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Abstract: Aquatic insects provide an energy subsidy to riparian food webs. However, most empirical
studies have considered the role of subsidies only in terms of magnitude (using biomass measurements)
and quality (using physiologically important fatty acids), negating an aspect of subsidies that may
affect their impact on recipient food webs: the potential of insects to transport contaminants (e.g.,
mercury) to terrestrial ecosystems. To this end, I used empirical data to estimate the magnitude of
nutrients (using physiologically important fatty acids as a proxy) and contaminants (total mercury
(Hg) and methylmercury (MeHg)) exported by insects from rivers and lacustrine systems in each
continent. The results reveal that North American rivers may export more physiologically important
fatty acids per unit area (93.0 ± 32.6 Kg Km−2 year−1) than other continents. Owing to the amount of
variation in Hg and MeHg, there were no significant differences in MeHg and Hg among continents in
lakes (Hg: 1.5 × 10−4 to 1.0 × 10−3 Kg Km−2 year−1; MeHg: 7.7 × 10−5 to 1.0 × 10−4 Kg Km−2 year−1)
and rivers (Hg: 3.2 × 10−4 to 1.1 × 10−3 Kg Km−2 year−1; MeHg: 3.3 × 10−4 to 8.9 × 10−4 Kg Km−2

year−1), with rivers exporting significantly larger quantities of mercury across all continents than
lakes. Globally, insect export of physiologically important fatty acids by insect was estimated to be
~43.9 × 106 Kg year−1 while MeHg was ~649.6 Kg year−1. The calculated estimates add to the growing
body of literature, which suggests that emerging aquatic insects are important in supplying essential
nutrients to terrestrial consumers; however, with the increase of pollutants in freshwater systems,
emergent aquatic insect may also be sentinels of organic contaminants to terrestrial consumers.
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1. Introduction

The movement of materials between juxtaposed habitats has received much attention by food web
and landscape ecologists in the last four decades (reviewed by Richardson and Sato [1]). Freshwater
ecologists have long documented that exogenous organic matter (e.g., terrestrial leaves) fuels rivers
via inputs of nutrients and organic matter [2], but in recent decades, the importance of aquatic insect
subsidies to riparian predators (e.g., bats; [3]) has been emphasized [4–6]. These aquatic subsidies are
known to affect the behaviour, productivity, and diversity of riparian predators [7,8].

One such subsidy is in the form of physiologically important fatty acids (eicosapentaenoic
acid (EPA; 20:5ω3) and docosahexaenoic acid (DHA; 22:6ω3)), both of which are of fundamental
physiological importance to all organisms [5,9] because most consumers do not possess the necessary
enzymes to synthesize them in the required quantities, so they must obtain them from their diet. These
physiologically important fatty acids are required for the maintenance of cell membrane structure and
function [10,11], regulating hormonal processes and preventing cardiovascular diseases [12].

Aquatic insects are one group of organisms known to be key exporters of physiologically important
fatty acids to terrestrial systems [13], and because many adult insects do not return to the water [14],
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they represent a net loss of organic nutrients from the aquatic system, and potential food for consumers
in adjacent terrestrial ecosystems. A plethora of studies on fatty acids in aquatic systems generally
support the premise that aquatic insects are richer in physiologically important fatty acids [15–17]
than their terrestrial counterparts [13]. Aquatic insects lay their eggs in freshwaters, where the larvae
then develop and accumulate physiologically important fatty acids [18]. Subsequently, owing to their
complex life cycles, aquatic insects can effectively transfer physiologically important fatty acids to the
terrestrial system when they emerge and fall prey to terrestrial predators [19]. As such, knowledge of
fatty acids in food sources and consumers is important both for obtaining basic dietary information
on consumers within one habitat and for assessing the nutritional implications of reciprocal fluxes in
juxtaposed habitats.

