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Abstract

The fundamental challenge in machine learning is ensuring that trained models generalize

well to unseen data. We developed a general technique for ameliorating the effect of dataset

shift using generative adversarial networks (GANs) on a dataset of 149,298 handwritten dig-

its and dataset of 868,549 chest radiographs obtained from four academic medical centers.

Efficacy was assessed by comparing area under the curve (AUC) pre- and post-adaptation.

On the digit recognition task, the baseline CNN achieved an average internal test AUC of

99.87% (95% CI, 99.87-99.87%), which decreased to an average external test AUC of

91.85% (95% CI, 91.82-91.88%), with an average salvage of 35% from baseline upon adap-

tation. On the lung pathology classification task, the baseline CNN achieved an average

internal test AUC of 78.07% (95% CI, 77.97-78.17%) and an average external test AUC of

71.43% (95% CI, 71.32-71.60%), with a salvage of 25% from baseline upon adaptation.

Adversarial domain adaptation leads to improved model performance on radiographic data

derived from multiple out-of-sample healthcare populations. This work can be applied to

other medical imaging domains to help shape the deployment toolkit of machine learning in

medicine.

1 Introduction

A major point of failure for machine learning models is lack of generalizability to unseen cases

when deployed in production [1]. A major cause of this is dataset shift, when the underlying

population (or domain) from which a model’s training set is sampled has a different distribu-

tion from the population encountered in production [1–3]. This problem for generalizing

algorithms is thought to be a major challenge facing autonomous cars, financial systems, and
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many other deep learning systems. For medical models where it is common for datasets to

reflect local patient populations and image acquisition methods, this problem is uniquely prev-

alent [1, 4–6]. The failure of computer-assisted diagnosis for mammography despite its

approval by the FDA is one of the most well-known medical cases [6]. The most straightfor-

ward way to address this problem is by obtaining information about the external distribution

via acquiring labeled data from it. However this is particularly challenging in many fields such

as medicine, for example, where data is siloed in healthcare institutions to protect patient pri-

vacy, high-quality labeled data is time-consuming to acquire, and requires esoteric knowledge

of the field [7, 8]. In medicine, high-quality labels are especially expensive to acquire as they

require multiple graders to derive consensus in the context of poor intergrader reliability [9–

11]. As such, purely technical approaches belonging to the realm of transfer learning and

domain adaptation are promising alternatives. Broadly, algorithms for domain adaptation can

be categorized into instance-based or feature-based approaches [12, 13]. Instance-based

domain adaptation applies a re-weighting function to reduce the discrepancy between source

and target samples whereas feature-based approaches aim to learn a mapping across domains

when labeled data is unavailable in the target domain. The latter is the focus of this work.

Prior work has utilized variations of adversarial domain adaptation on a spectrum of differ-

ent tasks including medical image segmentation, lung nodule detection, prostate MRI segmen-

tation, and federated learning. For example, previous methods have trained on augmented big

data in the domains of prostate, left atrial, and left ventricular and shown that augmentation

reduces the degradation in performance significantly [14]. In our study, we primarily focus on

an in-hospital vs out-of-hospital cohort, rather than differing tasks altogether. A second

method has utilized adaptive transition module (ATM) to learn a frequency attention map

that can align different domain images in a common frequency domain. By backpropagating

with differentiable fast fourier transform, lung nodule detection performance was significantly

improved [15]. We do not use a frequency domain, but we anticipate that applying a fre-

quency-based normalization may also improve performance. Shape-aware meta learning uti-

lizes a network that can learn shape compactness and shape smoothness to provide domain-

invariant embeddings [16]. Similar to ATMs, shape-aware meta-learning is primarily focused

on different objectives rather than learning out-of-sample embeddings. Finally, some methods

are able to combine Fourier transforms and shape-aware meta learning, demonstrating

improved performance on out-of-sample objectives [17]. In context, our paper focuses on

investigating the a priori assumption of dataset shift, and how it can be utilized to improve per-

formance across centers rather than generating a novel machine learning methods to combat

domain shift.

We utilize an unsupervised domain adaptation algorithm that relies upon generative adver-

sarial networks—neural networks that compete with one another—to obtain state-of-the-art

results across all transformations for a canonical digit recognition task as well as one of the

largest medical imaging datasets curated to date. Using this algorithm and datasets, we exam-

ine different scenarios for deploying a machine learning model in a medical use-case, analyze

points of failure, and demonstrate the efficacy of our technique for maximizing data efficiency.

