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Network isolators inhibit failure spreading in
complex networks
Franz Kaiser 1,2, Vito Latora 3,4,5,6 & Dirk Witthaut 1,2✉

In our daily lives, we rely on the proper functioning of supply networks, from power grids to

water transmission systems. A single failure in these critical infrastructures can lead to a

complete collapse through a cascading failure mechanism. Counteracting strategies are thus

heavily sought after. In this article, we introduce a general framework to analyse the

spreading of failures in complex networks and demostrate that not only decreasing but also

increasing the connectivity of the network can be an effective method to contain damages.

We rigorously prove the existence of certain subgraphs, called network isolators, that can

completely inhibit any failure spreading, and we show how to create such isolators in syn-

thetic and real-world networks. The addition of selected links can thus prevent large scale

outages as demonstrated for power transmission grids.
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Complex networked systems are subject to external per-
turbations, damages or attacks with potentially cata-
strophic consequences1,2. The loss of even a single edge

can cause a blackout in a power grid3,4, the dieback of a biological
network5, or the collapse of an entire ecological network6. It is
thus essential to understand how the structure of a network
determines its response to perturbations and its global
resilience7–11. Here, we propose a general framework to model
the redistribution of flows in a complex network that follows a
small and local failure, and we suggest novel and more efficient
strategies to improve network resilience. Our findings reveal that
propagation of damages can be better limited by adding selected
links instead of removing links and can turn very useful to
construct more robust networks or to improve existing ones.

The division of a network into weakly coupled parts provides
the most intuitive method to inhibit the spreading of failures, thus
improving system resilience12–15. An example is shown in Fig. 1a
for an elementary supply network with two weakly connected
modules. The response to an edge failure is strong locally, but it is
reduced in the other module of the network which has only few
links connecting to the part where the failure happened. A similar
effect is observed in a real-world case: the Scandinavian power
grid in Fig. 1d. The study of community structures in both natural
and man-made systems is an integral part of network science: a
variety of methods has been developed to define and identify the
weakly connected modules of a network16–18, and the important
role of community structures in network dynamics is today well
recognised.

Limiting connectivity for the sake of additional security is,
however, not always desirable. For instance, microgrid concepts
and intentional islanding are heavily discussed in energy systems
research19,20, but the overall demand for electric power trans-
mission actually increases21,22. Other methods to contain per-
turbations or damages in complex networks are thus needed.
Indeed, an exceptionally strong interconnectivity between two
modules can also suppress failure spreading as shown in Fig. 1b,
e. Notably, a strong interconnectivity can be realised in different
ways. In the random network example in Fig. 1b, a high number
of links connects a subset of nodes of the two modules. In real

vascular networks of leaves the suppression of failure spreading
occurs naturally because the central vein between the left and
right parts has an exceptionally large weight (Fig. 1e, cf. also23).

Remarkably, failure spreading can be completely stopped by
certain subgraphs which we refer to as network isolators in the
following, an example being shown in Fig. 1c. The failure of an
edge in the right part of the network does not affect the flows in
the left part at all. Real world networks can be made perfectly
resistant to failure propagation by the ad-hoc addition of few
links to create network isolators, as demonstrated for the Scan-
dinavian power grid in Fig. 1f consisting of three weakly coupled
modules. The suppression of failure spreading is readily gen-
eralised to networks with more than two modules.

Results
A model for supply networks. Our results are based on a general
framework that allows a theoretical analysis of the interplay of
network connectivity and robustness in the context of supply or
transportation networks. Consider a simple graph G with edge set
E and vertex set V consisting of L= ∣E∣ edges and N= ∣V∣ ver-
tices. Many such systems can in fact be modelled by linear flow
networks where the flow over an edge e= (i, j) 2 E(G) depends
linearly on the gradient of a potential function across the edge,

Fi!j ¼ Aij � ðϑi � ϑjÞ: ð1Þ

In particular, this description applies to power transmission
grids2,24–26, where F is the real power flow, ϑi denotes the nodal
voltage phase angle and Aij is given by the line susceptance. Non-
linear effects in electric power grids will be discussed below.
Furthermore, the description (1) applies to hydraulic and vascular
networks27,28, where F is the flow of water or nutrients, ϑi is the
local pressure and Aij the edge’s weight. Equivalent problems arise
in the linearisation of general diffusively coupled networks of
dynamical systems around an equilibrium or limit cycle29. We
discuss these and other applications of linear flow models in
detail in Supplementary Note 1.