Further to providing critical nutrients to terrestrial consumers, aquatic insects can also supply
unwanted contaminants to recipient food webs [20]. One such contaminant is mercury, a metal that has
become a global concern because of its toxicity. Specifically, methylmercury (MeHg) is of concern as it
concentrates at the base of aquatic food webs (e.g., algae) and is subsequently biomagnified, resulting
in high concentrations of MeHg in the tissues of predators (e.g., spiders; [21]). The potential of MeHg
to be biomagnified presents a health hazard to aquatic organisms and terrestrial wildlife with trophic
linkages to aquatic food webs (e.g., those that consume emergent aquatic insects; [22–24]). While
many studies have examined the movement of contaminants between habitats (e.g., Du et al. [25]),
few studies have concurrently measured the fluxes of contaminants and fatty acids from streams to
riparian zones; even though stream contamination is widespread [26].

Great strides have been made by individual researchers on the potential export of fatty acids
from water to land (e.g., [13,27]), however, studies looking into the potential export by insects are
scanty. Furthermore, our current knowledge of transfer of fatty acids and contaminants extends
only to site-specific studies (with many being biased toward the Northern Hemisphere), effectively
limiting our ability to understand the global effects of stream-derived contaminants and nutrients
across aquatic–terrestrial boundaries.

Through the seminal works of Gladyshev and others [18], the first global estimate of physiologically
important fatty acids by emerging insects was estimated to be between 0.1 Kg km−2 year−1 to as high
as 672.2 Kg km−2 year−1. One would expect that with new studies documenting fatty acids in insects,
these estimates may have changed significantly. To date, no global estimates are available for the
global estimate of mercury from water to land. To this end, the aim of this study was to build on
past works by Gladyshev et al. [18] and estimate the continental and global export of contaminants
(methylmercury) and nutrients (physiologically important fatty acids) from freshwater systems to land
and to determine the extent of coupling between contaminants and nutrients.

2. Material and Methods

2.1. Literature Search and Data Extraction

To quantify export of physiologically important fatty acids and mercury (Aim: estimate continental
and global export of mercury and physiologically important fatty acids via insects) from freshwater
systems to land, I quantified subsidies (using physiologically important fatty acids; DHA + EPA) and
the potential export of contaminants (methylmercury and total mercury) from freshwater to terrestrial
ecosystems by carrying out an extensive search of the scientific literature. To identify relevant studies,
a comprehensive literature search was conducted using papers from scientific databases (Google
Scholar©, Scholars Portal© and Thomson Reuters Web of Science©) using the search algorithm: fatty
acids OR mercury*AND benthic invert*aquatic insects* OR insect emergence. I also included papers
from the first global estimates of insect emergence and fatty acids listed in works by Gladyshev et al. [18].
These initial searches yielded >400 articles published up to October 2019. From this initial set, the final
dataset (Tables 1–5) was chosen based on the following criteria: (1) emergence reported in mg m−2 year
(or comparable units) for the year, (2) fatty acids and mercury were reported in mg g−1 and ng g−1,
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respectively (or comparable units e.g., ug g−1), for benthic insects, (3) only emergence traps were used
to collect emergent insects, (4) studies that did not use allometric equations (length-weight regressions)
to estimate the dry weight of emergent insects (e.g., [13]) that may overestimate emergence rates [28],
and (5) only studies published in English, were included in literature surveys. Criterion 2 excluded
studies that reported fatty acid and mercury data as relative proportions or percentages (%).

In several cases, fatty acid, mercury and emergence data were available for different seasons or
from different locations. Within a single location, a grand mean was calculated from the fatty acid data
from that location, regardless of season; thus, the values represented the average values for a location.
Data from different studies were combined to provide a grand mean for each type of data (fatty acid,
methylmercury, total mercury, emergence).

To standardise values with those reported in the broader scientific literature, I ensured that all
units were converted to match those reported in the literature by other authors [27].

2.2. Calculation of Surface Area

Total surface area (Km2) was estimated by calculating areas of lakes and rivers for six of the
world’s continents (Africa, Asia, Australia, Europe, North America and South America; Table S1 in
Supporting information). I used estimates from the Global Lakes and Wetlands Database (GLWD; [29]),
Digital Chart of the World (DCW; [30]), HydroSheds (basins and stream networks; [31]) and HydroK1
(US Geological Survey. [32], empirical data supplied by authors [33]) to calculate the total surface
area of lakes and rivers. All Shapefiles (.shp) were visualized and surface areas measured using
GRASS GIS [34] and QGIS (version 3.10, [35]). For global estimates of surface areas of lakes and
rivers, theoretical calculations from several models in the literature were used (see Supplementary
information; Table S2).