An experimental innovation that we emphasize is refraining from presenting results from a

joint test set. Rather we present results from distinct test sets split on our prior expectation of

dataset shift (digit source or hospital site in our two cases respectively) and show that this sim-

ple change significantly improves our understanding of the problem, particularly in the medi-

cal use case where it can be common to test results on pooled multicenter data.

Two categories of data were used for algorithm development and validation. Handwritten

digit datasets were used for initial prototyping and proof-of-concept testing, and clinical chest

x-ray (CXR) datasets were leveraged to simulate translation into the clinical setting. Our digit
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dataset consisted of 149,298 images of digits from three classic populations: MNIST, MNISTM,

and USPS [18, 19]. We then applied our work to what, to the author’s best knowledge, is the

largest dataset of medical imaging to date consisting of 868,549 chest radiographs drawn from

228,258 patients from three academic medical centers within the United States (Beth Israel,

Stanford, and the National Institutes of Health Clinical Center) as well as an academic medical

center in Spain (San Juan Hospital) [20–23].

There are four primary means of deploying a machine learning model in an environment

with distinct populations (Fig 1A). We refer to “internal” (in-population or in-dataset) results

as classification results tested on a held-out test set sampled from the same population as the

training set. In contrast, we refer to external (out-of-population or out-of-dataset) results as

classification results where the model is tested on a held-out test set sampled from a different

dataset as the training set (see Materials and methods for further details). An idealized case is

to train a model on a local dataset, and then have it perform well externally, out-of-dataset, on

multiple different datasets. We developed a technique for generally improving algorithm per-

formance using a purely computational approach involving cycle-consistent adversarial

domain adaptation to make data from one dataset mimic that from another dataset. Our sys-

tem is built upon the generative adversarial framework consisting of a single “generator” deep

neural network (DNN) that competes against a “discriminator” DNN in a game to detect

forged images (Fig 1B) [24]. The generator is tasked with taking input images from a source

domain, and making them appear as if they were sampled from a target domain (Fig 1C).

Once we have learned a technique for transferring data between domains, it is possible to train

a classification model on any one population and then deploy it on an external one while mini-

mizing the loss in performance. Baseline classification performance is the internal area under

the curve (AUC), or the AUC on a held-out test set sampled from the same domain as the one

the neural network classifier was originally trained on. Efficacy of domain adaptation is mea-

sured by comparing the post-adaptation AUC to the baseline AUC on the same held-out test

set. Detailed descriptions of the datasets, model, and training routine can be found in the

Materials and Methods.

2 Results

2.1 Digit recognition

On a standard digit recognition task, we noted an average internal AUC of 99.87% (95% CI,

99.87–99.87%) which decreased to an average external AUC of 91.85% (95% CI, 91.82–

91.88%) without adaptation and an average external AUC with adaptation of 94.66% (95% CI,

94.63–94.69%). Adaptation led to a generalized increase in performance with average salvage

of approximately 35% post-adaptation as compared to baseline (Fig 2A). Notably, there was a

global increase with adaptation across all datasets and, on visual inspection, adapted digits

appear to be semantically consistent with their target datasets even across gray-scale and color

transformations (Fig 2B and 2C). On average, external testing of locally trained models dem-

onstrates a relative increase in performance of 3.04% (95% CI, 3.01–3.07%, absolute increase

of 2.81%) and exhibits state-of-the-art results on this task for domain adaptation with a median

salvage of 83.16% of the AUC lost from testing on an external dataset. Domain adaptation

worked best on domains that were more similar under visual inspection. For example, adapta-

tions between MNIST and MNISTM yielded significant improvements in classification perfor-

mance due to the similar baseline character style across the two datasets. Adaptations between

MNIST and USPS were similarly efficacious due to transition across grayscale domains

whereas adaptations between MNISTM and USPS were less successful given the more difficult

task of adaptation across character styles and color domains.
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Fig 1. Machine learning deployment strategies and schematic illustration of the proposed generative adversarial algorithm for

domain adaptation. (A) There are four primary methods by which machine learning models can be deployed in a context with distinct

data domains: 1) train a model on one domain and deploy it across multiple distinct domains, 2) train multiple bespoke models that are

optimized for deployment on individual domains, 3) train and deploy a single global model on all domains, and 4) train a model on one

domain and adapt it through technical means to make it performant on a distinct domain. (B) Generative adversarial networks provide
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2.2 Chest x-ray classification