Now assume that there are sources and sinks attached to the
nodes in the network Pi 2 R; i 2 VðGÞ where Pi > 0 represents a

Fig. 1 Different network structures inhibit the spreading of failures in complex networks.We simulate the impact of a single failing link (red) for different
network structures; resulting flow changes are colour coded. a, b Both a weak and a strong interconnectivity can suppress the spreading of failures between
two modules of a complex network. c Failure spreading is prevented completely by a network isolator (blue shading); flow changes on the grey links are
exactly zero. d The Scandinavian power grid consists of three weakly connected modules, which suppresses failure spreading between the modules44.
e The vascular network of a Bursera hollickii leaf contains a strong central vein47, which suppresses failure spreading between the two sides of the leaf.
f Same as in (d) but with the addition of two links (blue shading) to create a network isolator. See Methods and caption of Fig. 2 for further information on
the graphs used here.
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source and Pi < 0 a sink. Then the flows at each node have to
balance with the sources and sinks

Pi ¼ ∑
N

j¼1
Fi!j 8i 2 VðGÞ: ð2Þ

This equation is known as continuity equation or Kirchhoff’s
current law. If the sources and sinks Pi are given, Eqs. (2) and (1)
completely determine the potentials in the network (up to a
constant shift to all potentials). In a power grid, the sources and
sinks are the power injections or withdrawals as a result of power
production or consumption, respectively. When looking at the
stable, operational fixed point of a power grid they are balanced
such that

∑
N

i¼1
Pi ¼ 0; ð3Þ

we therefore assume this to hold in the following sections.
For further use, we introduce a compact vectorised notation,

defining the vector of injections P
!¼ ðP1; ¼ ; PNÞ> and the

vector of potentials ϑ
!¼ ðϑ1; ¼ ; ϑN Þ>, where the superscript ⊤

denotes the transpose. The coupling coefficients Aij=Aji are
summarised in the weighted adjacency matrix A 2 RN ´N .
Furthermore, we define the diagonal matrix D 2 RN ´N with
entries Dii=∑jAij as well as the weighted graph Laplacian30

L ¼ D� A: ð4Þ
Kirchhoff’s equations then assume the compact form

L ϑ
!¼ P

!
: ð5Þ

Notably, the Laplacian matrix is also useful to infer the large scale
connectivity and the community structure of a given network31.

Modelling link failures. The impact of a damage in linear
flow networks can be calculated analytically. Assume that an
edge ℓ= (r, s) fails, and summarise the response at all nodes i=
1,…,N in terms of the vector of changes in nodal potentials

Δ ϑ
!¼ ðΔϑ1; ¼ ;ΔϑNÞ>. The response can be calculated by

subtracting Eq. (5) for the new and the old network which yields
after some manipulations (Ref. 25, Supplementary Note 2)

L Δ ϑ
!¼ q‘ ν

!
‘; ð6Þ

where ν!‘ is a vector with+1 at position r and−1 at position s,

and q‘ ¼ 1� Ars ν
!>

‘ L
�1 ν!‘ is a source strength25. We thus find

that the response of a network to failures is essentially determined
by the Laplacian L.

To quantify the effect of connectivity on failure spreading, we
have studied the impact of different failures in a variety of
synthetic networks as well as in several real-world networks. For a
given initial failure of an edge ℓ, we compute the flow changes

ΔFi!j ¼ Aij � ðΔϑi � ΔϑjÞ ð7Þ
for all edges e= (i, j) in a given subgraph G0 of the network.
Furthermore, we must take into account that the impact of a
failure generally decreases with distance25,32,33. As an overall
measure of the impact of a failure we thus consider the expression
hjΔFi!jjiði;jÞ2G

0

d
, which gives the magnitude of flow changes

averaged over all edges ði; jÞ 2 G0 at a given distance d to the edge
ℓ (see Methods for details on the notion of distance used here).
The prime question is now whether the impact differs
substantially between the communities or moduli of a network.
Here, we assume that the moduli or communities are known for
the network under consideration and thus do not address the

question how to determine them. We thus plot the ratio

Rð‘; dÞ ¼
hjΔFi!jjiði;jÞ2O

d

hjΔFi!jjiði;jÞ2 S
d

: ð8Þ

between the module of the network G0 ¼ O without initial
failures and the module G0 ¼ S containing the failing edge ℓ. If
this ratio approaches or reaches zero, this is indicative of a very
strong suppression of failure spreading into the other part of the
network.

The impact of network connectivity on failure spreading. To
study how the impact of failure spreading depends on the net-
work structure, we considered synthetic graphs obtained by
connecting two Erdős–Rényi (ER) random graphs to each other
at preselected, randomly chosen vertices with a tunable prob-
ability μ 2 [0, 1]34 (see Methods). The resulting graphs have a
connectivity structure ranging from two weakly connected com-
munities for low values of μ shown in Fig. 1a to strongly con-
nected parts shown in panel b. In the limit μ= 1, the two modules
are connected via a complete bipartite graph as shown in Fig. 1c.
This is a possible realisation of a network isolator, since it com-
pletely suppresses flow changes. We will explain the concept of
network isolators and provide a rigorous definition in the next
section.

