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Abstract

The chemical-genetic profile can be defined as quantitative values of deletion strains’ growth defects under exposure to
chemicals. In yeast, the compendium of chemical-genetic profiles of genomewide deletion strains under many different
chemicals has been used for identifying direct target proteins and a common mode-of-action of those chemicals. In the
previous study, valuable biological information such as protein–protein and genetic interactions has not been fully utilized.
In our study, we integrated this compendium and biological interactions into the comprehensive collection of ,490 protein
complexes of yeast for model-based prediction of a drug’s target proteins and similar drugs. We assumed that those protein
complexes (PCs) were functional units for yeast cell growth and regarded them as hidden factors and developed the PC-
based Bayesian factor model that relates the chemical-genetic profile at the level of organism phenotypes to the hidden
activities of PCs at the molecular level. The inferred PC activities provided the predictive power of a common mode-of-
action of drugs as well as grouping of PCs with similar functions. In addition, our PC-based model allowed us to develop a
new effective method to predict a drug’s target pathway, by which we were able to highlight the target-protein, TOR1, of
rapamycin. Our study is the first approach to model phenotypes of systematic deletion strains in terms of protein
complexes. We believe that our PC-based approach can provide an appropriate framework for combining and modeling
several types of chemical-genetic profiles including interspecies. Such efforts will contribute to predicting more precisely
relevant pathways including target proteins that interact directly with bioactive compounds.
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Introduction

The collection of yeast deletion strains has enabled systematic

genomewide functional analysis [1]. In addition, strain-specific

molecular barcodes allow quantitative functional profiling of

pooled deletion strains by using TAG oligonucleotide microarrays

[1,2]. One of several types of functional profiles, the chemical-

genetic profile, expresses quantitative values of deletion strains’

growth defects under a chemical. The compendium of chemical-

genetic profiles of heterozygous and homozygous deletion strains

under different chemicals has been successfully used for identifying

direct target proteins of those chemicals [3,4] as well as exploring

their common mode-of-actions [5]. By integration of synthetic

lethality profiles, the chemical-genetic profiles of homozygous

deletion strains were also used to discover genes and pathways

targeted by specific chemicals [6]. The chemical-genetic profiles in

yeast are undoubtedly a useful resource to infer drug’s action

mechanism in human [7].

In the previous study, however, valuable biological information

such as protein-protein and genetic interactions has not been

integrated with chemical-genetic profiles in a single model for drug’s

target pathway prediction. Also, those profiles have not been yet

modeled at the molecular level in terms of biological real entity such

as protein complexes. As chemical-genetic profiles of many bioactive

compounds are accumulating in many species including yeast, such

real molecular entity-based modeling becomes essential to the

molecular level understanding of phenotypes of the eukaryotic cell

exposed to different chemicals. For example, that will allow us to

infer drug’s mode-of-action from chemical-genetic profiles more

precisely than the previous model-free approach.

In order to relate hidden biological activities of some real

biological entities at the molecular level to the phenotypes of

deletion strains at the organism level, we assume that the growth of

a deletion strain is affected by hidden activities of protein

complexes in a given condition, which leads to the observable

population changes of the strain. This assumption comes from the

molecular rationale of protein complexes for gene-to-phenotype

relationships [8], by which similar sensitive phenotypes of deletion

strains of genes comprising a protein complex were explained in

various different conditions. It is plausible that protein complexes

can be regarded as functional units for the phenotypes of a

deletion strain. If we view the entire cell as a factory comprising

various distinct machines efficiently connected for its productivity

[9], genomewide protein complexes can be regarded as a

collection of ‘‘cellular machines’’ connected with each other for

optimal growth and survival of a cell (Figure 1).