Using one of the largest medical imaging datasets to date we tested our technique on a

medical imaging problem, identification of opacities on chest x-rays (CXRs), which is of

particular relevance due to the present need for using algorithms to rapidly spot pulmonary

aberrations from COVID-19 (Materials and Methods: Clinical Taxonomy and Pre-Process-

ing) [25–29]. On our medical dataset we had an average internal test AUC of 78.07% (95%

CI, 77.97–78.17%), and an average external AUC of 71.43% (95% CI, 71.32–71.60%) with

an average relative performance loss of 8.51% (S3 Table in S1 File). After adaptation we

noted an average relative improvement in performance of 2.42% (95% CI, 2.30–2.54%,

absolute increase of 1.64%) implying an average salvage of approximately 25% of baseline

performance (Fig 3A, S4 Table in S1 File). Specific populations tended to suffer more from

dataset shift in the unadapted setting, and ultimately benefit more from adaptation—in

this case San Juan with an average relative gain of 6.58% (absolute increase of 4.39%) AUC

after adaptation (Fig 3B). For context, achieving this level of improvement without adapta-

tion would require on average an additional 8,213 labeled chest radiographs derived from

the target domain. Implementing domain adaptation more broadly would amount to hav-

ing approximately 5,845 additional labeled images from the deployment dataset (S1 Fig in

S1 File). In order to confirm that performance gains were due to adaptation of the underly-

ing data and features rather than an incidental re-calibration, we visually inspected the

adapted CXRs and plotted calibration curves confirming that adaptation is acting upon the

underlying distribution of features rather than simply recalibrating the models (Fig 3C, S2

Fig in S1 File). For the CXR models there was a median salvage of 20.98% of AUC after

adaptation.

2.3 Domain spread

The present work displays encouraging and practically useful results across both non-medical

and medical datasets for mitigating dataset shift in the challenging case of not having access to

labeled data in the target domain. When dealing with easily transported data, this problem can

be somewhat obviated by simply localizing the data and training models on a union of the data

or utilizing other techniques from transfer learning. Importantly, however, we observe that the

performance of global models on pooled data from multiple data sources does not reflect effi-

cacy on individual data domains (Fig 4, S4 and S5 Tables in S1 File). Instead, stratifying assess-

ment by domain allows for examination of the domain spread, or inter-domain variance, as an

a priori measure of expected model performance upon deployment. The dramatic reduction

in domain spread with increasing amounts of handwritten digits data (0.1% domain

spread = 112.06 and 100% domain spread = 0.01) relative to that of CXR data (0.1% domain

spread = 26.12 and 100% domain spread = 23.83) suggests that added radiographs may not be

sufficient to overcome data shift across hospital sites.

a technical framework for domain adaptation. A generator translates real data from one domain into fake data that resembles that of a

different domain while the discriminator aims to distinguish between the two, which enables the generator to generate realistic-looking

data in the target domain. (C) Schematic of the proposed algorithm. a) Real data from a source domain is translated by the generator to

resemble data from a specified target domain while maintaining underlying semantic qualities of the input image. b) Translated data is

reconstructed by the generator to resemble data from the source domain to maintain domain-agnostic image characteristics with a

semantic consistency constraint ensuring that reconstructed images maintain the semantic characteristics of the source data. c) The

discriminator aims to distinguish between real and synthetic images and identify the domain of input images to constrain the generator

to produce realistic-looking synthetic images from a specified domain. d) A target discriminator is fine-tuned on synthetic images to

better identify opacity in the target domain.

https://doi.org/10.1371/journal.pone.0273262.g001
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3 Discussion

We built an unsupervised domain adaptation algorithm using GANs that ameliorates dataset

shift on a canonical computer vision task and among the largest medical imaging datasets ever

Fig 2. Results on the digits datasets. (A) Performance of adapted and baseline algorithms as measured by area under the curve (AUC). Error bars denote standard

deviations. Dotted lines represent the theoretical ceiling of AUC on the target test set as obtained by a baseline classifier trained on the target training set. Adaptation leads

to a generalized increase in AUC across all source-target pairs with an average salvage of 35% of peak performance. (B) Expected relative change in AUC upon adaptation

of a source dataset demonstrates a generalized increase in performance across populations. (C) In all cases, adaptation transforms input images (bounded by black boxes)

to appear stylistically like those in the specified target domain (bounded by blue boxes) while preserving semantic information of images in the source domain.

