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Background: Prognosis prediction is crucial for non-small cell lung cancer (NSCLC) treatment planning. 
While tumor hypoxia significantly impacts patient outcomes, identifying hypoxic genomic markers remains 
challenging. This study sought to identify hypoxic computed tomography (CT) radiomic features and create 
an artificial intelligence (AI) model for NSCLC through the integration of multi-modal data.
Methods: In total, 452 NSCLC patients were enrolled in this study, including patients from The Second 
Affiliated Hospital of Soochow University (SC, n=112), The Cancer Genome Atlas (TCGA)-NSCLC 
dataset (n=74), the radiogenomics dataset (n=130), and the Gene Expression Omnibus (GEO) datasets 
(GSE19188: n=82, and GSE87340: n=54). Hypoxia status was classified using optimized cut-off values 
of hypoxia enrichment scores, which were calculated through single-sample gene set enrichment analysis 
(ssGSEA) of hypoxic genes. Radiomic features were extracted using three-dimensional (3D)-Slicer software. 
The least absolute shrinkage and selection operator (LASSO) algorithm was used to identify hypoxic CT 
radiomic features. A model named ssuBERT (semantic structured unit embedded in Bidirectional Encoder 
Representations from Transformers) was developed to analyze electronic health records (EHRs). An AI 
model for overall survival prediction was constructed by integrating CT radiomic features, ssuBERT 
features, and clinical data, and evaluated using five-fold cross-validation.
Results: Higher hypoxia levels were correlated with worse survival outcomes. Twenty-eight radiomic 
features showed significant discriminatory power in detecting hypoxia status with an area under the curve 
(AUC) of 0.8295. The ssuBERT model achieved a weighted accuracy of 0.945 in recognizing semantic 
structured units in EHRs. The EHR model exhibited superior predictive performance among the single-
modal models with an AUC of 0.7662. However, the multi-modal AI model had the highest average AUC of 
0.8449 and an F1 score of 0.7557.
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Introduction

Lung cancer is the most common cancer in China, and non-
small cell lung cancer (NSCLC) accounts for approximately 
85% of all lung cancer cases (1). The accurate stratification 
of NSCLC patients according to survival predictions 
is essential for optimizing therapeutic interventions. 
Outcomes in lung cancer patients vary significantly due to 
multiple clinical determinants (2). Enhancing the overall 
clinical outcomes of patients is imperative. Consequently, 
there is an urgent need to develop robust prognostic models 
for predicting overall survival (OS) in NSCLC patients and 
informing clinical practice.

Hypoxia was initially associated with the “tumor 
microenvironment” of solid tumors. Tumors exhibit necrotic 
regions adjacent to areas with oxygen gradients influenced 
by proximity to blood vessels. While similar gradients 

are found in normal tissues, they show a pronounced and 
persistent decline in cancer (3). Moreover, cyclic hypoxia 
significantly activates the hypoxia-inducible factor (HIF) 
pathway, enhancing tumor cell survival under adverse 
conditions such as cytotoxic therapy (4). One recent study 
illustrated this overactivation using an analogy of tidal and 
wave cycles impacting the coast, with tides symbolizing 
hypoxia levels and waves representing high-frequency blood 
flow fluctuations. Overlaps in these cycles result in the 
overactivation of the HIF pathway (5). Research indicates 
that cyclic hypoxia exposure elevates cancer stem cell 
markers and promotes features associated with metastasis (6). 
While previous studies have explored the role of hypoxia in 
NSCLC development and outcomes (3,6), more extensive 
investigations are still needed.