Aquatic insects develop and live in only a small portion of aquatic habitats. For instance, over 72%
of insects only live in the littoral area of lakes near the shore [36]. Similarly, littoral zones can make up
anywhere from 3.4% to 30.3% of the surface area of lakes [36]. As such, I adjusted the measurements of
all areas to account for the littoral zone to be between 3.4% to 30.3% (average of 18.6% for all Lakes).

2.3. Emergence of Insects

Data for emerging aquatic insects (dry weight; g m−2 year−1) were extracted from diverse literature
data (Figure 1; Tables 1 and 2). Because only a very small percentage of emergent aquatic return to
the stream, I used the average calculations of return of insect to freshwaters. For instance, Jackson
and Fisher [14] enumerated the return of adult aquatic insects to be only 3.1% of the emerged biomass
returned to the stream. Elsewhere, Gray [37] found that less than 1% of aquatic insects in a prairie
stream returned to the aquatic system, whereas other researchers have documented larger (9.2%)
returns by biomass in lacustrine systems [38,39]. As such, I corrected the net export to account for the
return of between 1% to 9.2% for lakes and rivers (average of 4.43% return rate).

2.4. Estimates of Physiologically Important Fatty Acids in Aquatic Insects

Available data on physiologically important fatty acids (Figure 1; mg g−1 of dry mass) were
obtained based on studies that quantitatively determined the fatty acids content of insects using
standard fatty acid extraction methods (e.g., [40,41]). Some data reported were for aquatic insect
larvae and these were included in the analysed dataset. Fatty acid content of insect differs with life
stages from larvae to adults [41], however, the life-stage differences in physiologically fatty acids are
minor. For example, some mosquito (Culicidae) larvae and adults have been observed to contain
approximately similar quantities of physiologically important fatty acids [41]. Where data were
reported as wet weight, I used the moisture content given by the authors to calculate the dry mass.
Taxa included were from Europe and Asia (Table 3). Most data collected indicated that Diptera are the
most dominant order in most emergence data sets.
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Figure 1. Map showing locality of studies documenting the emergence fatty acids and mercury content
in six continents.

Table 1. Insect emergence from lakes (g DM m−2 year−1) for available continents. ‘Community’ denotes
instances where whole taxa values are reported. Average and coefficient of variation in bold represents
the grand average that was used to calculate emergence for Africa, South America, Asia, Australia.

Continent Taxa Emergence Reference

Europe
Chironomidae,

Ephemeroptera, Trichoptera 4.0 [42]

Community 1.8 [43]
Community 1.4 [43]
Community 1.1 [43]
Community 2.4 [44]

Chironomidae 1.9 [45]
Chironomidae 0.2 [46]

Community 0.2 a [47]
Average ± SD 1.6 ± 1.2

Coefficient of variation (%) 70.9

North America
Chironomidae 1.5 b [38]

Community 1.1 c [48]
Chironomidae 0.2 d [49]
Chironomidae 1.9 [14]

Average ± SD 1.2 ± 0.6
Coefficient of variation (%) 53.8

Average ± SD 1.5 ± 1.0
Coefficient of variation (%) 70

a average values calculated from Table 3 of the reference. b averaged author′s data. c Recalculated from authors
data. d average value calculated from Table 2 of the reference.
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Table 2. Insect emergence from rivers (g DM m−2 year−1) for available continents. ‘Community’
denotes instances where whole taxa values are reported. Values in ‘bold’ denote the grand means and
standard deviation for all available data. Average and coefficient of variation in bold represents the
grand average that was used to calculate emergence for Australia and South America.