https://doi.org/10.1371/journal.pone.0273262.g002
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curated. Our approach extends upon previously described methods by incorporating real-time

weak supervision of the generator to enable semantic consistency. Most importantly, unlike

previous work, we conduct a comprehensive validation of our algorithm across all adaptation

pairs for two very different computer vision tasks. As a proof-of-concept, we show broad

Fig 3. Results on the chest x-ray datasets. (A) Performance of adapted and baseline algorithms as measured by area under the curve (AUC). Error bars denote standard

deviations. Dotted lines represent the theoretical ceiling of AUC on the target test set as obtained by a baseline classifier trained on the target training set and demonstrate

an average salvage of 25% of the baseline performance after adaptation. (B) Expected relative change in AUC upon adaptation of a source dataset demonstrates a general

improvement in performance across populations. The proposed adaptation technique leads to a generalized increase in AUC on average relative to baseline performance.

(C) Input images without opacity are bounded by black boxes while those with opacity are bounded by red boxes. Adapted counterparts are bounded by blue boxes.

https://doi.org/10.1371/journal.pone.0273262.g003

PLOS ONE Deploying deep learning models on unseen medical imaging using adversarial domain adaptation

PLOS ONE | https://doi.org/10.1371/journal.pone.0273262 October 14, 2022 7 / 17

https://doi.org/10.1371/journal.pone.0273262.g003
https://doi.org/10.1371/journal.pone.0273262


Fig 4. Results of baseline global models trained on incremental amounts of available data and evaluated on the

global test set and dataset-specific test sets demonstrate a discrepancy between global results and population

(domain) specific results. Error bars denote standard deviations. (A) Training and testing on an aggregate dataset

obscures the fact that the model trained on all of the data has a difference in performance on digit classification of over

20% arguing against the practical utility of testing on aggregated data. This discrepancy is ameliorated by increasing
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adaptation efficacy across three different digits datasets amounting to an average salvage of

35% AUC post-adaptation. We apply the algorithm to chest x-rays derived from four health-

care institutions both in the United States and abroad, and show an improvement of 25%

AUC in the identification of lung opacities relative to baseline. Finally, we show that the oft-

used approach of creating a global model trained on data across domains is not sufficient to

overcome data shift. Notably, we propose a unique metric, which we term domain spread, to

characterize the heterogeneity of data across domains to obtain an a priori estimate of the

external validity of a trained algorithm for any dataset. Taken together, these findings provide

a comprehensive analysis of dataset shift, the potential of unsupervised domain adaptation,

and a framework for future studies aiming to characterize and alleviate the burden of data shift

in the widespread deployment of machine learning in the medical domain.

In many medical, financial, and military applications data is not portable, and it is necessary

to find ways of training a model on locally available data that will be performant elsewhere.

While there are novel collaborative means around this such as Federated Learning, these tech-

nologies still necessitate the labeling of target data and the collaboration of target sites with

optimizing a local model on site [30]. Future research should continue to investigate computa-

tional methods for unsupervised domain adaptation to improve on our results. Furthermore,

research into semi-supervised domain adaptation where limited out-of-population data can

inform the transfer learning task may be extremely beneficial for improving performance on

this problem. We note that by testing on population specific test sets, model performance

directly comments on the nature of the underlying domain and its apparent learnability. We

consider an encouraging future direction of research to involve investigating means of utiliz-

ing limited knowledge of the underlying domain to inform the domain adaptation task.

An important limitation of our study is label quality between the datasets, and we suspect

that performance on the CXR task across all datasets is limited somewhat by the underlying

quality of the labeling. We attempted to address this by utilizing the presence or absence of

pulmonary “opacity” as our labels, and by noting that our key observation is the relative

change in performance between internal, external, and adapted datasets. Furthermore, we rec-

ognize that training GANs is a computationally intensive task that requires hardware capabili-

ties absent in many healthcare settings. We consider an important research direction to be one

that reduces the computational burden of algorithm development in order to democratize the

application of machine learning in the healthcare space.