The corresponding adjacency matrices clearly indicate the
connectivity structure, revealing the strong or weak coupling
between the two modules of the networks (Fig. 2a, b, d).
Remarkably, evaluating the quantity R(ℓ), obtained by averaging
the ratio over flow changes R(ℓ, d) over all distances d for a
specific trigger link ℓ, for a varying connectivity structure tuned
by μ, we find that the spreading of failures is largely suppressed
for both weak and strong connectivity between the two modules
as shown in Fig. 2c. Note that this finding is not limited to the
interconnectivity of two modules, but can be readily generalised
to three—or more—modules as we demonstrate in Supplemen-
tary Fig. 3. Distance plays a minor role for the ratio of flow
changes R(ℓ, d) as illustrated in Supplementary Fig. 2.

Network isolators inhibit failure spreading. Network symme-
tries are known to play an important role for the dynamics and
synchronisability of a network35–37. Network isolators as a spe-
cific connectivity structure completely inhibit the spreading of
failures from one network module to another. They manifest also
as particular, symmetric patterns in the region of the adjacency
matrix describing the connectivity between the two parts of the
network as we have seen in Fig. 2d. To see this, we make use of
Eq. (4) to rewrite the Laplacian matrix L of the entire network as
follows

L ¼ L1 þ D1 �A12

�A>
12 L2 þ D2

� �
ð9Þ

Here, L1 and L2 are the Laplacian matrices of the two parts of the
network which consist of N1 and N2 nodes, A12 2 RN1 ´N2 is the
region of the weighted adjacency matrix encoding the con-
nectivity between the two parts of the network and D1 and D2 are
the degree matrices of these mutual connections, i.e. the matrices
containing the nodes’ weighted degrees on the diagonals. Then
network isolators are characterised by the following theorem.

Theorem 1 Consider a linear flow network composed of two
modules 1,2 and let A12 denote the weighted adjacency matrix of
the mutual connections as described in Eq. (9). An edge failure in
one module does not affect the flows in the other module if rank
(A12)= 1. For unweighted networks this criterion is fulfilled if
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A12 describes a complete bipartite graph. The subgraph connect-
ing the two modules is referred to as a network isolator.

A proof can be found in Supplementary Note 3. Note that,
while network isolators prevent failure spreading, we found that
they do not influence network controllability as we illustrate in
Supplementary Note 4 and Supplementary Fig. 8.

Since most real world examples of networks do not contain
perfect network isolators, we have studied the robustness of a
network isolator against modifications of the topology. Starting
from a unit rank matrix, we perturb the adjacency matrix A12

iteratively (see Methods for details). The deviation of the
perturbed matrix A12 from a unit rank matrix is then quantified
using its coherence statistics defined as38,

ξðA12Þ ¼ 1�min
i;j

h a!i; a
!

ji
k a!i kk a!j k

; ð10Þ

where a!i; i ¼ 1; ¼ ;m are the matrix columns. Note that the

latter expression cosðff a!i; a
!

jÞ ¼
h a!i; a

!
ji

k a!ikk a
!

jk
may also be inter-

preted via the angle between two matrix columns, a!i and thus ξ
(A12) approaches a value of unity if all columns are parallel. The
performance of the isolator is then measured by calculating the
ratio of flow changes R, which is obtained from R(ℓ, d) by
averaging over all possible trigger links and distances. A perfect
isolator is characterised by ξ(A12)= 0 and enables a complete
containment of failure spreading such that R= 0. For perturbed
isolators, we find that R increases approximately algebraically
with ξ(A12), see Fig. 2e and Supplementary Fig. 5. Hence, the
isolation effect persists for small perturbations, albeit with
reduced efficiency. Note also that network isolators are not
limited to two connected modules, but can be readily generalised
to the interconnectivity of three—or more—modules that are
mutually shielded against failures as we demonstrate in
Supplementary Fig. 4. Finally, we illustrate that network isolators
do not increase the vulnerability of a network in case a link
located in the isolator fails in Supplementary Fig. 6.

Constructing network isolators in real-world graphs. Network
isolators are not limited to the particular situation shown in
Fig. 1. In Fig. 3a–c, we identify several subgraphs that allow to
easily introduce network isolators into existing topologies. For
subgraphs with a prior low connectivity, as measured by a small
vertex cut (Fig. 3a) or a small edge cut (Fig. 3b, c), network
isolators may be introduced with small network modifications—
by adding (a,b) or removing and adding (c) selected links with
weights adjusted such that Theorem 1 is fulfilled. For a given
graph these recipes may thus be applied as follows: (1) Identify
modules of the graph that are weakly connected to one another as
measured by a low vertex cut or edge cut of the vertices or edges
connecting them. (2) Depending on the target—e.g. whether
building new edges or vertices is costly or, on the other hand, a
minimum connectivity between the modules is required after the
modification—identify the optimal strategy to achieve a complete
bipartite connectivity between the modules by adding or
removing vertices and edges. Here, the recipes shown in the
Figure may be applied directly if the prior connectivity has the
indicated edge or vertex cuts. (3) Tune the edge weights such that
rank(A12)= 1 is achieved, i.e. a network isolator is realised.