Based on the assumption that each protein complex should play

a proper role as well as communicate efficiently with each other
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for cell survival and adaptation in various treatments, we

developed a Bayesian factor analysis model. Our model is similar

to the network models developed in transcription regulation

studies [10–13] (Figure 2). The basic idea of the model is that the

observed growth fitness measurements of each strain are

determined by combined effects of the activities of PCs in each

cell in a given treatment. To implement this idea, the association

relationship between deletion strains and PCs is necessary, which

led us to construct the binary (0 or 1) association network

between the knockout genes of strains and PCs based on their

physical or genetic interactions (Figure 2C). Here, we assume that

the relative growth fitness of strains by a chemical are mainly

affected by deleterious interactions between the knockout-gene

product of a strain and PCs which are physically or genetically

linked (Figure 1).

By modeling chemical-genetic profiles in terms of protein

complexes using physical and genetic interactions as a priori

knowledge, we inferred hidden activities of a collection of PCs in

each cell exposed to different chemicals. Based on those PC

activities, bioactive compounds with similar mode-of-action were

clustered together. It means that the binary association network

in our model represents biologically meaningful relationship

between knockout genes of strains and protein complexes as

hidden factors. In addition, we showed that protein complexes

with similar function were clustered together, which implies that

the unknown functions of protein complexes can be predicted.

Finally, we presented a new effective method to predict drug’s

target pathway using our PC-based model. For example, we were

able to highlight target-protein, TOR1, of rapamycin as well as

RUB1, UBA3, UBC12, and ULA1 related to protein neddyla-

tion as relevant biological pathway for cellular toxicity of

camptothecin.

We believe that our protein complex-based approach can

provide appropriate framework for combining and modeling

several types of chemical-genetic profiles including interspecies.

Such efforts will contribute to predict more precisely relevant

pathway including target-proteins that interact directly with

bioactive compounds.

Results/Discussion

Comparison of Complex-Based and Strain-Based
Approaches in Terms of Prediction Common Mode-of-
Actions of Drugs

We applied our PC-based Bayesian factor model (see the details in

Method Section) to the compendium of chemical-genetic profiles

(,4,800 haploid deletion strains, 82 chemicals) generated in the

recent study [5]. This allowed us to infer the hidden activities of 488

PCs in 82 different chemicals (Figure 3A and Figure S3).

To compare our model-based approach with the previous

strain-based approach for predicting common mode-of-action of

drugs using the same compendium, we first performed hierarchical

clustering of the inferred PC activities and strains fitness itself

(Figure 3, see the details in Method section). For fair comparison,

two different dendrograms of 82 drugs should be validated against

the gold standard drug-drug associations in the cellular context of

Yeast. However, such reliable data were not available enough to

measure performance of two dendrograms quantitatively. There-

fore, we marked the common clusters and different clusters on the

two dendrograms (Figure 3B and 3C) and surveyed their literature

evidences, which were categorized as follows:

Common Mode-of-Action of Drugs Supported by Both

Complex-Based and Strain-Based Clustering. Many drugs

were similarly closely clustered together in both dendrograms (see

the blue star in Figure 3C). Among them, common mode-of-action

of drugs in nine clusters, (a), (c), (e), (f), (g), (h), (j), (l), and (n),
have been already confirmed by the literature survey or experiments

in the previous paper of releasing the compendium [5].

Common Mode-of-Action of Drugs Differently Supported

by Complex-Based and Strain-Based Clustering. Cluster
(b). Doxycycline inhibits mitochondrial enzyme synthesis leading

to a lack of oxidative ATP synthesis and so to proliferation

inhibition in human leukemic cells [14], while oligomycin inhibits

the oxidative ATP synthesis directly in Saccharomyces cerevisiae [15].

The complex-based cluster (b) reflects such physiological effects

but strain-based cluster (3) does not.

Cluster (d). Wortmannin and caffeine physiologically inhibit

the signaling of phosphatidylinositol 3-kinase (PI3K)-related

protein kinases, TEL1 and possibly MEC1 by regulating the level

of inositol pyrophosphates, decreasing telomeric length and

leading to cell death [16]. In aspect of regulating telomeric length,

a recent paper suggests that rapamycin toxicity does not correlate

with inositol pyrophosphate levels on cell death, and also targets of

the rapamycin, TOR1/2 may participate in the regulation by

inositol pyrophosphates of vesicular endocytosis [16]. It is

supported by TOR2 localization to membranes of yeast vacuoles

[17] and of TOR1 to the plasma membrane of yeast [18] . The

common molecular action of wortmannin and caffeine on cell

death in Saccharomyces cerevisiae was represented in complex-based

cluster (d), but not in the strain-based clustering.