4 Conclusion

We demonstrate that the use of unsupervised domain adaptation techniques can broadly

increase model performance on external, shifted data. By measuring domain spread, we can

determine a priori whether a global model provides a distinct advantage over domain-specific

models. Improvements in domain adaptation such as shape-aware meta learning, and feder-

ated frequency attention maps may reduce the value of the domain spread, so domain spread

can serve as an important marker for cross-site generalizability. Nevertheless, we anticipate

that biases that exist within datasets such as those in label quality or underdiagnosis bias will

need solutions that expand beyond purely computational approaches [31]. Future research

amounts of data and vanishes at 10% of the total available amount of data. (B) These results are initially mirrored in

the chest x-ray cohort where performance of the global model trained on chest x-rays from all hospital sites and

evaluated on the global and dataset-specific test sets demonstrates over 10% change in performance at 0.1% of the total

available amount of data. Notably this discrepancy between site-specific performance is only mildly alleviated by

increasing amounts of data and remains even when the joint model is trained on the entirety of the available dataset.

https://doi.org/10.1371/journal.pone.0273262.g004
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should investigate these biases and further utilize unsupervised learning as sparsely labeled

datasets and high-quality, resource-intensive labelling become increasingly important [32].

When used in a challenging medical use case of practical importance—identification of lung

opacity on CXRs—we note that adverserial domain adaptation leads to a generalized increase

in performance. Purely computational approaches to handling dataset shift are not only tracta-

ble, but beneficial, and we believe will become an increasingly important part of the deploy-

ment toolkit for machine learning as these tools become increasingly used in medicine.

5 Methods

5.1 Datasets

Hand drawn digits were obtained from their standard online repositories for computer science

research (S1 Table in S1 File). Further details and descriptions of these datasets are easily acces-

sible online and we will omit further discussion of them. The clinical CXR data was obtained

from four publicly-available retrospective datasets of chest x-rays, each containing images

from thousands of patients, and summarized below (S2 Table in S1 File).

5.1.1 ChestX-ray8 [22]. The ChestX-ray8 dataset derived from the National Institutes of

Health contains 112,120 x-rays from 30,805 unique patients obtained over the period 1992–

2015. Eight disease labels were extracted from radiology reports associated with each image:

“atelectasis”, “cardiomegaly”, “effusion”, “infiltration”, “mass”, “nodule”, “pneumonia”, and

“pneumothorax”. Scans without pathology were labeled “normal”.

5.1.2 CheXpert [21]. The CheXpert dataset derived from Stanford Hospital consists of

223,648 chest x-rays from 64,740 unique patients collected between October 2002 and July

2017. 14 labels were extracted from corresponding radiology reports: “atelectasis”, “cardiome-

galy”, “consolidation”, “edema”, “enlarged cardiomegaly”, “fracture”, “lung lesion”, “lung

opacity”, “no finding”, “pleural effusion”, “pleural other”, “pneumonia”, “pneumothorax”, and

“support devices”.

5.1.3 MIMIC-CXR [20]. The MIMIC-CXR dataset derived from Beth Israel Deaconess

Medical Center in Boston consists of 371,920 chest x-rays from 65,088 unique patients

obtained over the period 2011–2016. Labels in this study were identical to those used by

CheXpert.

5.1.4 PadChest [23]. The PadChest dataset derived from San Juan Hospital in Spain con-

tains 160,861 chest x-rays from 67,625 patients between January 2009 and December 2017. 174

radiographic findings, 19 differential diagnoses, and 104 anatomic characteristics were

extracted from radiology reports associated with each image.

5.2 Clinical taxonomy and pre-processing

5.2.1 Taxonomy. A significant challenge of working with multiple different clinical data-

sets for classification is heterogeneity in the labeling of the data. This is particularly notable for

chest radiography where some datasets utilize language associated with radiographic findings

(PadChest), while other datasets use mixed language that includes clinical diagnoses such as

pneumonia. The challenge of label heterogeneity is compounded by error built into the label-

ing process itself, with studies utilizing a mix of manual annotation and semi-automated meth-

ods such as natural language processing to generate ground truth labels.

In order to obtain more homogenous labels and minimize class imbalance, we grouped

together labels that were associated with opacities on AP CXR as indicated below. This single

label (“opacity”) was used for subsequent experiments. Use of this label is particularly relevant

in the clinical setting because it allows one to capture the spectrum of radiographically visible

pathology, which maximizes the intended utility of chest radiographs as front-line screening
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tools in the clinical setting. It was derived by grouping pathologies as follows: ChestX-ray8:

“atelectasis”, “consolidation”, “edema”, “infiltration”, “mass”, “nodule”, “pneumonia” CheX-
pert/MIMIC-CXR: “atelectasis”, “consolidation”, “edema”, “lesion”, “lung opacity”, “pneumo-

nia” PadChest: “alveolar pattern”, “atelectasis”, “atelectasis basal”, “atypical pneumonia”,