We illustrate each of the strategies in real-world power grids.
We consider the British grid (d), the Scandinavian power grid (e)
and the Central European power grid (f) and add a network
isolator to each of the networks by making use of the strategies
shown in panels a–c. We then simulate the failure of a single link
to illustrate that network isolators suppress failure spreading in
each situation. Thus, network isolators can be used to make
various real-world power grids more resilient to failures. In a
Supplementary Fig. 7, we compare the situation with the isolator
to the situation before constructing the isolator for each of the
networks.

Network isolators suppress cascade propagation. Perfect net-
work isolators can be easily constructed to improve the resilience
of complex networked systems. As a practical example we show
an application to electric power grids, where large scale blackouts

isolator

Fig. 2 Effectiveness and robustness of shielding network structures. a, b Adjacency matrices for the graphs shown in Fig. 1a, b. Two random graphs
G(30,0.4) are inter-connected via a fraction c= 0.2 of their nodes chosen at random, and links are added with probability μ, interpolating between weak
(a) or strong (b) interconnectivity (see Methods for details). c The average ratio of flow changes R(ℓ) in the two components (Eq. (8)) is strongly
suppressed for both high and low interconnectivity μ. The blue line represents the median value over all distances and the shaded region indicates the
0.25- and 0.75-quantiles. d Adjacency matrix for the six-regular graph shown in Fig. 1c and containing a network isolator. Note that all nodes in the graph
including those in the network isolator have degree equal to six, which allows us to exclude any potential impact of heterogeneity in the degree on failure
spreading in this case. e The ratio of flow changes R, now averaged over all possible trigger links ℓ and distances d, vanishes for a network isolator
described by the condition ξ(A12)= 0 and increases algebraically with the coherence parameter ξ (cf. Eq. (10)) when perturbed (see Methods for details
on the simulation). Again, median and 0.25- and 0.75-quantiles are shown resulting from averaging over all distances and then trigger links.
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are typically triggered by the outage of a single transmission
element which leads to a cascade of failures3,39. We demonstrate
the impact of network isolators against cascading failures in the
case of the Scandinavian grid.

In the original grid layout, the modules are weakly connected,
thus failure spreading between these modules is reduced—but it is
possible. A failure in one area can spread to other areas and cause
a global cascade of failures, as demonstrated in Fig. 4a, b for a
cascade emerging in Western Norway. This spreading may in
principle be prevented by decoupling different areas of the grid,
but this is highly undesired. In fact, future energy systems will
require more connectivity, not less, to transmit an increasing
amount of renewable electric power21,22. In contrast, building a
network isolator can completely inhibit failure spreading at
increased connectivity. A perfect isolator can be realised with
moderate effort by reconstructing two substations in Norway,
such that they effectively form two nodes each. The new nodes
must be linked by internal connections and one additional two-
circuit overhead line, whose parameters are optimised such that
the condition rank(A12)= 1 is satisfied (Fig. 4c). A simulation for
such an optimised grid layout shows that the spreading of the
cascade is completely suppressed (Fig. 4d). The network remains
connected and load shedding is no longer necessary as a
containment strategy2,3. To demonstrate that network isolators
effectively suppress cascade propagation for different networks
and initial failure patterns, we evaluate the statistics of cascade
sizes in networks with and without network isolators (see
Supplementary Fig. 9). To analyse how the relatively localised
flow changes involved here lead to a non-local cascade, individual
steps of the cascade are shown in Supplementary Fig. 12.

Network isolators beyond linear flow networks. The concept of
network isolators has been established for linear flow networks,
but can be extended in two ways. (1) We can rigorously prove that
network isolators determine the response to structural damages
for a class of non-linear networked dynamical systems with dif-
fusive coupling. More precisely, the isolator effect is still rigorously

valid if the dynamics of a node i depends on the state of the other
nodes xj only through the term fi(∑jLijxj), where L is the Laplacian
and the function fi satisfies fi(0)= 0, but is arbitrary otherwise (see
Supplementary Note 3, Corollary 2). (2) For many non-linear
systems of practical importance, the impact of failures or pertur-
bations is well described by a linearisation around an equilibrium
or limit cycle (see ref. 29) for which an approximate isolation can
be achieved (see Supplementary Note 3, subsection 4).