Continent Taxa Emergence Reference

Africa
Trichoptera 0.5 e [14]
Community 4.0 e [14]

Average ± SD 2.2 ± 1.7
Coefficient of variation (%) 78.6

Asia
Community 2.1 f [50]
Community 1.2 g [51]

Average 1.7 ± 0.5
Coefficient of variation (%) 27.3

Europe
Diptera, Trichoptera, Ephemeroptera 1.7 [52]

Ephemeroptera, Plecoptera, Trichoptera 3.6 h [14]
Ephemeroptera, Plecoptera, Trichoptera 5.0 h [14]

Community 5.4 h [14]
Community 2.6 h [14]
Community 2.6 h [14]
Community 3.7 h [14]
Community 3.7 h [14]
Community 2.0 h [14]
Community 2.6 h [14]
Community 3.2 h [14]

Chironomidae 1.9 h [14]
Average 3.2 ± 1.1

Coefficient of variation (%) 35.7
North America

Diptera, Chironomidae 1.2 i [53]
Trichoptera, Ephemeroptera, Plecoptera,

Diptera 6.6 j [54]

Ephemeroptera, Plecoptera, Trichoptera 0.3 [39]
Chironomidae, Ephemeroptera, Trichopetra 23.1 h [14]

Community 5.3 [14]
Community 7.1 [14]

Average ± SD 7.8 ± 9.2
Coefficient of variation (%) 117.4

Average ± SD 4.5 ± 4.5
Coefficient of variation (%) 100.4

e data for Democratic republic of Congo (formerly Zaire) stream from Table 5 of the reference; f averaged from using
average weight of insect specimen dry mass 150 µg; g recalculated from Figure 1C of the reference; h data for Europe
from Table 5 of the reference; i averaged author′s data; j recalculated from authors data.
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Table 3. Physiologically important fatty acids (EPA+DHA, mg g−1 of dry mass) in emergent aquatic
insects in lakes and rivers. Taxa in italics represent fatty acids measured in insect larvae. Average and
coefficient of variation in bold represents the grand average that was used to calculate emergence for
all six continents.

Continent Taxa EPA +DHA Reference

Lentic
Odonata 8.27 k [55]

Chironomidae 11.9 [46]
Community 17.8 l [56]

Chironomidae 4.0 [40]
Chironomidae 7.0 [40]
Ephemeroptera 11.3 [27]
Chironomidae 10.1 [57]

Culicidae 6.77 [41]

Average ± SD 9.6 ± 3.9
Coefficient of variation (%) 41

Lotic
Trichoptera m 11.6 [58]

Ephemeroptera m 12.8 [58]
Chironomidae m 7.7 [58]
Chironomidae 18.1 [18]

Trichoptera 9.4 [27]

Average ± SD 11.9 ± 3.6
Coefficient of variation (%) 30

k converted wet weight to dry weight based on authors data of moisture of ~71.7%; l average estimated from
Figure 3 of the reference; m dry weight estimated from the reference using moisture contents of 83.8% Trichoptera,
Chironomidae 78.0%, Ephemeroptera (80%).

Table 4. Total mercury (Hg, mg g−1 of dry mass) and methylmercury (MeHg, mg g−1) in emergent
aquatic insects in lakes. ‘Community’ denotes instances where whole taxa values are reported. Average
and coefficient of variation in bold represents the grand average that was used to calculate emergence
for Africa, Asia, Australia, Europe.

Continent Taxa Total Mercury Methylmercury Reference

Lentic
North America

Trichoptera, Diptera n 4.2 × 10−4 n 1.6 × 10−4 [48]
Coleoptera 1.8 × 10−4 1.1 × 10−4 [59]

Ephemeroptera 1.3 × 10−4 1.4 × 10−5 [59]
Hemiptera 2.6 × 10−4 1.2 × 10−4 [59]
Odonata 1.4 × 10−4 1.0 × 10−4 [59]

Trichoptera 1.3 × 10−4 4.9 × 10−5 [59]
Trichoptera 4.9 × 10−4 2.5 × 10−5 [60]

Odonata 1.1 × 10−4 5.7 × 10−5 [60]
Ephemeroptera 1.1 × 10−4 2.1 × 10−5 [60]

Coleoptera 1.5 × 10−4 2.0 × 10−5 [60]
Trichoptera 3.8 × 10−5 1.6 × 10−5 [60]

Odonata 7.1 × 10−5 4.8 × 10−5 [60]
Ephemeroptera 7.5 × 10−5 1.9 × 10−5 [60]

Odonata 9.7 × 10−5 1.1 × 10−4 [61]
Ephemeroptera 1.1 × 10−4 7.9 × 10−5 [61]

Trichoptera 5.0 × 10−5 3.7 × 10−5 [61]
Diptera 6.9 × 10−5 3.6 × 10−5 [61]
Odonata - 1.3 × 10−4 [62]
Diptera - 7.9 × 10−5 [62]

Trichoptera - 8.9 × 10−5 [62]
Average ± SD 1.3 × 10−4

± 8.9 × 10−5 6.6 × 10−5
± 4.3 × 10−5
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Table 4. Cont.