“bronchiectasis”, “calcified densities”, “calcified granuloma”, “calcified pleural plaques”, “cavi-

tation”, “consolidation”, “granuloma”, “ground glass pattern”, “increased density”, “infil-

trates”, “interstitial pattern”, “laminar atelectasis”, “lobar atelectasis”, “lung metastasis”,

“mass”, “multiple nodules”, “nodule”, “pleural plaques”, “pneumonia”, “pseudonodule”, “pul-

monary edema”, “pulmonary mass”, “reticulonodular interstitial pattern”, “round atelectasis”,

“segmental atelectasis”, “soft tissue mass”, “total atelectasis”, “tuberculosis”, “tuberculosis

sequelae”

5.2.2 Preprocessing. Digits were nearest-neighbor interpolated to dimensions of

32x32x3. Chest x-rays were bilinear interpolated to dimensions of 224x224x3. Frontal chest x-

rays were utilized for experimentation. Both digit and chest x-ray images were normalized

with a mean and standard deviation of 0.5 for algorithm development.

5.3 Deep learning architectures

5.3.1 Baseline CNN classification. The LeNet architecture was used for baseline digit

classification whereas the DenseNet architecture was chosen for chest x-ray opacity classifica-

tion to maximize the ability of the network to learn fine-grained radiographic features. The

ImageNet pretrained DenseNet feature extractor was concatenated to two fully connected lay-

ers composed of 1,000 and 100 hidden nodes interspersed with batch normalization, ReLU

nonlinearity, and 50% dropout followed by a linear classifier. Hyper-parameters were selected

by grid-search.

CNN models were trained on a single NVIDIA Tesla V100 using PyTorch 1.1.0. Models

were trained using a categorical cross entropy loss with Adam optimizer. LeNet was trained

with a learning rate of 0.001 and batch size 128, while DenseNet was trained with a learning

rate of 0.0002, weight decay 0.0005, and batch size 50. Hyper-parameters were selected by grid

search. Batches were balanced by opacity label for all chest x-ray experiments. Real-time affine

data augmentation, including random flips, rotations, and translations, was conducted during

DenseNet training. All models were trained for 200 epochs or early-stopped once validation

AUC no longer improved for ten consecutive epochs.

A LeNet and DenseNet model was trained for each digit and chest x-ray dataset, respec-

tively. Models were trained on an 80% split of a given dataset and validated on a 10% hold-out

sample. The remaining 10% of data was used to construct a bootstrap sample of 1,000 repli-

cates of size 1,000 to compute the ROC and other classification metrics.

5.3.2 Adversarial domain adaptation implementation. We adapt StarGAN for image-

to-image translation [33]. The discriminator network uses a PatchGAN architecture, which

classifies local MxM image patches as real or fake to promote fine-grained image synthesis. It

is composed of six convolutional layers with kernel size four, stride two, and padding one

interspersed with Leaky ReLU nonlinearity parametrized with a negative slope of 0.01 followed

by two output convolutional layers. The generator network is composed of two downsampling

convolutional layers with kernel size four, stride two, and padding one; residual blocks of size

four and nine were used for digit and chest x-ray experiments, respectively; two transposed

convolutional layers were used for upsampling. All convolutional layers were interspersed

with Instance Normalization and ReLU nonlinearity.

The source task network adopts the LeNet or DenseNet architecture for digit and chest x-

ray experiments, respectively. Initial training on source images and labels is as described in
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‘Baseline CNN classification’. The target task network was initialized with weights from the

source network prior to subsequent training.

All models were trained using the Adam optimizer with β1 = 0.5 and β2 = 0.999 for 200K

iterations. The learning rate was initialized at 0.0001 and linearly decayed toward zero after

100K training steps. Batches of size 200 and 20 were used for digit and chest x-ray experiments,

respectively, with an even split of input images from the source and target domains. Batches

were balanced by opacity label for all chest x-ray images derived from the source domain. Per

StarGAN, the discriminator was updated five times for every generator update. The task net-

works were updated at every generator update, except in the MNISTM!USPS transforma-

tion where task networks were updated once every ten generator updates for stability of

training.

