 (1H, d, J = 2.7 Hz, H3′ ′), 4.45 (1H, s, H2′ ′), 4.35 (1H, t,
J = 8.9 Hz, H4”), 2.28 (2H, m, H4), 2.18 (2H, t, J = 7.1 Hz, H2′), 2.05 (2H, t, J = 7.5 Hz, H11′), 1.47 (4H, m,
H3′, H10′).
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Scheme 1. Reagents and conditions: I dodecanedioic acid, vinyl acetate, mercuric acetate, and copper
acetate were combined. with magnetic stirring, for 30 min at 0 ◦C, then sulfuric acid was added, with
magnetic stirring 9 h; II diester lauric diacid (DLD), cholesterol, isooctane, Candida rugosa lipase, and
shaken at 250 rpm for 18 h at 46 ◦C; III DLD-Chol, mannose, Novozym 435 lipase, pyridine, and
tetrahydrofuran were combined and shaken at 58 ◦C, at 250 rpm, for 27 h.

3.3. Liposome Preparation

The liposomes were prepared by the thin-film dispersion method [50]. In brief, lipid materials
(EPC/Chol = 7/3, molar ratio), GA (8 mg), and Man-DLD-Chol (10% of EPC, molar ratio) were
dissolved in chloroform, and then the organic solvent was removed to form a thin film. The lipid
film was hydrated with PBS (pH = 7.4), and then the suspensions were homogenized under the
ultrasonic probe. Finally, liposome suspensions were passed through a polycarbonate filter, and
Man-DLD-Chol-GA-Lp was obtained. For the preparation of GA-Lp, an identical procedure was
conducted except that the equivalent molar Man-DLD-Chol was replaced by cholesterol. In addition,
the fluorescence blank liposomes labeled by coumarin-6 (C6-Lp and Man-DLD-Chol-C6-Lp) were also
prepared by the thin-film dispersion method. The amount of coumarin-6 was 1% molar ratio of EPC.
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3.4. Characterization of Liposome

The characteristics of liposomes, including surface morphology, particle size, zeta-potential,
polydispersity index, and encapsulation efficiency, were analyzed. The surface morphology of GA-Lp
and Man-DLD-Chol-GA-Lp were analyzed using SEM. The particle size and polydispersity index
(PDI) of liposomes were measured by a Zetasizer Nano ZS90 (Malvern Instruments, Malvern, UK).
The liposome samples were diluted with distilled water before measurement. Similarly, the zeta
potential was determined by laser Doppler anemometry using a Malvern Zetasizer. Each liposome
sample was measured in triplicate at 25 ◦C and each sample was detected for 5 min. The EE of
liposomes was measured by the method reported previously [51]. The EE was determined by
using gel exclusion chromatography and expressed as the ratio of liposomes containing entrapped
drug and the total amount of drug in the liposome containing entrapped and non-entrapped drug.
The liposome sample was passed through a Sephadex G-50 column eluted by distilled water to separate
the non-entrapped drug. Then, the liposomes containing entrapped GA were disrupted with methanol
to determine the concentration of GA (We) by high-performance liquid chromatography (HPLC).
The total amount of drug in the liposome (Wt) containing entrapped and non-entrapped GA was also
disrupted with methanol to determine the concentration of GA by HPLC.

EE (%) = We/Wt × 100% (1)

3.5. Hemolytic Study

The hemolysis induced by GA-Lp and Man-DLD-Chol-GA-Lp was measured on fresh rabbit
blood using the method published previously [52]. The sedimentary erythrocytes were collected, then
washed with saline three times and centrifuged repeatedly until the supernatant was no longer red.
Erythrocyte pellets were transferred into saline to prepare a 2% erythrocyte standard suspension. Each
group were included the first through seventh tubes, and 2% erythrocyte standard suspension was
incubated with different concentrations of GA-S, GA-Lp, or Man-DLD-Chol-GA-Lp; in the eighth tube,
2% erythrocyte standard suspension was incubated with 0.9% saline as a negative control; in the ninth
tube, 2% erythrocyte standard suspension was incubated with the same volume of distilled water as a
positive control; in the tenth tube, were references of GA-S, GA-Lp, or Man-DLD-Chol-GA-Lp. After
blending, all the samples were incubated at 37 ◦C and observed after 6 h. In addition, all the samples
were centrifuged at 8000 rpm for 10 min to separate the supernatant. The sample of erythrocyte
standard suspension containing liposome (As), negative control (A0%) and positive control (A100%)
were determined spectrophotometrically at 540 nm. The following equation was used to calculate the
hemolytic rate:

Hemolytic rate (%) = (As − A0%)/(A100% − A0%) × 100% (2)

3.6. Drug Release from Liposome In Vitro

Release of GA from Man-DLD-Chol-GA-Lp, GA-Lp and GA-S in vitro was evaluated by the
dialysis bag method [53]. GA-Lp and Man-DLD-Chol-GA-Lp containing 10 mg GA were dissolved
in 4 mL PBS (pH 7.4). Both liposome suspensions and GA-S (10 mg equal to GA) were, respectively,
placed in a dialysis bag (molecular weight cut of 8000–14,000). Then, the dialysis bag was suspended in
500 mL of PBS (pH 7.4) containing 0.5% Tween-80 under sinking conditions (100 rpm, 37 ◦C ± 0.5 ◦C).
Samples (2 mL) were taken at predetermined time intervals from the release medium and then refilled
with the same volume of fresh release medium. The samples were passed through a filter with
0.22 µm pore size. All tests were performed in triplicate. The concentration of GA was determined by
HPLC. The accumulated release of GA-S, GA-Lp, and Man-DLD-Chol-GA-Lp were calculated by the
following equation:

Drug release percentage (%) = Wrelease/Wtotal × 100% (3)
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3.7. Cellular Uptakes

To evaluate the cellular uptake of liposome mediated with Man-DLD-Chol in HepG2 cells,
coumarin-6, as a fluorescent indicator, was labeled in the liposomes. The cellular uptake rate of
fluorescent liposomes was investigated as reported previously [54]. HepG2 cells were seeded into
24-well plates at a density of 1.0 × 105 cells per well and cultured at 37 ◦C for 24 h. Then, cells were
incubated with coumarin-6 liposome (C6-Lp) modified with different amounts of Man-DLD-Chol
(Man-DLD-Chol-C6-Lp) for 2 h at 37 ◦C. The cells were washed three times with cold PBS after the
incubation, and then solubilized in 1% TritonX-100 solution. The fluorescence intensity was analyzed
by a microplate reader (Molecular Devices, Waltham, MA, USA) at wavelengths of 466 nm (excitation)
and 539 nm (emission). The cells without any treatment were used as the blank control. In addition,
we developed a competitive binding experiment to evaluate mannose which specifically mediated the
cellular uptake of mannose encapsulated in Man-DLD-Chol-C6-Lp. HepG2 were exposed to mannose
with different concentration for 4 h beforehand, then incubated with Man-DLD-Chol-C6-Lp for a
further 2 h. After incubation, the cells were washed three times with PBS (pH 7.4) and then were
solubilized in 1% Triotnx-100 solution. The cell-associated fluorescence intensity was measured by a
microplate reader.

3.8. Pharmacokinetic Studies

Animal experiments were performed according to the Guidelines of the Animal Center of
Guangzhou University of Chinese Medicine and the Code of Practice for Housing and Care of Animals
Used in Scientific Procedure (the ethic approval number of animal experiment: GDPTTCM170221).
The pharmacokinetic properties of GA-S, GA-Lp and Man-DLD-Chol-GA-Lp were evaluated by the
determination of the GA content in rabbit plasma. Eighteen experimental rabbits were randomly
divided into three groups, including GA-S, GA-Lp, and Man-DLD-Chol-GA-Lp. Each rabbit was
intravenously administered via the ear vein at a single dose of 5.25 mg/kg. Blood samples (0.5 mL)
were collected from the marginal ear vein at various times (0.25, 0.5, 1, 2, 4, 6, 9, and 12 h) after
administration plasma was immediately centrifuged (8000 rpm, 10 min). Two-hundred microliters
(200 µL) rabbit plasma, 50 µL (500 ng/mL) ursolic acid solution (internal standard), and 2 mL of
ethyl acetate were added and mixed for 5 min by vortex. After centrifugation (8000 rpm, 10 min), the
clear supernatant was transferred to centrifuge tubes and dried in a vacuum oven until the organic
solvent was removed. The dry sample was reconstituted with 200 µL of acetonitrile vortex-mixed, and
centrifuged (10,000 rpm, 8min). Then 5 µL of the clear supernatant was injected into LC-MS/MS, and
the parameters were determined by DAS2.0 software.