Cluster (h). The antifungal bioactive compound in extract 00-

192, derived from a sea cucumber from the Commonwealth of

Dominica, is identical to stichloroside as well as the antifungal

compound in extract 00-132, derived from an Indonesian marine

sponge, is identical to theopalaumide [5]. The stichloroside and

theopalaumide do not share structural features. Nevertheless, the

drug-resistant mutant study suggests that they share a common

mode-of-action in yeast [5]. In aspect of functional classification of

natural products, complex-based cluster (h) in our approach showed

more sensitive result than strain-based cluster (5) by specifying

compounds with antifungal activities in each crude extract.

Cluster (i). A recent paper suggests that loss of vacuolar H+
translocating ATPase (V-ATPase) activity leads to abnormal

Author Summary

Finding the specific targets of chemicals and deciphering
how drugs work in our body is important for the effective
development of new drugs. Growth profiles of yeast
genomewide deletion strains under many different chem-
icals have been used for identifying target proteins and a
common mode-of-action of drugs. In this study, we
integrated those growth profiles with biological informa-
tion such as protein–protein interactions and genetic
interactions to develop a new method to infer the mode-
of-action of drugs. We assume that the protein complexes
(PCs) are functional units for cell growth regulation,
analogous to the transcriptional factors (TFs) for gene
regulation. We also assume that the relative cell growth of
a specific deletion mutant in the presence of a specific
drug is determined by the interactions between the PCs
and the deleted gene of the mutant. We then developed a
computational model with which we were able to infer the
hidden activities of PCs on the cell growth and showed
that yeast growth phenotypes could be effectively
modeled by PCs in a biologically meaningful way by
demonstrating that the inferred activities of PCs contrib-
uted to predicting groups of similar drugs as well as
proteins and pathways targeted by drugs.

Protein-Complex-Based Bayesian Factor Analysis
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intracellular acidification, which facilitates the DNA damage

mediated by well known DNA-damaging agents, cisplatin, methyl

methanesulfonate (MMS) and hydroxyurea (HU) [19]. The

cisplatin is known for DNA inter-and intra-cross linking agent

generating the platinum-DNA adducts, the most significant DNA

lesions [20]. MMS is a monofunctional DNA alkylating agent

leading to a lethal lesion primarily by methylating DNA on N3-

deoxyadenine [21]. While MMS and cisplatin themselves are

potent damaging agents, HU and camptothecin are known for

ribonuclease reductase inhibitor giving rise to stalled replication

forks that are sensed by the cell as abnormal DNA structures [22],

and for a specific inhibitor of type I DNA topoisomerase trapping

the covalent complex formed between catalytically active enzyme

and DNA in Saccharomyces cerevisiae [23] as well as inducing DNA

breakage at replication forks [24], respectively. Both of complex-

based clusters (i) and strain-based ones (1) showed such similar

mode-of-action of the group of damaging drugs. However,

complex-based cluster (i) seemed to be more reasonable than

strain-based cluster (1).

Cluster (k). LY294002 is a cell-permeable compound that acts

as a potent and selective inhibitor of phosphatidylinositol 3-kinase

(PI3K) [25], which also serves as the molecular target for emodin

to suppress tumor cell migration [26]. Whereas strain-based

cluster (2) did not group two drugs into the nearest neighbors,

complex-based cluster (k) showed the improved clustering result.

Cluster (m). Sulfometuron methyl, a sulfonylurea herbicide,

blocks growth of bacteria, yeast, and higher plants by inhibition of

acetolactate synthase, the first common enzyme in the biosynthesis

of branched-chain amino acids, leucin, isoleucin and valine [27].