Following training completion, train images from the source domain were transformed

into synthetic images from the target domain. The transformed images were used to fine-tune

the baseline CNN model (described in ‘Baseline CNN classification’). The baseline and fine-

tuned models were evaluated on test images from the target domain to evaluate efficacy of

domain adaptation. All algorithm development was conducted on a single NVIDIA Tesla

V100 using PyTorch 1.1.0.

5.3.3 Adversarial domain adaptation design. Adversarial modeling is a computational

framework in which two algorithms are simultaneously trained in a minimax adversarial pro-

cess. A simple instantiation of adversarial learning is the generative adversarial network

(GAN), which is composed of a generative model G that approximates a data distribution pit-

ted against a discriminative model D that aims to determine whether sample data is derived

from the generative distribution or true data distribution. By way of analogy, G can be concep-

tualized as a counterfeiter trying to create fake currency that resembles the original, while D

represents law enforcement trying to discern between fake and real currency. The adversarial

process allows both algorithms to iteratively improve, ultimately allowing G to produce sam-

ples that are indistinguishable from genuine counterparts.

Numerous GANs have been proposed for a variety of computer vision tasks, including

image synthesis and super-resolution imaging [33, 34]. The task of unsupervised domain adap-

tation, which aims to transfer insights gained from labeled data in a source domain in order to

achieve comparable performance on unlabeled data in a target domain, has also seen applica-

tions of GANs. CyCADA, proposed by Hoffman et al., builds upon the GAN framework by

introducing cycle and semantic consistency constraints to preserve pixel-level features and

labels, respectively, when mapping from source to target domains [35]. The formulation

requires two pairs of generators and discriminators to map across domains and achieves state-

of-the-art performance on digit classification. StarGAN, proposed by Choi et al., incorporates

the cycle consistency constraint and scales domain adaptation to multiple domains using a sin-

gle generator and discriminator framework by conditioning the generator on a target domain

label. It achieves among the best results on facial attribute transfer and facial expression syn-

thesis [33].

Problem formulation. This work focuses on the task of unsupervised domain adaptation,

where given source data XS, source labels YS, and target data XC but no target labels YC, the

goal is to learn a classification model F that can correctly predict the label for XC. In this case,

we assign C to refer the the target domain. A naive approach would train a classification algo-

rithm on source data and apply it to predict labels for data in the target domain. However,

such an approach has shown to exhibit diminishing performance due to domain shift across

data domains [36–40]. StarGAN is a novel GAN framework that extends upon previous meth-

ods to map data across multiple domains while preserving fine-grained image and semantic

characteristics for application in the medical context [33].
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Image-to-image translation. Given XS and XC, we adopt StarGAN to learn a mapping of

domains S! C and C! S using a single generator G such that discriminator D is unable to

distinguish real and synthetic images across domains. In other words, we want the generator,

given a sample and a target domain to map to an image in the sample domain (xs) to an equiv-

alent image in the the target domain (x! c) G(xs, c)! xc. Our discriminator, on the other

hand, produces a probability distribution over both the source sources and domain labels. D: x
! {Ps(x), Pc(x)}, where Ps and Pc is the probability that the sample belongs in the source or tar-

get domain, respectively. Per StarGAN, the objective expressed as the adversarial loss

LadvðD;G;X;CÞ ¼ Ex�X½logDsrcðxÞ� þ Eðx;cÞ�ðX;CÞ½logð1 � DsrcðGðx; cÞÞÞ� ð1Þ

enables G to generate an image G(x, c) that is indistinguishable from real images. D is the dis-

criminator network, G is the generator network, X is the set of real samples, Y is the set of

domains associated with X. (x, c) are a pair where x refers to a sample from the data source,

and c refers to the target domain label.

To stabilize adversarial training, we adopt the Wasserstein GAN objective from StarGAN

defined as

LadvðD;G;X;CÞ ¼ Ex�X½DsrcðxÞ� � Eðx;cÞ�ðX;CÞ½DsrcðGðx; cÞÞ� � lgpEx̂�Px̂ ½ðjjrx̂Dðx̂Þjj2 � 1Þ
2
� ð2Þ

where Px̂ is derived from uniformly sampling along straight lines between coupled points

from the true data and generator distributions. E(x* X)[Dsrc(x)] is the expected loss of the dis-

criminator on the source data, E(x,c) * (X, C)[Dsrc(G(x, c))] is the expected loss of the discrimina-

tor of the source data on generated data in the target domain, and

lgpEx̂�Px̂ ½ðjjrx̂Dðx̂Þjj2� 1Þ
2
�
2
� is a regularization term to minimize the gradient as described in