LC-MS/MS system condition: A BDS HYPERSIL C18 column (5 mm, 50 mm × 2.1 mm, Thermo
Scientific, Boston, MA, USA) was used for separation. The mobile phase consisting of acetonitrile-5
mmol ammonium acetate solvent (70:30, v/v) was chosen. The flow rate was 0.3 mL/min and the
total run time was 5 min. Mass spectrometry was conducted with a Thermo Scientific TSQ Quantum
MS/MS system. It was required that the electrospray ionization (ESI) source be in negative-ion mode.
The instrument parameters were set as follows: at nitrogen gas temperature (300 ◦C), spray voltage
(3000 V), sheath gas pressure (30 psi), auxiliary gas pressure (10 psi), capillary temperature (300 ◦C),
collision gas pressure (34 V), and the scanning time (5 min).

3.9. Tissue Distributions

Animal experiments were performed according to the Guidelines of the Animal Center of
Guangzhou University of Chinese Medicine and the Code of Practice for Housing and Care of Animals
Used in Scientific Procedure (the ethic approval number of animal experiment: GDPTTCM170420).
Mice were kept fasting overnight with free access to water before experiments. Kunming mice
(18 ± 5 g) were randomly divided into three groups (GA-S, GA-Lp, and Man-DLD-Chol-GA-Lp).
In the experiment, each group of mice was administered by caudal vein at a dose of 15.6 mg/kg.
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After injection, blood samples (0.50 mL) were obtained at various times (0.08, 0.25, 0.5, 1, 2, 4, 6, 12,
24 h). Mice were euthanized immediately and the hearts, livers, spleens, lungs, and kidneys were
collected. Plasma was separated by centrifugation (12,000 rpm, 10 min, 4 ◦C), then stored at −20 ◦C
until use. Tissue samples were washed and homogenized is saline and stored at −20 ◦C. The following
steps were performed according to the description of plasma preparation in pharmaceutics. Finally,
5 µL of sample supernatant was detected by LC-MS/MS system for analysis. The parameters were
measured by a non-compartmental analysis using the DAS 2.0 computer program. According to
the Pharmacopoeia of the People’s Republic of China [49], major distribution parameters for the
evaluation of liver targeting, including Te, RTe, Re, and Ce were measured. The parameters were
calculated as follows:

Te (%) = AUCtarget/AUCtotal × 100% (4)

RTe = Teliposome/Tesolution (5)

Re = AUCliposome/AUCsolution (6)

Ce = (Cmax)liposome/(Cmax)solution (7)

3.10. Statistical Analysis

The results were expressed as the mean ± standard deviation. Statistical comparisons between
groups were made using one-way analysis of variance, and multiple comparisons were performed
using the student’s t-test for independent groups, assuming equal variances within each group. A value
of p < 0.05 was set as significance level for difference. All statistical analyses were performed using
SPSS version 20 for Windows statistical software.

4. Conclusions

At this stage of our work, we synthesized successfully a novel mannosylated glycolipid compound
as a liposomal carrier. Man-DLD-Chol was synthesized from DLD, cholesterol, and mannose by
two-step acylation under the lipase-catalytic condition. The chemical structures of DLD, DLD-Chol,
and Man-DLD-Chol had been confirmed by ESI-MS and NMR. In addition, Man-DLD-Chol was
successfully incorporated into the liposomes containing GA. Man-DLD-Chol-GA-Lp showed the
particle size less than 150 nm with EE larger than 85% and a sustained release for 48 h in vitro. In the
HepG2 cellular uptake, Man-DLD-Chol-C6-Lp enhanced cellular uptake and internalization of GA into
HepG2 cells. The pharmacokinetic study in rabbit plasma proved that Man-DLD-Chol-GA-Lp was
eliminated more rapidly than GA-Lp and GA-S. These results suggested that the GA liposomes
modified with Man-DLD-Chol could be an efficient target carrier for the treatment of hepatitis
and hepatocellular carcinoma. Furthermore, the tissue distributions of Man-DLD-Chol-GA-Lp was
investigated, we found that the Te, RTe, Re, and Ce of GA on liver were higher than other tissues,
demonstrating that Man-DLD-Chol had an excellent effect on liver-targeting. These results supported
our hypothesis that the liposomes containing Man-DLD-Chol, as a potential drug delivery carrier,
could help to improve the therapeutic effect of hepatic diseases.

Supplementary Materials: Supplementary Materials (MR and NMR data of Man-DLD-Chol conjugate) are
available online.
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