The immunosuppressant FK506 inhibits amino acid import by

targeting the yeast amino acid permease family, TAT1 and TAT2

in the posttranscriptional level [28]. In particular, a role of TAT1

in branched-chain amino acid uptake was reported [29,30]. Taken

together, the treatments of sulfometuron methyl and FK506 lead

to the depletion of branched amino acid through blocking its

biosynthesis and uptake in Saccharomyces cerevisiae, respectively. Our

complex-based cluster (m) reflected such same physiological effect,

but the strain-based clustering did not.

Figure 1. Model assumption on protein complexes as hidden factors underlying strain’s fitness. Our model assumes that a protein
complex (PC) is a functional unit to perform the biological processes in a cell, whose growth and survival is determined by the cooperative operation
of a collection of PCs in a cell. (A) Suppose that a strain of Gene Y deletion has three PCs (PC 1, PC 2, and PC 3), and PC 2 and PC 3 are genetically and
physically linked with Gene Y in a normal strain, respectively. (B) In general, genetic interactions have been involved in the genetic buffering in the
redundant or parallel pathways, and the physical interactions tend to be involved in a sequential biological event through a serial pathway [49]. From
this, the following scenario is plausible. When PC 2 and PC 3 are supposed to be the targets of a drug that blocks their functions, the inhibition of PC
2 by the drug will affect the growth of the strain of the gene Y deletion because some component of PC 2 cannot play a role of genetic buffer to
some biological process involving Gene Y. In the extreme situation, the synthetic lethality or sickness will occur in the strain of gene Y deletion. In
addition, the inhibition of PC 3 by the drug will also affect the growth of the strain because some component of PC 3 cannot interact with some
component in the sequential biological process involving Gene Y anymore. Overall, the combined deleterious effects of the first neighbors PCs
physically or genetically linked to gene Y will cause the unbalance of homeostasis of the strain. Consequently, the growth fitness of a strain treated
with the drug (B) will be observed relatively lower than growth fitness of a strain treated with no drug (A).
doi:10.1371/journal.pcbi.1000162.g001

Protein-Complex-Based Bayesian Factor Analysis
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We found that the complex-based clusters showed more

physiologically meaningful grouping of drugs compared with

strain-based clusters in yeast. For example, sulfometuron methyl

and FK506 are very different chemicals in their structures, by both

of which the same physiological effect of branched amino acid

depletion occurs in yeast. What enables PC-based clustering to

group together drugs with similar cellular defect in yeast better

than strain-based clusters? Possible reasons are as follows:

First, 52% of 1114 essential genes currently released in

Saccharomyces Genome Deletion Project [1] are included in

488 protein complexes, while strain-based clustering cannot

inherently use haploid strains of knock-out essential genes

(Figure S1B). Furthermore, a protein complex is composed of

5.5 essential and 7.8 non-essential genes on average. In other

words, on average 41% of genes involved in a protein complex are

essential for cell survival (Figure S1A), which implies that protein

complexes as hidden factors may reflect relevant features for cell

survival.

Second, valuable biological information on physical and genetic

interactions are used to associate protein complexes with haploid

deletion strains in PC-based modeling. This integration of prior

knowledge allowed us to reduce the large dimension of chemical-

genetic profiles (4111 by 82) into relatively small dimension of

chemical-PC profiles (488 by 82) in a biologically meaningful way.

That process makes chemical-PC profiles represent relevant

features of chemical-genetic profiles at the minimum information

loss. Furthermore, noise reduction by reweighting of irrelevant

information is achieved by the dimension reduction in our model.

It is indirectly supported that PC-based clustering is more robust

than strain-based clustering. For example, removal of 27% of 488

protein complexes with low values did not significantly influence

the clustering result made by all of 488 protein complexes, whereas

removal of 7% of 4111 strains with low values made different

clustering result compared with all of 4111 strains (Figure S2).