Recent studies have advanced NSCLC prognosis 
prediction through linear models, with Liu et al. (7) 
incorporating hypoxia imaging biomarkers, Xu et al. (8) 
developing a liver metastasis nomogram, and Zhang et al. (9)  
creating a dynamic survival model. Meanwhile, artificial 
intelligence (AI) has demonstrated excellent performance in 
lung cancer prediction, with various approaches including 
machine learning, deep learning, and reinforcement learning 
being widely applied in this field. While these models 
demonstrate promising predictive capabilities, they face a 
main methodological challenge of limited integration of 
multi-modal markers like radiomics and free text, to enhance 
prediction accuracy and clinical applicability. In precision 
medicine, imaging-derived features can be correlated with 
pathological features, treatment responses, and survival 
outcomes, serving as crucial biomarkers that offer diagnostic, 
predictive, and prognostic insights (10). As predictive 
tools, this framework uses features extracted from images, 
including lesion volume, shape, and texture characteristics 
(11). The increasing accessibility of electronic health 
record (EHR) data, which efficiently includes extensive 
real-world populations, presents a cost-effective and 
timely alternative to conventional cohort studies (12). 
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While numerous clinical variables are not directly 
captured in EHRs, these can be inferred from multiple 
data elements using machine-learning algorithms (13). 
Consequently, this study sought to develop robust models 
for assessing lung cancer prognosis using features derived 
from EHR and radiomic data. More specifically, this study 
aimed to predict hypoxia status through radiomic features 
and to construct a deep-learning prognostic model by 
integrating radiomic, EHR, and clinical data. We present 
this article in accordance with the TRIPOD reporting 
checklist (available at https://tlcr.amegroups.com/article/
view/10.21037/tlcr-24-982/rc). 

Methods

Patient enrollment

In this retrospective study, radiomics analyses were performed 
across the following cohorts: a real-world cohort of patients 
comprising the data of patients from The Second Affiliated 
Hospital of Soochow University (SC, n=112) and two cohorts  
comprising patient data from public databases, that is 
radiogenomics-NSCLC data (n=130) from The Cancer 
Imaging Archive (TCIA) (https://www.cancerimagingarchive.
net/) and NSCLC data from The Cancer Genome Atlas 
(TCGA) (n=74) (14). Figure 1 provides an overview of the 

cohorts included in this study for the radiomics analysis.
To be eligible for inclusion in the SC cohort, patients 

had to meet the following criteria: (I) diagnosis of lung 
adenocarcinoma or lung squamous cell carcinoma; (II) 
undergone surgical or biopsy within four weeks of the 
computed tomography (CT) scan; and (III) lesion with a 
maximum diameter exceeding 1 cm to reduce the partial 
volume effect. Patients were excluded from the study if they 
met any of the following exclusion criteria: (I) a history 
of other malignancies; (II) incomplete or substandard 
case records; (III) poor-quality imaging data; (IV) lesions 
that were challenging to delineate on CT, such as those 
overlapping with adjacent structures or diffuse lesions; and 
(V) aged below 18 years. Ultimately, 112 patients from the 
SC were included in the study. The study was conducted 
in accordance with the Declaration of Helsinki (as revised 
in 2013). The study was approved by the Medical Ethics 
Committee of The Second Affiliated Hospital of Soochow 
University (No. JD-HG-2023-63) and informed consent 
was taken from all the patients.

Study design

This retrospective study was conducted in three phases. 
In the first phase, radiomic features to predict hypoxia and 

Cohorts from TCIA-NSCLC Real-world-NSCLC

Radiogenomic (n=130)

CT scans (DICOMs)
RNA-seq

Identification of hypoxia-
related radiomic features

Overall survivals

Predicting hypoxia and prognostic status of NSCLC patients

TCGA (n=74)

CT scans (DICOMs)
RNA-seq

Validation of hypoxia-
related radiomic features

Overall survivals

SC (n=112)

CT scans (DICOMs)
Clinical data (Structured)

Electronic health records (EHRs)

ssuBERT for EHRs 
Multimodal integration 

(Radiomics, Clinical and EHRs)

Figure 1 Patient enrollment of the study. TCIA, The Cancer Imaging Archive; NSCLC, non-small cell lung cancer; TCGA, The Cancer 
Genome Atlas; SC, The Second Affiliated Hospital of Soochow University; CT, computed tomography; DICOM, Digital Imaging and 
Communications in Medicine; ssuBERT, semantic structured unit embedded in Bidirectional Encoder Representations from Transformers; 
EHRs, electronic health records.

https://tlcr.amegroups.com/article/view/10.21037/tlcr-24-982/rc
https://tlcr.amegroups.com/article/view/10.21037/tlcr-24-982/rc
https://www.cancerimagingarchive.net/
https://www.cancerimagingarchive.net/
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survival outcomes in NSCLC patients were identified. 
In the second phase, engineering features from EHRs 
were identified. In the third phase, these features were 
integrated using deep-learning techniques (Figure 2). 
Initially, we created a CT radiomic signature to forecast 
OS and hypoxia status. During this phase, the prognostic 
value of the hypoxia-related genes was assessed using 
cohorts from the Gene Expression Omnibus (GEO) 
datasets (GSE19188: n=82, and GSE87340: n=54). 
Next, we devised a method termed ssuBERT (semantic 
structured unit embedded in Bidirectional Encoder 
Representations from Transformers) to extract features 
from the EHRs. Finally, we constructed a deep-learning 
model by integrating CT radiomics, clinical features, and 
ssuBERT to predict NSCLC patient survival.