Continent Taxa Total Mercury Methylmercury Reference

Coefficient of variation (%) 70 65
South America

Diptera o 1.3 × 10−3 - [63]
Ephemeroptera 5.7 × 10−4 - [63]

Odonata 1.7 × 10−4 - [63]
Plecoptera 2.0 × 10−3 - [63]
Trichoptera 3.1 × 10−4 - [63]
Community 2.0 × 10−4 3.4 × 10−5 [64]
Community 2.8 × 10−4 1.9 × 10−4 [65]

Average ± SD 6.9 × 10−4
± 6.4 × 10−4 7.0 × 10−5

± 4.9 × 10−5

Coefficient of variation (%) 93 68

Average ± SD 2.9 × 10−4 ± 4.4 × 10−4 7.0 × 10−5 ± 4.9 × 10−5

Coefficient of variation (%) 150 70
n mean from data presented in Table 3 in authors data; o units converted from ug g to mg g−1.

Table 5. Total mercury (Hg, mg g−1 of dry mass) and methylmercury (MeHg, mg g−1) in emergent
aquatic insects in rivers. ‘Community’ denotes instances where whole taxa values are reported. Average
and coefficient of variation (in bold) represents the grand average that was used to calculate emergence
for Africa, Asia, Australia, Europe, and South America.

Continent Taxa Total Mercury Methylmercury Reference

Lotic
North America

Diptera p 4.5 × 10−4 p 2.0 ×10−4 [66]
Ephemeroptera q 3.4 × 10−5 q 1.8 × 10−5 [67]

Trichoptera 5.1 × 10−5 * [68]
Community 2.7 × 10−4 * [69]

Ephemeroptera 8.1 × 10−5 * [70]
Plecoptera 6.1 × 10−5 7.3 × 10−5

Diptera 2.0 × 10−5 * [22]
Average ± SD 1.4 × 10−4

± 1.5 × 10−4 9.6 × 10−5
± 7.5 × 10−5

Coefficient of variation (%) 108 78
South America

Community 5.7 × 10−4 5.0 × 10−4 [65]

Average ± SD 1.9 × 10−4 ± 2.0 × 10−4 2.0 × 10−4 ± 1.9 × 10−4

Coefficient of variation (%) 104 95
p based on average from authors data; q based on means of authors data. * Asterisks denote instance where data
were not recorded cited reference.

2.5. Estimates of Mercury and Methylmercury Content in Aquatic Insects

Data on Hg and MeHg (mg g−1 of dry mass; Tables 4 and 5) were obtained based on studies that
quantitatively determined the content of the two forms of mercury in aquatic insects using advanced
mercury analyzers like amalgamation-thermal atomic absorption spectrometers [48,66]. While original
data were presented by most authors in ng g−1, I converted the values to mg g−1 (by multiplying all
ng g−1 values by 1 × 10−6) for all analyses to match the values reported for emergence data.

2.6. Data Analyses

Initially, content for fatty acids (mg g−1) was multiplied by the emergence to obtain the export of
fatty acids in (Kg Km−2 year−1). Mercury content data were converted from ug g−1 to mg g−1 and
subsequently multiplied by emergence to obtain methylmercury (MeHg) and total mercury (Hg) as
Kg Km−2 year−1.

To estimate the total net export (Kg year−1) of mercury and fatty acids from water to land, export
of mercury and fatty acids (Kg km−2 year−1) were multiplied by the estimate of areas of lakes and
rivers (Km2) globally and by continent. Because some continents had no available emergence and
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mercury data for lakes (e.g., Africa, Australia, Asia and South America) and rivers (e.g., South America,
I used the grand mean calculated for all available data for each ecosystem type (Lake or River).