To systematically analyse how non-linearity affects failure
spreading through network isolators we first consider a natural
extension of the linear flows in Eq. (1), replacing the linear
coupling by its sinusoidal counterpart

~Fi!j ¼ Aij � sinðϑi � ϑjÞ; ð11Þ

which yields the well-known Kuramoto model40,41. If phase
differences between neighbouring vertices are small, one can
expand the sine function as sinðϑi � ϑjÞ ¼ ðϑi � ϑjÞ þ
Oððϑi � ϑjÞ3Þ (see Supplementary Note 1). Hence, our previous
result remain valid to linear order, whereas a higher degree of
non-linearity may gradually weaken the effects. In particular, the
effectiveness of a network isolator depends on the relative load of
the edges j~Fi!jj=Aij. We study this numerically by increasing the
injections Pi at all nodes proportionally, thus increasing the
relative edge loads and the importance of the non-linearity of the
sine function.

We then analyse the non-linear flow changes Δ~Fð‘Þ after the
failure of a single link for different degrees of non-linearity in
Fig. 5a, b (light to dark lines). To systematically evaluate the
degree of non-linearity, we analyse the maximal absolute non-
linear flow j~Fjmax in the entire network. Due to the sinusoidal
character of the coupling (see Eq. (11)) and since edge weights are
set to unity for the Figure, a relative loading close to unity
indicates a highly non-linear system. As expected, the flow
changes decrease with distance independently of the non-linearity.
However, even for the strongest degree of non-linearity considered
here, flow changes in the module shielded by the isolator are still

Fig. 3 Different ways of constructing isolators in real-world power grids. a–c Alternative methods of creating an isolator in a given network. We show the
network structure before (top left) and after (top right) the addition of a network isolator, as well as corresponding adjacency matrices (bottom) with
the different shades of blue representing the weight Aij of the respective edge. A lower prior connectivity simplifies the creation of isolators as measured by
the vertex cut (a) or edge cut (b, c) which is visible in the adjacency matrix (entries colored red). The creation of network isolators results in characteristic
patterns in the adjacency matrix in terms of the capacities of the isolator edges (shades of blue). d–f Realisation of network isolators in real-world power
grids. We construct network isolators in the British power grid (d), the Scandinavian power grid (e) and the Central European power grid (f) using the
recipes illustrated in (a–c). For each power grid, we colour code the flow changes after the failure of a single link carrying a unit flow (red). In each case, the
network isolator inhibits flow changes, i.e. ΔF= 0, (light grey) in the part of the network that is shielded by the isolator.
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several orders of magnitude lower than at the same distance in the
module containing the trigger link. We confirm this result by
evaluating the non-linear version of the flow ratio (8) for different
graphs, network conditions and degrees of non-linearity in
Supplementary Fig. 10. Furthermore, we demonstrate that
introducing a network isolator may slightly improve the system’s
resilience against dynamically induced failures due to transient
overloads in Supplementary Fig. 11.

We now study the robustness of this effect in several regards
and elucidate possible ways to designing robust network isolators
for non-linear systems. The condition rank(A12)= 1 allows for
different possible realisations of network isolators in terms of the
edge weights. In linear flow networks, all these realisations are
equally efficient: They completely suppress flow changes in the
module shielded by the network isolator by virtue of Theorem 1.
But which combination of edge weights provides the strongest
isolating effect in weakly non-linear systems?

To examine this question systematically we consider a simple
but non-trivial realisation of a network isolator where two nodes
in one module are connected to two nodes in the other module
(see e.g. Fig. 3a, right). The isolator is thus formed by four edges,
and we fix the overall possible available edge weight to build the
network isolator to a constant value A 2 R. Hence, the weights
of the four edges in the isolator have to satisfy two conditions,

a1 þ a2 þ a3 þ a4 ¼ A and a1a4 � a2a3 ¼ 0;

leaving two degrees of freedom to optimise the isolator
performance (see Methods for details). In Fig. 5c we examine
the network isolator’s performance measured by the averaged,
non-linear flow changes in the module shielded by the isolator for
all possible failing links in the other module for a weakly non-

linear system with flows described by Eq. (11). On the other hand,
we analyse the worst-case available N− 1 weight, i.e. the overall
edge weight connecting the two modules if the edge in the
network isolator with the largest weight fails. We find that
network isolators with strongly heterogeneous edge weights a1
and a2 inhibit failure spreading the most in the weakly non-linear
system under consideration. However, the uniform choice ai ¼
A=4; i 2 f1; 2; 3; 4g yields the highest the available N− 1 weight,
while still inhibiting failure spreading relatively strongly. Note
that other choices to estimate the impact of removing a single link
in the network isolator, e.g. the size of the cascade caused by the
failure of the link in the isolator or the reduction in shielding
provided by the isolator after the failure might come to a different
conclusion which choice of weights yields the “bestˮ network
isolator.