CT scan protocol

Patients of the SC cohort received CT scans using three 
different scanners: GE Revolution CT, GE CT 750 HD, or 
Philips Brilliance iCT. Scanning was performed with patients 
positioned supine and at full inspiration. Technical parameters 
for the scanning included: 150 kVp voltage, current ranging 
between 80 and 450 mA, detector collimation settings of 
either 64×0.625 mm or 128×0.625 mm, with the field of view 
set at 350 mm × 350 mm.

CT segmentation and structuring

CT data in Digital Imaging and Communications in 
Medicine (DICOM) format were imported into three-
dimensional (3D)-Slicer software (https://www.slicer.org/) 
for all cohorts (Figure S1). Four experienced radiologists 
marked the primary tumor lesions as volumes of interest 
(VOIs), working without knowledge of patient information. 
The VOIs underwent preprocessing with resampling to 
1×1×1 mm3 voxels and were rescaled to a range from –1,000 
to 3,000 Hounsfield units (HU), using 10 HU as the fixed 
bin size. Following resampling and rescaling, radiomic 
features were extracted, including shape features, first-
order statistics, and second-order statistics (four gray-level 
matrices). The reproducibility of manual image labeling was 
evaluated using the intraclass correlation coefficient (ICC) 
to assess intra-observer consistency. Radiomic features with 
an ICC value below 0.75 were deemed poor reproducibility 
and thus excluded. Finally, 127 radiomic features were 
retained for the subsequent analysis.

Identification of hypoxia-related radiomic features in NSCLC

The single-sample gene set enrichment analysis (ssGSEA) 
was used for calculating hypoxia enrichment scores. NSCLC 
patients were categorized into low- and high-hypoxia 
groups based on an optimal threshold identified using the 
Survminer package (version 0.4.9; https://rdocumentation.
org/packages/survminer/versions/0.4.9). Hypoxia-related 
genes were sourced from the Msigdb database (https://www.
gsea-msigdb.org/gsea/msigdb/, as detailed in Table S1).  
Kaplan-Meier curves with log-rank test were employed 
to compare OS between the different hypoxia groups of 
NSCLC patients. The least absolute shrinkage and selection 
operator (LASSO) algorithm, renowned for its effectiveness 
in managing high-dimensional collinear data, was applied to 
extract predictive features following data partitioning. We 
used a Python package to implement the LASSO process 
(alpha =1.0, max_iterance =1000, seed =12345), which was 
assessed using ROC (receiver operating characteristic) 
curves produced by the ROCR 1.1.0 package (15) in R.

The design of the PhenoSSU model for representing 
phenotype information in the EHRs of lung cancer patients

We previously developed a framework called PhenoSSU 
(semantic structured unit of phenotypes) to extract features 
from EHRs (16). To extract features from the EHRs of the 
NSCLC patients, we introduced a method called ssuBERT, 
which combines PhenoSSU and BERT (17). Initially, we 
refined the attributes of the PhenoSSU model to suit cancer 
patients better. The refined PhenoSSU model includes 
seven attributes. The structure of the PhenoSSU model is 
detailed in Figure 3. The PhenoSSU model allows for the 
structural representation of phenotype information from 
free text. Two Chinese annotators with medical expertise 
independently reviewed these medical records. The initial 
agreement between annotators, as measured by Cohen’s 
kappa statistic, was 0.8771. A supervisor resolved any 
discrepancies in the annotations.