All means and coefficients to variations (CV) were calculated for each data type. All mean values
for data were compared using MedCalc® (statistical software version 14.8.1, software bvba, Ostend,
Belgium; http://www.medcalc.org; 2018) and following procedures described in Altman [71].

3. Results

All literature survey data for fatty acids, Hg, MeHg are presented in Tables 1–5. Overall, the data,
as evidenced by high coefficients of variation depict that there is a lot of variation in fatty acid and
mercury data recorded in the literature. For example, Hg (Table 5) has a coefficient of variation of
over 100 percent. Similarly, the grand means for fatty acids and mercury also show large variations
across datasets.

3.1. Continental Exports of Physiologically Important Fatty Acids

Considering export of physiologically important fatty acids per unit area, lentic systems export
similar quantities of fatty acids across all six continents in this study (range: 11.3 to 14.2 Kg Km−2 year−1;
Figure 2).
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Figure 2. Estimate (±SD) of physiologically important fatty acids, methylmercury (MeHg) and total
mercury (Hg) calculated for each continent. The letters depict results from Medcalc® comparison
of means calculator within each continent, where values with the same letters depict no significant
difference between the export values. Note that only continents where emergence data are available are
statistically compared.

http://www.medcalc.org
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In rivers (Figure 2), North America exports a larger amount of fatty acids (93.0 ± 32.6 Kg Km−2 year−1;
Figure 2) compared to all other continents (range: 19.7 to 53.8 Kg Km−2 year−1) per unit area. The
lowest exports of fatty acids per unit area exported from river to land by aquatic insects were in Asia
(19.7 Kg Km−2 year−1).

Considering the total area of rivers and lakes by continent reveals that the quantity of fatty
acids (Kg year−1) exported from lakes to land are highest in Asia (2.2 × 106 Kg year−1; Figure 3)
and North America (2.2 × 106 Kg year−1), with Australia exporting the lowest amount of fatty acids
(3.4 × 104 Kg year−1; Figure 3).
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Figure 3. Estimate (±SD) of physiologically important fatty acids, methylmercury (MeHg) and total
mercury (Hg) calculated for each continent. The letters depict results from Medcalc® comparison
of means calculator within each continent, where values with the same letters depict no significant
difference between the export values. Note that only continents were emergence data are available are
statistically compared.
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In rivers, North America contributes more to the export of fatty acids (11.5 ×106 Kg year−1) than
all the other continents (range: 62.4 × 104 to 52.7 × 105 Kg year−1). South America is the second largest
exporter of fatty acids from river to land (52.7 × 105 Kg year−1), with Australia exporting the lowest
(62.4 × 104 Kg year−1). Overall, rivers across all continents contribute more to export of fatty acids
than lakes.

3.2. Continental Exports of Mercury and Methylmercury

Regarding the export of Hg and MeHg from lakes to land per unit area, there are no significant
differences among the exports of Hg (range: 1.5 × 10−4 to 1.0 × 10−3 Kg Km−2 year−1; Figure 2) and
MeHg (range: 77.2 × 10−6 to 103 × 10−6 Kg Km−2 year−1) in lentic systems.

In rivers, there were no significant differences in flow of Hg from water to land among continents
per unit area (mean range: 3.2 × 10−4 to 1.1 × 10−3 Kg Km−2 year−1; p > 0.05). Similarly, there were no
significant differences among exports of MeHg by continent. The only exception was between Europe
and Asia, where Europe (6.4 × 10−4 Kg Km−2 year−1) exported more MeHg per unit area from land to
water than Asia (3.3 × 10−4 Kg Km−2 year−1).

By considering the total area of rivers and lakes at each continent, I was able to calculate the
amount of Hg and MeHg exported from water to land per year (Kg year−1). The results from these
calculations reveal that there are no significant differences in export of Hg from lakes (Figure 3).
Australia was the only exception as it had significantly lower exports of Hg (2 Kg year−1) from lake
compared to all the other continents. Methylmercury exported from lake to land is greatest in Asia
(15.6 Kg year−1) and North America (15.2 Kg year−1) compared to the other continents (mean range:
0.3 to 4.33 Kg year−1).

In rivers, there were no significant difference in exports of Hg and MeHg from river to land, with
exceptions occurring between some continents (e.g., export of Hg is significantly higher in Europe
than in Australia).