We now further extend the results on non-linear systems by
considering the full load flow equations that describe power flows
in power grids with line losses. The results of the numerical
simulations are reported in Fig. 6: First, we consider the impact of
a single failing line for a realistic dispatch and realistic line
weights in the British power grid without any modification, where
flows are now evaluated based on the full non-linear AC load
flow42. For a given vertex i 2 V(G) they are calculated as
(Supplementary Note 1, Eq.(8))

Pi ¼ ∑
N

k¼1
jVijjVkjðGik cosðϑi � ϑkÞ þ Bik sinðϑi � ϑkÞÞ;

Qi ¼ ∑
N

k¼1
jVijjVkjðGik sinðϑi � ϑkÞ � Bik cosðϑi � ϑkÞÞ:

ð12Þ

Note that this set of equations again reduces to the linear flow

Fig. 4 Network isolators can contain cascading failures in power grids. a Line loading (colour code) on the Scandinavian grid in units relative to maximal
loading before the initial failure of a single line (coloured red). b The initial failure results in a cascade of overloads (red coloured lines) until the grid
disconnects into several parts. c Magnification of the grid structure in Eastern Norway (grey box, a). A small modification of the grid enables the
construction of a network isolator: adopting the recipe presented in Fig. 3a, we select two nodes (left) that are further split up into two separate nodes each
which are mutually connected via a network isolator by adding four edges (right, green). Note that the removal of these two nodes would disconnect the
network into two separate parts, i.e. they form a vertex cut of size two. d Introducing the network isolator completely suppresses the spreading of failures
from Western Norway to the rest of the grid thus inhibiting the cascade observed in (b). The first two steps of this cascade are shown in Supplementary
Fig. 12.
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model in Eqs. (2) and (1) in the so-called DC approximation (see
Supplementary Note 1). As a result, failures spread to both the
Northern part of the power grid and the Southern part equally
(panel a). After introducing a network isolator by adding two
links, flow changes are completely suppressed in the linear
approximation of power flows (panel b), but also significantly
reduced when calculating the flow changes based on the full non-
linear AC power flow: Comparing the non-linearly calculated
flow changes in the initial scenario and the scenario with the
isolator, we observe an ~100-fold reduction at all distances to the
failing link in the module shielded by the network isolator (panel
d). Thus we conclude that isolators also suppress failure
spreading in non-linear models.

Discussion
In conclusion, connectivity determines the resilience of complex
networks in manifold ways. As expected, a division of a network
into weakly coupled modules suppresses the spreading of failures
from one module to the others. Remarkably, we have found that a
strong interconnectivity can equally well suppress the spreading
in both flow networks and in networks of non-linear dynamical
systems. We have demonstrated that an even stronger effect can
be obtained by certain subgraphs called isolators, which com-
pletely inhibit the spreading of failures in linear systems.

We then showed that isolators can be easily created in a net-
work to mitigate cascading failures, for instance in electric power
grids, while enabling an arbitrary degree of connectivity between
the different parts of the network. These results widen our per-
spective on the large scale organisation of complex networks in
general, showing that very diverse structural patterns can exist
that isolate functional units and improve network resilience.

Furthermore, our results show that algebraic properties of
networks can have striking effects on their function and robust-
ness—depending on the type of flow model. Similar effects are
not present in simple models where flows are rerouted along the
shortest paths only4,9, but they can become essential in physical
supply network models where various paths contribute and
interact in a non-trivial way.

Methods
Creating graphs with strong or weak inter-module connectivity. We introduce
a model to create ensembles of graphs consisting of two subgraphs with weak or
strong interconnectvity similar to the approach in ref. 43, see Figs. 1 and 2. We start
with two disconnected Erdős–Rényi random graphs G1(N1, p1) and G2(N2, p2),
where N denotes the number of nodes in the graph and p the probability that two
randomly chosen nodes are connected by an edge34. Then we randomly choose
n1= [c ⋅N1] nodes v ¼ fv1; :::; vn1 g in G1 and n2= [c ⋅N2] nodes w ¼ fw1; :::;wn2

g
in G2. Here, c 2 ½0; 1� � R is a constant representing the share of nodes connecting

Fig. 5 Robust design of network isolators in the Kuramoto model. a To
study the effect of non-linearity on network isolators, we simulate the failure of
a single link (red) in a network consisting of two modules that are connected
via a network isolator. b We consider the median absolute non-linear flow
changes jΔ~Fð‘Þj (Eq. (11)) on a link ℓ after the removal of the link shown in (a).
We analyse the effect of edge distance to the failing link (x-axis) and increasing
degree of non-linearity (colour code from light to dark). We compare the flow
changes in the lower module that contains the failing link (curves on the upper
left) and the isolated module (curves on the lower right) by averaging the flow
changes over all links in the given module at a fixed distance. As expected, flow
changes in the upper module are lowest for a weakly non-linear system (bright
line) and increase with the non-linearity, but a strong isolation effect persists
even for a high degree of non-linearity (dark purple line). Shaded region
indicates the 0.25- and 0.75-quantiles evaluated over the given distance. c We
fix the overall available edge weight of the four edges forming the isolator to
∑iai=4 and systematically scan over the remaining degrees of freedom,
measuring the isolator performance in terms of the mean logarithmic flow
changes hlog10ðjΔ~FjÞi for a fixed degree of (intermediate) non-linearity. We
observe that a heterogeneous isolator where the weights differ strongly
provides the best shielding. d We evaluate the available worst-case N− 1
weight, i.e. the overall edge weight connecting the two modules after the failure
of a single link in the isolator, for the same set of edge weights as in (c). Here,
isolators with homogeneous weights perform best. Edge weights of all non-
isolator edges are set to unity, Aij= 1, 8ði; jÞ 2 E(G) in all panels.