The workflow of recognizing PhenoSSU instances from EHRs

PhenoSSU instance recognition involves two primary 
subtasks: entity identification and attribute prediction. 
Our prior work established a robust framework for these 
tasks (18). The first subtask, entity identification, focused 
on detecting text spans corresponding to phenotype 

https://www.slicer.org/
https://cdn.amegroups.cn/static/public/TLCR-24-982-Supplementary.pdf
https://rdocumentation.org/packages/survminer/versions/0.4.9
https://rdocumentation.org/packages/survminer/versions/0.4.9
https://www.gsea-msigdb.org/gsea/msigdb/
https://www.gsea-msigdb.org/gsea/msigdb/
https://cdn.amegroups.cn/static/public/TLCR-24-982-Supplementary.pdf
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PhenoSSU for cancer

Attributes

Assertion

Severity

Temporal

Laterality

Spatial

Quadrant

Body location

Scanning the sequence with 
linguistic patterns

Medical records

One-letter sequence with index

Identifying labels of attributes

Embedding attributes in BERT

Classic values

Present, Absent

Severe, Mild

Acute, Chronic

Left, Right

Generalized, Localized

Left upper, Right upper

Chest, Throat

Figure 3 The design of the PhenoSSU model used for the EHR representation of lung cancer patients. PhenoSSU, semantic structured 
unit of phenotypes; EHR, electronic health record; BERT, Bidirectional Encoder Representations from Transformers.

and attribute entities. We employed two approaches for 
entity identification: (I) a deep learning-based method 
and (II) a dictionary-based method. The deep learning-
based approach uses the advanced Bidirectional Encoder 
Representations from Transformers (BERT)-Bidirectional 
Long Short-Term Memory (BILSTM)-Conditional 
Random Field (CRF) model. The BERT model parameters 
were trained using the Kashgari package in Python 
(https://pypi.org/project/kashgari/). Convolutional neural 
network (CNN)-based models were also constructed for 
comparison. The dictionary-based method derives its 
phenotype knowledge base from Chinese translations of 
the International Classification of Diseases (ICD-11) (19). 
The second subtask involved predicting suitable values 
for attributes within the PhenoSSU model. For attribute 
prediction, we previously developed a pattern recognition-
based method (18). Additionally, a conventional support 
vector machine (SVM) model was employed for the 
comparative analysis in this task.

Evaluation of the algorithm performance for recognizing 
PhenoSSU instances

The performance of PhenoSSU instance recognition was 
assessed using the metrics outlined in the Several-2015 Task 14: 
Analysis of Clinical Text (https://aclanthology.org//S15-2051).  
For entity recognition, the F1 score served as the primary 
evaluation metric. A predicted entity was deemed a true 

positive if it perfectly matched the gold-standard text span. 
Precision was defined as the ratio of correctly predicted 
entities to the total number identified by the algorithm. 
In contrast, recall was defined as the ratio of correctly 
predicted entities to those identified by annotators. The F1-
score represents the harmonic mean of precision and recall. 
For attribute prediction, average accuracy and weighted 
average (WA) accuracy were used as the evaluation metrics. 
Notably, the WA accuracy accounts for the distribution 
of attribute values in the corpus, offering a more nuanced 
evaluation of infrequently occurring values.

ssuBERT: fusing PhenoSSU embedding into BERT

Drawing on BERT’s sentence pair input configuration, we 
concatenated the attribute texts from PhenoSSU with the 
original document using a [SEP] token (separator token), 
applying distinct segment embeddings for the label texts and 
the document content. Document tokens are represented as 
Ti, with their respective embeddings denoted as ETi. Thus, 
TK signifies the final token of the input document, where K 
represents the total number of words, and Aj represents the 
label text for the jth class out of C total classes. Given that Aj 
may contain multiple subwords, EAj, the embedding of Aj, 
is computed by averaging the embeddings of all subwords 
within Aj. Consequently, the length of the label vector 
corresponds to C. Adhering to the methodology of the 
original BERT, a linear layer is used to prepare the input for 

https://pypi.org/project/kashgari/
https://aclanthology.org//S15-2051
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the SoftMax layer.