3.3. Global Exports of Physiologically Important Fatty Acids and Mercury

Global export of fatty acids per year are higher in rivers (35.4 × 106 Kg year−1) than in lakes
(85.1 × 105 Kg year−1; Figure 4; p < 0.001). Similarly, MeHg exports are higher in rivers (572.1 Kg year−1)
than in lakes (255.9 Kg year−1; Figure 4). Congruent to MeHg exports, Hg differs significantly between
rivers and lakes globally (587.7 Kg year−1 for rivers versus 61.9 Kg year−1 for lakes; Figure 4; p < 0.05).

Overall, global estimates reveal that there is some coupling between mercury and fatty acid
exports; when fatty export and emergence are high, the values are synchronous to mercury exports by
insects (Figures 2–4).
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4. Discussion

Subsidies are known to affect terrestrial consumers in recipient systems, but these cross-boundary
fluxes also transport persistent mercury [26]. Here, the first global perspective of the potential
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synchrony between export of physiologically fatty acids is presented using a plethora of data from
different systems. The estimates build on general ideas originally formulated for rivers and lakes as
donors of aquatic subsidies via emergent insects [18,72], which have demonstrated the importance of
exports of nutrients from water to adjacent land [18,51,72]. One key finding from this this work is that
there is synchrony between physiologically important fatty acids and mercury; because of emergence
rates. Congruent to previous research (e.g., [54,73]), the results also demonstrate how the export of
physiologically important fatty acids and mercury values vary spatially (by continents), with the North
American continent exporting more fatty acids from water to land than all other continents.

The estimate of fatty acids exported from water to land (11.3–93.0 Kg km−2 year−1; Figure 2)
are within the range of the first estimate documented to date (0.1 to 672 Kg km−2 year−1) [18]. The
differences in the values obtained may be driven by the availability of more emergence data from other
ecosystems. Presently, there are no estimates for export of mercury by aquatic insects to compare with
these findings (Figure 1), mainly as a result of prior studies being focused on one aspect on the export
of subsidies (nutrients). More studies on the potential export are thus warranted and should yield
more fascinating results on the effects of subsidy type on consumers. Considering that hundreds of
thousands of miles of streams and lakes are impaired by persistent mercury [74], the results suggest
that aquatic insects are likely key movers of mercury from freshwater to terrestrial systems at a global
scale. While these estimates are cursory, they may have huge implications for the ecology of terrestrial
consumers and humans.

5. Implications

5.1. Wildlife

Terrestrial consumers are known to benefit from aquatic subsidies [7]. For example , quality
of fatty acids can affect the fitness of tree swallows [75]. Assuming the trophic transfer efficiency
of physiologically important fatty acids through the food web to be 10% (i.e., 90% of energy lost at
each trophic level; Figure 5) [76,77] in a presumed three-trophic-level food web, aquatic insects can
contribute between 0.4 × 106 to 4 × 106 Kg year−1 to terrestrial consumers. It is worth noting that
while there may be a 10% dissipation with increased trophic level, other researchers have shown
that physiologically important fatty acids are retained and are not dissipated by changing trophic
positions [78]. To this end, assuming no dissipation of fatty acids happens up the terrestrial food chain
implies that fatty acid production of the third level consumers may be equated to the initial contribution
of physiologically important fatty acids with insect emergence (Figure 5). The no dissipation scenario is
also tenable considering that physiologically important fatty acids are moved through trophic chains at
about double the efficiency of biomolecules such as organic carbon and are effectively bioaccumulated
(with no dilution) in higher trophic level consumers [79]. However, it must be emphasized that demand
by terrestrial consumers for physiological fatty acids is sparse and further studies are warranted to
assess terrestrial consumer dietary needs [80].