Taken together, we claim that the binary associations of 488 PC

and 4111 strains (binary association matrix or Z matrix in Figure 2)

Figure 2. Procedures for inferring the hidden activities of a collection of protein complexes in a cell. (A) A bipartite network illustrating
the first-order relationships between protein complexes (PCs) and strains they are associated with. The definitions of ‘‘protein complex’’, ‘‘strains’’, and
‘‘association’’ in the study are as follows: the first yeast comprehensive protein complexes reported by Gavin et al. [8] are used as a collection of
‘‘protein complexes’’ in a cell. The ‘‘strains’’ are defined as a collection of pooled deletion mutants released from Saccharomyces Genome Deletion
Project [1]. The ‘‘association’’ is defined as the existence of physical or genetic interactions between at least one of components in PCs and knockout
gene product of a strain. In bipartite network, we assume that the relative growth fitness of strains under different chemicals (called drugs or
bioactive compounds in the text) is mainly caused by the deleterious associations of PCs and strains (Figure 1). (B) The bipartite PC-strain network
reconstructed by applying PC-based Bayesian factor analysis (PCBA). The bar charts within dotted circles in the top of panel show the relative
activities of PCs depending on chemicals inferred from our analysis. The bar charts within each strain in the bottom represent the relative growth
fitness under different chemicals, which are used as observed data for our analysis. The thicknesses of arrows in the middle denote the association
strength between PCs and strains inferred from our analysis. The colors of red and blue indicate ‘‘positive’’ and ‘‘negative’’ association, respectively.
(C) It shows two types of input data for PCBA, one of which is a prior knowledge data of genetic and physical interactions in the left. It is represented
in the form of matrix containing binary associations of each strain (row) to PCs (column) (called Z matrix in the text). If there was the association
between the knockout gene of a strain i and at least one of components in a protein complex j, we set zij = 1. Otherwise we set zij = 0. The other is the
chemical-genetic profiles representing relative growth fitness of pooled deletion strains under various chemicals. As the observed data for PCBA, it is
shown in the right (called E matrix in the text).
doi:10.1371/journal.pcbi.1000162.g002
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in our model reflect biologically meaningful relationships between

the strains as the observed data and the protein complexes as the

hidden factors. We believe that the physical and genetic

interactions as a priori for constructing the association matrix of

PCs and strains are appropriate in our model, and furthermore

their associations only between the knock-out gene products of

strains and their first-neighboring protein complexes are sufficient

for the dimension reduction in a biologically meaningful way.

Grouping of the Protein Complexes with Similar Cellular
Process

In strain-based clustering of the compendium [5], deletion mutant

strains with similar chemical sensitivities are clustered together as

well, grouping functionally related genes. Similarly, the protein

complexes with a similar function were also clustered together

(Figure 3D). For examples, we selected three clusters with at least two

protein complexes known for their functions. Their functional

annotations of Gene Ontology were summarized in Table S1. Here,

we describe more literature evidences for those clusters.

(1) Two subunits of mitochondrial ribosome (PC 9 and PC 363)

supports that the protein complexes of ‘‘cluster I’’ are obviously

related to the protein synthesis within mitochondrion.

(2) The ‘‘cluster II’’ represented the groups of protein complexes

involved in ER-to-Golgi and sequentially Golgi-to-vacuole or

Golgi-to-endosome vesicle transports. Especially, the Sec34/

35 Golgi Transport Complex (PC 293) in ‘‘cluster II’’ is

known for tethering factors that attach the vesicle to the

destination organelle prior to fusion to retrograde vesicular

trafficking within the Golgi apparatus [31]. Whyte et al. shows

that such protein complex is related to the Exocyst complex

(PC 120), known as hetero-oligomers tethering factor at the

plasma membrane, by sequence homology, and also suggested

that they might perform analogous roles in different

membrane traffic steps [32].