Model structure

We developed a multi-modal deep-learning model to 
predict clinical outcomes in NSCLC patients. Our objective 
was to predict patient survival using the following three 
input feature types: radiomic features, clinical characteristics, 
and embeddings from the linear layer of the ssuBERT 
model (see Figure 4). Deep neural networks (DNNs) were 
constructed for this purpose. Individual DNN models 
were trained on each feature set, and their performance 
was optimized by integrating them through a SoftMax 
layer. The DNN models were constructed and trained 
using TensorFlow (version 2.4.1) in Python. Separate 

DNN models were trained on radiomic and clinical feature 
sets, each comprising three hidden layers using the ReLU 
(Rectified Linear Unit) activation function. The models 
were built with the Adam optimizer, a batch size of 128, a 
learning rate of 0.001, and a cross-entropy loss function. 
Post-training, the outputs from each model were merged 
and processed through a final Softmax layer to produce the 
ultimate survival prediction. The model was trained for 
200 epochs using a GeForce RTX 4070 Ti GPU (Graphics 
Processing Unit). The models underwent five-fold cross-
validation to assess their performance, which was evaluated 
using ROC curves with AUC, accuracy, F1 score, precision-
recall AUC, and recall. Accuracy = (TP + TN)/(TP + TN 
+ FP + FN). Recall = TP/(TP + FN). Precision= TP/(TP 
+ FP). F1 = 2*(Precision * Recall)/(Precision + Recall). TP 

Figure 4 The detailed structure of multi-modal data integration.
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[SEP]
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[SEP]
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E[SEP]
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(True Positive), TN (True Negative), FP (False Positive) 
and FN (False Negative).

Statistical analysis

The statistical analyses and visualizations were conducted 
with SPSS (Statistical Product and Service Solutions, 
version 25.0, IBM Corp., Armonk, NY, USA), GraphPad 
Prism (version 9.0), Python (version 3.7), Figdraw and R 
(version 3.5.3). The survival analysis and plotting were 
carried out using the survival package (version 3.5) and the 
survminer package (version 0.4.9) in R. A P value of less 
than 0.05 was considered statistically significant.

Results

Baseline information

Table 1 sets out the clinicopathological characteristics of 
the patients. The study included the radiomic data of 316 
NSCLC patients, of whom 196 had lung adenocarcinoma 
and 120 had lung squamous carcinoma. Notably, the 
radiogenomic cohort had a higher proportion of lung 
adenocarcinoma patients (96/130) than the other two 
cohorts. The OS periods of the three cohorts were 24.6 (4.4–
48) months for the TCGA cohort, 42.0 (14.9–59.4) months 
for the radiogenomic cohort, and 25.2 (9–35.6) months for 
the SC cohort.

Hypoxia is informative of the survival status of NSCLC

Using hypoxia gene sets, we first performed a ssGSEA 
to compute the hypoxia enrichment scores for samples 
from the TCGA, radiogenomic, and two GEO cohorts. 
Optimal cut-off values for hypoxia scores were calculated, 
enabling the classification of NSCLC patients from the 
radiogenomic, TCGA, GSE19188, and GSE87340 datasets 
into low and high-hypoxia groups (Figure S2A-S2D). 
Elevated hypoxia levels were correlated with worse survival 
outcomes across all cohorts (Figure 5A-5D).

Radiomic can predict hypoxia status of NSCLC

We used the LASSO regression model to select features 
from the radiomic data. A total of 28 radiomic features were 
extracted to develop the radiomic signature (Figure 6A-6C).  
Subsequently, the discriminative power of the radiomic 
features was assessed in the radiogenomic cohort, yielding 
an area under the curve (AUC) of 0.9235 (Figure 6D), 
and validated in the TCGA cohort, yielding an AUC of 
0.8295 (Figure 6E). Building on these findings, we showed 
the prognostic significance of hypoxia genes and the  
28 radiomic features in representing hypoxia status in 
NSCLC. These findings indicated that non-invasive CT 
methods hold promise for predicting survival outcomes in 
this cancer type.

The best strategy for recognizing PhenoSSU instances

To determine the optimal approach for identifying 
PhenoSSU instances, we evaluated and compared various 

Table 1 Characteristics of the enrolled cohorts

Features
TCGA 
(N=74)

Radiogenomic 
(N=130)

SC  
(N=112)

Age (years), median 
[25%, 75%]

68 [60–73] 69 [63–76] 69 [66–75]

Female, n (%) 55.40 43.85 48.20

Histology

Adenocarcinoma 34 96 66

Squamous carcinoma 40 34 46

Stage

I–II 50 – 70

III–IV 20 – 42

Not reported 4 130 0

Laterality

Left 30 80 57

Right 44 50 55

Vital status

Alive 42 85 49

Dead 32 45 63

OS (month), median 
[25%, 75%]

24.6 [4.4–
48]

42.0 [14.9–59.4] 25.2 [9–35.6]