Fig. 6 Network isolators suppress failure spreading in full non-linear AC load flow. a An initially failing link with unit flow (red) in the British power grid
results in changes of real power flow (colour code) throughout the whole network, as obtained by computing a non-linear full AC power flow44. b, c After
introducing a network isolator based on the strategy presented in panel (a of Fig. 3), failure spreading is perfectly inhibited in the linear power flow
approximation, and still significantly reduced in the non-linear full AC load flow. d We compare the median absolute flow changes, calculated using the
non-linear load flow (Eq. (12)), after the failure of the link in the initial grid (dashed lines, a) and the modified grid (dotted lines, c). Whereas the flow
changes in the lower module of the power grid (dark blue nodes) stay approximately the same after the grid modification (dark blue lines), they are
significantly reduced in the grid’s upper module (light blue nodes) that is shielded by the network isolator (light blue lines).
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to the other subgraph and [⋅] denotes the nearest integer. Out of all possible edges
e ¼ fðv1;w1Þ; :::; ðvn1 ;w1Þ; :::; ðvn1 ;wn2

Þg between the two sets of nodes v and w, we
randomly add a share of μ 2 [0, 1]. The parameter μ controls the connectivity of
the two subgraphs G1 and G2: They remain disconnected for μ= 0 and they are
connected via a complete bipartite graph for for μ= 1. For c= 1 and μ= p1= p2
we recover a single Erdős–Rényi random graph with N=N1+N2 nodes. Note that
this procedure is in principal not limited to ER random graphs. We apply it to
study other types of graphs as shown in Supplementary Fig. 1.

Calculating the distance between edges. The notion of distance used throughout
the manuscript is the unweighted edge distance. This notion of distance measures
the length of the shortest path between two edges ℓ= (r, s) and e= (m, n) and is
defined as follows25

distð‘; eÞ ¼ min
v12fr;sg;v22fm;ng

dðv1; v2Þ þ 1; ð13Þ

where d(v1, v2) is the unweighted shortest-path or geodesic distance between nodes
v1 and v2 and the addition of unity ensures that neighbouring edge have a non-
vanishing distance.

Perturbing network isolators. The robustness of network isolators to structural
perturbations is analysed as follows. Let G= (E,V) be a graph whose nodes are split
into two subsets V1 and V2 consisting of N1 and N2 nodes, respectively. Further-
more, let A12 be the N1 ×N2 weighted adjacency matrix that encodes the mutual
connections between the two parts as described in Theorem 1. Without loss of
generality we can order the nodes of the network in such a way that the matrix has
the structure

A12 ¼
a!1 � � � a!m 0

! � � � 0
!

0
! � � � 0

!
0
! � � � 0

!

 !
; ð14Þ

where we assume that n nodes of the first subset are connected to m nodes of the
other subset and thus a!1; ¼ ; a!m 2 Rn . According to Theorem 1, a perfect
network isolator is found if rank(A12)= 1, i.e. if all vectors a!1; ¼ ; a!m are lin-
early dependent.

To investigate the robustness of network isolators, we start from a unit rank
matrix rank (A12)= 1 and perturb it iteratively. In each step we choose one of the
vectors a!i; i ¼ 1; ¼ ;m at random and perturb it according to

a!0
i ¼ a!i þ e!k a!i k. The elements of the perturbation vector e! are chosen

uniformly at random from the interval [−β, β], where β is a small parameter, here
β= 0.05.

The deviation of the perturbed matrix A12 from a unit rank matrix is quantified
using its coherence statistics38, Eq. (10),

ξðA12Þ ¼ 1�min
i;j

h a!i; a
!

ji
k a!i kk a!j k

;

where 〈⋅, ⋅〉 denotes the standard scalar product on Rn and ∥⋅∥ denotes the ℓ2-
norm. For a matrix A12 of unit rank we have ξ(A12)= 0 as all vectors are linearly
dependent. For vectors deviating from linear dependence, the measure increases
until it reaches its maximum value if two vectors are orthogonal with ξ(A12)= 1.