Terrestrial consumers that depend on aquatic subsidies may suffer irreversible behavioral,
physiological, and reproductive effects [81,82] from exposure to MeHg. For example, some birds
(e.g., belted kingfisher (Ceryle alcyon) and bald eagle (Haliaeetus leucocephalus)) and small mammals
(e.g., American mink; Neovison vison) have been observed to suffer from visual, cognitive, and
neurobehavioral effects [82], and even death within a year when exposed to MeHg concentrations of
1 µg g−1 [74]. Because MeHg increases in concentration as it progresses up the food chain, one can
predict that organisms consuming prey at higher trophic levels are exposed to higher concentrations
of total Hg and MeHg (Figure 4; [83,84]). Assuming that MeHg does not change significantly up the
food chain suggests that consumers accumulate 649.6 Kg year−1. However, the absolute assimilation
efficiencies of MeHg vary with trophic level, uptake pathway, and water chemistry conditions; therefore,
the estimates need to be interpreted with caution.
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5.2. Climate Change

Climate warming decreases the production of physiologically important fatty acids by decreasing
polyunsaturated fatty acid membrane content while simultaneously increasing saturated fatty acids
via homeoviscous adaptation [85]. Specifically, climate warming of 2.5 ◦C is predicted to reduce
physiologically important fatty acid in algae by 8.2% to 27.8% (estimated to reduce physiologically
important fatty acids from 240 to 225 tonnes [9]. This reduction under climate change will result in
many aquatic insects receiving fewer fatty acids and this may subsequently have major effects on
terrestrial consumers that often rely on aquatic subsidies to meet their dietary needs. However, some
studies show that temperature does not have an effect on the quantity of physiologically fatty acids in
consumers. For instance, Gladyshev et al. [86] found that contrasting temperatures have no effect on
physiologically important fatty acids (EPA and DHA) with significant effects only observable in C18
saturated and polyenoic acids. As such, it is plausible that the temperature-dependent decrease in
EPA and DHA quantities happens mostly due to changes in the taxonomic composition of aquatic
communities as a response to temperature changes [86].
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6. Additional Considerations and Conclusions

In any study, there are caveats in protocols that can include trap design and other collection
tools [87], so some caution is necessary for interpreting any results. I investigated fluxes from river to
land using data collected by several authors in different ecosystems, as such, some variation can be
expected in these estimates. For example, Different collection methods and traps may overestimate or
underestimate fluxes for a variety of reasons [88,89]. Specifically, emergence traps may underestimate
the fluxes of odonates from rivers, as some odonates crawl onto vegetation and rocks rather than fly
out [87,90]. Additionally, Odonates, individually, have very high biomasses relative to other aquatic
insects [90], and their contributions to outward subsidies may be underestimated in all our calculations.
I recommend that additional studies incorporate the capture of crawling insects, as this aspect would
improve the estimates of aquatic invertebrate flow from water to land.

Additionally, it is worth noting that the values expressed here for annual export of physiologically
important fatty acids and MeHg via insects are preliminary estimates, based on averaging data from
different ecosystems, and merely represent an initial attempt to calculate the order of magnitude of
exports that are mediated my insects. I am cognisant that there are many limitations and sources of
error in this type of global extrapolation, including the fact that fatty acids and mercury concentrations
may vary depending on region, growth phase, climate, light regime and local nutrient conditions.
For example, various authors have shown that mercury varies substantially over space and time [91,92].
Nevertheless, these kinds of data using a global perspective are needed to give a broader scale (sensu
Gladyshev et al. [18]), which, in the future, may be refined further to create models to predict how
environmental perturbations like climate change may affect the spatial and temporal dynamics of
subsidies and methylmercury exported from water to land.

Summarily, these results underscore the need to view freshwater systems as just not nutrient
exporters but lateral exporters of harmful contaminants [64] that can potentially be biomagnified
within the food web. This view departs from the traditional viewpoint of streams being exporters of
nutrients alone. Riparian insectivores (e.g., birds and small mammals) facilitate the transfer of aquatic
mercury to higher trophic levels, thus serving as conduits in the dispersal of aquatic contaminants to
the broader terrestrial food web [82]. Given the widespread contamination of streams, the ubiquity of
stream insects, and the importance of insect subsidies to riparian predators, more research is needed to
quantify the magnitude and risk of exposure to riparian food webs.

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-273X/10/1/129/s1,
Table S1: Continental estimates of surface areas of lakes and rivers based on shapefiles. All data measured and
analysed in qGis, Table S2: Global estimates of surface area of lakes and rivers from diverse datasets.
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