Smoking status

Non-smoker – 20 12

Current – 25 36

Former – 85 64

TCGA, The Cancer Genome Atlas; SC, The Second Affiliated 
Hospital of Soochow University; OS, overall survival. 

https://cdn.amegroups.cn/static/public/TLCR-24-982-Supplementary.pdf
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Figure 5 Survival analysis of the hypoxia scores. The survival curves of the samples from the radiogenomic (A), TCGA (B), GSE87340 (C), 
and GSE19188 (D) cohorts based on the best cut-off values, respectively. TCGA, The Cancer Genome Atlas.

techniques for the subtasks of entity recognition and 
attribute prediction. Specifically, the deep-learning 
approach using BERT-BILSTM-CRF yielded the highest 
performance in the entity recognition subtask, achieving an 
F1 score of 0.899 (Table 2). Conversely, the dictionary-based 
approach with ICD-11 had an F1-score of 0.789. For the 
attribute prediction subtask, the pattern recognition method, 
developed in our previous research (18), demonstrated 
superior performance, with a weighted accuracy of 0.945 
(Table 3). Conversely, the SVM-based method attained a 
weighted accuracy of 0.731.

Using deep-leaning models to predict OS

DNN models were developed based on the different 

predictors and a five-fold cross-validation analysis was 
conducted to predict the survival of patients with NSCLC 
(Figure 7). Among the single-modal models, the radiomic 
(Figure 7A,7E) and EHR (represented as ssuBERT;  
Figure 7B,7F) models showed superior predictive performance 
with AUC values of 0.7600 and 0.7662, and F1 scores of 
0.6785 and 0.6733, respectively. The multi-modal model 
achieved the highest average AUC of 0.8449 and an F1 score 
of 0.7557 (Figure 7D,7H). By combining the modalities, the 
model benefited from the complementary strengths of each, 
leading to improved feature representation and enhanced 
predictive accuracy. This holistic approach allowed the multi-
modal model to achieve higher performance metrics, as it 
leveraged a richer and more complete set of information for 
predicting patient survival.
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Discussion

Lung cancer is the leading cause of cancer-related death 
worldwide, and poses a significant public health challenge (20). 
Hypoxia has emerged as a critical biomarker with promising 

potential for clinical applications (3). The timely detection of 
hypoxic conditions is essential for selecting effective treatment 
strategies for NSCLC patients. However, conventional 
methods are invasive and face limitations, including 
limitations related to difficulties in sampling, constraints 
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related to tissue availability, and tumor heterogeneity. 
Conversely, non-invasive radiomic and EHR features offer the 
potential to predict clinical outcomes by uncovering relevant 
molecular information (21). This study established a deep-
learning model designed to non-invasively predict the survival 
outcomes of NSCLC patients by integrating EHR, radiomic, 
and clinical feature data.

Hypoxia has been extensively investigated in cancer 
research with one recent study highlighting its potential 
clinical significance (22). Insufficient oxygen supply at the 
cellular, tissue, or organ level is frequently observed across 
various physiological and pathological states, and is regarded 
as a pivotal factor in carcinogenesis (23). Hypoxia serves as a 
critical sensor in key stages of cancer progression, including 
invasiveness, the acquisition of stem cell-like properties, 
stimulation of angiogenesis and lymph angiogenesis, and 

immune evasion, and also modulates radiotherapy sensitivity, 
cell survival, and resistance to apoptotic signals (24,25). 
Techniques such as immunohistochemistry commonly use 
HIF-1α and pimonidazole staining to study hypoxia (24,26). 
The expression of HIF-1α inducible markers and the 
synthesis of nitroimidazoles are influenced by varying oxygen 
levels, and HIFs can also be activated under physiological 
hypoxic conditions (27). Therefore, the accurate identification 
of hypoxic states may improve the prediction of patient 
prognosis and enhance clinical outcomes for lung cancer 
patients.

Numerous studies have examined the use of hypoxic gene 
profiles in predicting the survival of patients with various types 
of cancer, including gastric cancer (28), liver cancer (29), and 
lung cancer (30). However, the identification of genomic 
markers is often costly and complex. Consequently, this 
study focused on evaluating hypoxia status and predicting 
survival outcomes for NSCLC patients by combining 
radiomic features with EHRs.