[41]. All experiments use λgp = 10, which was optimized via grid-search. As in StarGAN, to

constrain G to produce images in the target domain c, a domain classification loss is also

imposed on both D and G. A simple classification loss over real images ðLrclassificationÞ is used to

optimize D

LrclassificationðD;X;CÞ ¼ Eðx;CÞ�ðX;CÞ½NLLðDðxÞ; cÞ� ð3Þ

Where, c is the domain of the sample x, and NLL(D(x), c), is a negative log-likelihood loss

of the discriminator D(x), which predicts a given class, and the true class c. Conversely, the

classification of D with respect to the fake images generated by the generator network G(x, c)
is used to optimize G, as is standard for generative adversarial networks.

LfclsðD;G;X;CÞ ¼ Eðx;cÞ�ðX;CÞ½NLLðDðGðx; cÞÞ; cÞ� ð4Þ

By minimizing this objective, G is able to generate images that can be classified as target

domain c. Although the adversarial and domain classification losses constrain G to generate

images that appear realistic in the target domain, they do not preserve the content of the input

image independent from domain characteristics. Therefore, a L1 penalty on the cycle consis-

tency loss as defined in StarGAN.

LcycðG;X;CÞ ¼ Eðx;c;c0Þ�ðX;C;C0Þ½jjx � GðGðx; cÞ; c0Þjj1� ð5Þ

is imposed on the generator such that G is constrained to reconstruct input x in the original

domain c’ from the translated image G(x, c). [||x − G(G(x, c), c0)||1 is a reconstruction loss with

an absolute-value based normalization.

Semantic modeling. Although the image translation framework enables G to synthesize real-

istic images in a given domain, it does not guarantee the preservation of semantic information
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across domains. For example, when translating chest x-rays from source to target domain, G
may not maintain the underlying disease content. Therefore, we adopt techniques from

CYCADA to train a source classifier FS to weakly supervise G to generate images that are clas-

sified the same way before and after translation. Images generated in the target domain that

correspond to the source domain should have similar labels. In other words, we use the labels

that have already been prescribed in the source domain to guide the generator G. First, a classi-

fier (Fs) is trained on the labeled source data with cross entropy loss.

LtaskðFS;XS;YSÞ ¼ � Eðxs;ysÞ�ðXS ;YSÞ
XN

n¼1

1½n¼ys�logðsðF
ðnÞ
S ðxsÞÞÞ ð6Þ

where N denotes the number of classes and σ is the softmax function.

Second, a target classifier FT is fine-tuned from FS to weakly supervise G on fake images in

the target domain. Ablation studies from the CYCADA paper have shown that this step leads

to improvements in domain adaptation. Subsequently, the semantic loss—where the goal is

the maintain a semantic relationship between the images in the target domain and the source

domain can be defined with respect to FS and FT. This loss is simply the addition of for the

classifier for images from the source domain Ltask(FS, G(G(XS, C), C0), YS, the classifier for

images from the target domain (Ltask(FT, G(XS, C), YS) and the classifier for the images from

the source domain with respect to the predictions generated by the classifier of images in the

target domain Ltask(FS, G(XT, C), FT(XT)).

LsemðG; FS; FT;XS;YS;XT;CÞ ¼ LtaskðFT;GðXS;CÞ;YSÞ

þLtaskðFS;GðGðXS;CÞ;C
0Þ;YSÞ þ LtaskðFS;GðXT;CÞ; FTðXTÞÞ ð7Þ

By generating a loss function that combines all three aspects, can generate a semantic rela-

tionship between the classifications generated by the source samples and the classifications of

samples in target domain.

Final Objective Taken together, the objective functions to optimize D and G, respectively,

are:

LD ¼ � Ladv þ lclsLrcls ð8Þ

LG ¼ Ladv þ lclsL
f
cls þ lcycLcyc þ Lsem ð9Þ

where λcls and λcyc are scalars that control the importance of domain classification and cycle

consistency losses, respectively. As per StarGAN, λcls = 1 and λcyc = 10 for all experiments.

5.4 Statistical analysis

Dataset characteristics were compared using Analysis of Variance (ANOVA) where appropri-

ate. Bootstrap confidence intervals were constructed to compare results at baseline and post-

adaptation using bootstrap samples of 1,000 replicates. Statistical significance was evaluated at

an alpha level of 0.05. All statistical analyses were performed in Python 3.5.2.
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