To create Fig. 2e, we repeated this process 1000 times starting from the perfect
isolator shown in panel c. Edge weights were randomly chosen from a normal
distribution N ð10; 1Þ with mean μ= 10 and variance σ2= 1 except for the isolator.
The network isolator consists of four nodes in the left subgraph that are completely
connected to four nodes in the other subgraph (see Fig. 1c). We select groups
of four edges that are connected to a single node in one subgraph and to all
four nodes in the other subgraph to have the same weight such that initially rank
(A12)= 1. For each perturbed network, we evaluate ξ(A12) and the ratio of flow
changes R according to Eq. (3) averaged over all possible trigger links ℓ and
distances d. For a perfect isolator, this ratio vanishes due to a vanishing numerator.

Power grid data and cascade model. Power grid data has been extracted from the
open European energy system model PyPSA-Eur, which is fully available online44.
The model includes the topology as well as the susceptance bℓ and the line rating
Fmax
i!j for each high voltage transmission line in Europe. We consider the Scandi-

navian synchronous grid spanning Norway, Sweden, Finland and parts of Den-
mark. This grid is coupled to other synchronous grids (central European grid,
British grid and Baltic grid) only via high voltage DC transmission lines. Power
flow on these lines are actively controlled and can thus be considered constant, thus
leading to constant real power injections at the coupling nodes. The Scandinavian
grid has 269 nodes and 370 edges, counting multiple-circuit lines only once.

Cascading failures are simulated for fixed power injections Pi for each node
corresponding to an economic dispatch for the entire PyPSA-Eur model that
includes a security margin given by the constraint jFi!jj≤ 0:8 � Fmax

i!j . The cascade is
triggered by the failure of a single line (r, s) which is effectively removed from the
grid. The simulation then proceeds step-wise; In each step, we first calculate the
nodal phase angles ϑi and real power flows Fi→j for all nodes and lines, respectively,

by solving the continuity equation Pi=∑jFi→j with Fi→j= Aij(ϑi− ϑj). Then we
check for overloads: Any line (i, j) with jFi!jj>Fmax

i!j undergoes an emergency
shutdown and is removed from the grid. The simulations are stopped when no
further overload occurs or when the grid is disconnected.

Note that this mechanism for cascading failures is different from the cascading
failure mechanism typically analysed in node capacity load models (see e.g.
refs. 45,46). The redistribution of nodal loads or flows after failures in such models is
typically based on the neighbourhood of nodes, on shortest path betweenness
measures or on other ‘intelligent’ redistribution schemes whereas the redistribution
of flows after failures in linear flow networks or power grids studied using AC load
flow analysis are given by the physical laws governing electrical networks.
Furthermore, in most cases nodes—not edges—are assumed to fail, which is not the
typical case in real power grids.

Processing leaf data. The leaf venation network is based on a microscopic
recording of a leaf of the species Bursera hollickii provided by the authors of ref. 47.
Edge weights Aij are assumed to scale with the radius rij of the corresponding vein
(i, j) as Aij / r4ij according to the Hagen–Poisseuille law, see ref. 28 for a detailed
discussion. We used the radius in pixel scanned at a resolution of 6400 dpi.

Parametrising network isolators with four edges. Consider a network isolator
that connects two vertices from one module with two vertices in the other module
and consists of four edges in total (see Fig. 3a, right). Denote the weights of the four
edges by a1, a2, a3, a4 and assume that we fix the overall available weight to build
the network isolator. Including the rank conditions, the edge weights have to satisfy
two constraints,

∑
4

‘¼1
a‘ ¼ A ¼ 4

rank
a1 a2
a3 a4

� �� �
¼ 1 ) a1 � a4 ¼ a2 � a3;

thus leaving two degrees of freedom. We can then solve this set of equations for
two variables and treat the remaining ones, a3, a4, as parameters that are varied
independently:

a1 ¼ a3
ðA� a4 � a3Þ

a3 þ a4
; a2 ¼ a4

ðA� a4 � a3Þ
a3 þ a4

:

For the simulations shown in Fig. 5c, d. we have set A ¼ 4.

Varying the degree of non-linearity. To vary the degree of non-linearity sys-
tematically in Fig. 5, we first randomly assign 25% of the nodes to be identical
sources and the remaining ones to be identical sinks and choose their value such
that Eq. (3) is fulfilled. We then calculate the non-linear flows by combining Eq. (2)
with the non-linear flows (Eq. (11)). For sources, we set Pi= 0.09 (bright line)
initially and then systematically increase (decrease) the injections at all sources
(sinks) by the factors 3.5, 6.0, 8.5, 11 (lines from light to dark) up until a maximum
value of Pi= 0.99 is reached (black line) which corresponds to a maximum flow in
the network of j~Fjmax ¼ 0:89.

Data availability
The topology of the Scandinavian power grid, the Central European power grid and the
British power grid have been extracted from the open European energy system model
PyPSA-Eur44, which is fully available online at https://doi.org/10.5281/zenodo.3886532.
Leaf data was provided by the authors of ref. 47 and is available from the respective
authors upon reasonable request.

Code availability
Computer code will be made available at https://github.com/FNKaiser/
Inhibiting_Failure_Spreading upon publication.
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