Previous research has examined the predictive value of 
radiomic features and EHRs in lung cancer. For instance, 
one study identified clusters of radiomic features linked to 
lung cancer prognosis (31). Another study also established 
a relationship between CT radiomic features and OS in 
NSCLC patients (32). Additionally, a recent study explored 
the correlation between patient characteristics and clinical 
outcomes in NSCLC patients using EHRs (9). Another 
study assessed the efficacy of machine-learning algorithms 
in deriving a cohort of lung cancer patients from EHRs 
and in estimating their OS (33). Thus, the integration of 
radiomics and EHRs holds promise for enhancing survival 
prediction accuracy.

This study employed hypoxia-associated radiomics and 
EHRs to develop an advanced deep-learning model. By 
merging radiomic data with EHR information, the model 
delivers early and precise prognostic insights for patients 
with NSCLC. This capability will enable oncologists to 
customize treatment strategies more effectively, including 
modulating therapy intensity based on predicted outcomes. 
Further, the model can pinpoint high-risk patients who may 
benefit from intensified monitoring or enrollment in clinical 
trials, thereby potentially enhancing survival rates and the 
overall quality of life of patients. For instance, patients 
predicted to have a poor prognosis might be considered 
for experimental treatments or more frequent imaging, 
while those with a more favorable prognosis could avoid 
unnecessary overtreatment and its potential adverse effects. 
These capabilities illustrate how the model’s predictions can 

Table 2 The performance of different methods in the subtasks of 
entity recognition

Method AUC Accuracy Sensitivity Specificity F1 score

ICD-11 0.76 0.791 0.773 0.813 0.789

CNN 0.75 0.770 0.707 0.827 0.751

CNN-LSTM 0.79 0.811 0.799 0.826 0.811

BERT 0.82 0.837 0.801 0.881 0.833

BERT-BILSTM-CRF 0.85 0.903 0.879 0.920 0.899

AUC, area under the curve; ICD, International Classification of 
Diseases; CNN, convolutional neural network; LSTM, Long Short-
Term Memory; BERT, Bidirectional Encoder Representations 
from Transformers; BERT-BILSTM-CRF, BERT-Bidirectional Long 
Short-Term Memory-Conditional Random Field.

Table 3 The performance of different methods in the subtasks of 
attribute prediction

Attribute Pattern recognition (WA) SVM (WA)

Assertion 0.971 0.802

Severity 0.932 0.722

Temporal pattern 0.909 0.729

Laterality pattern 0.821 0.673

Quadrant pattern 0.812 0.637

Spatial pattern 0.817 0.631

Body location 0.910 0.692

Total 0.945 0.731

WA, weighted accuracy; SVM, support vector machine.
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Figure 7 Performance of different models based on multi-modal data in the five-fold cross-validation. ROC curves of the radiomic (A), ssuBERT (B), 
clinical feature (C), and multi-modal (D) models. Radar plots of the radiomic (E), ssuBERT (F), clinical feature (G), and multi-modal (H) models, 
showing AUC, accuracy, F1 score, precision-recall AUC, and recall. AUC, area under the curve; CI, confidence interval; ROC, receiver operating 
characteristic; PR, precision-recall; ssuBERT, semantic structured unit embedded in Bidirectional Encoder Representations from Transformers.
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advance personalized medicine, facilitating more informed 
clinical decisions and improved patient outcomes. Regarding 
external validation, while we acknowledge its importance, 
due to the current unavailability of a suitable external 
cohort with all required data modalities, we implemented a 
robust 5-fold cross-validation strategy. This approach helps 
mitigate overfitting, provides reliable estimates of model 
generalizability, and demonstrates consistent performance 
across folds, though we have acknowledged this limitation 
and highlighted it as a direction for future research.

This study had several limitations. First, despite our 
efforts to standardize image acquisition to three specific CT 
systems and pre-process the images prior to segmentation, 
discrepancies among imaging devices might have affected 
the results. Second, the semi-automatic tumor segmentation 
process proved to be labor-intensive for the radiologists. 
Third, the limited sample size of this study highlights 
the need for further prospective research to enhance the 
generalizability and robustness of the developed model. 
Finally, it is crucial to evaluate the prediction model on 
external datasets to address potential overfitting.

Conclusions

We introduced an innovative method for evaluating survival 
status through the integration of radiomic and EHRs. This 
methodology could assist clinicians to refine treatment 
strategies for patients with NSCLC.
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