(3) The TRAPP II complex (PC 182) in ‘‘cluster III’’, one of two

forms in TRAPP complex, functions as the tethering factor at

the Golgi. Whereas the other, TRAPP I complex regulates

YPT1 related to the entry of cargo vesicles into the Golgi

apparatus, TRAPP II complex (PC 182) regulates YPT31 and

YPT32 controlling exit of the cargo from the trans-Golgi

network, residing in trans-Golgi [33]. Similarly, AP-1 adaptor

complex (PC 315), along with clathrin-coat protein, drives

transport vesicles formation at the trans-Golgi network,

whereas AP-2 adaptor complexes are principally targeted to

the plasma membrane [34].

As shown in the above examples, the hierarchically clustered

groups of protein complexes revealed insights into similar

biological processes. In other words, unknown functions of protein

complexes could be inferred based on those groups closely

clustered. Nonetheless, it was preliminary investigation using

simple hierarchical clustering method to highlight the biological

essential features of protein complex activities. If chemical-PC

profiles are applied to other clustering methods such as

biclustering or network reconstruction methods, such results could

be different in some cases as well as give more essential features on

behaviors of protein complexes perturbed by drugs.

Prediction of Relevant Biological Pathways Targeted by a
Drug

To find a drug-target pathway, we first selected significantly

sensitive protein complexes to each drug (Figure 4), and then

examined the biological processes of deletion genes of strains that

were associated with such sensitive protein complexes in our

model (see the details in the method; Table S2). This investigation

of PC-constrained strains allowed us to highlight more relevant

drug-target pathways than that of PC-free strains. In particular, it

is clear in cases of camptothecin and rapamycin whose target-

pathways are well known (Figures 5 and 6).

Rapamycin Targeting TOR1. Rapamycin and its analogues

have a unique mode-of-action as follows: Rapamycin first binds to

the 12-kDa immunophiln FK506-binding protein (FKBP12) and this

complex inhibits the target of rapamycin (TOR) phosphoinositide-

kinase (PIK)-related serine/threonine kinase conserved in all

eukaryotes which is rapamycin target as well as subunit of

TORC1 complex [35,36] (Figure 5B). That complex is known for

controlling growth in response to nutrients or stress by regulating

translation, transcription, mRNA stability, ribosome biogenesis,

nutrient transport and autophagy [36,37]. Based on physical and

genetic interactions with the most sensitive protein complex to

rapamycin, PC 321, our PC-based approach suggests that three

knock-out genes of elp3, tef4 and tor1 strains among all of 236 strains

sensitive to rapamycin play important roles in rapamycin-target

pathway (Figure 5A). These genes had no enriched Gene Ontology

(GO) terms but one of them is rapamycin target-protein itself. It

indicates that PC-constrained strains narrows down lots of

rapamycin-sensitive genes involved in various biological pathways

to a handful of genes that are important in the relevant pathway

perturbed by rapamycin (Table S2).

Camptothecin Targeting Topoisomerase I. Camptothecin

is a natural product of which Topoisomerase I (TOP I) is the only

cellular target. TOP I is essential in higher eukaryotes, as they are

required to relax DNA supercoiling generated by transcription,

replication and chromatin remodeling. Despite their frequency

throughout the genome, their cleavage intermediate steps (referred

to as the ‘‘cleavable complexes’’) are normally so transient that they

are not detectable, but it is these complexes that are specifically and

reversibly trapped by camptothecin [38]. In mammalian cancer cell,

the degradation of such TOP I cleavable complex is known for being

performed by the ubiquitin-proteasome system involving Cul3-based

E3 ligase complex [39].

Based on physical interactions with the most sensitive protein

complex to camptothecin, PC 181, our complex-constrained

strains suggests that five knock-out genes of rub1, uba3, ubc12, ula1,

and rpn4 strains among all of 303 strains sensitive to camptothecin

play important roles in camptothecin-target pathway (Figure 6A).

Their enriched GO terms are described in Table S2. In particular,

Figure 3. Clustering analysis of protein complex activities. (A) Bird eyes of two-dimensional hierarchical clustering analysis of protein complex
activities (488 PCs by 82 drugs). (B) The PC-based hierarchical dendrogram of 82 drugs using relative activities of all of 488 protein complexes. The red
star and red vertical bar indicates the group of drugs very closely clustered in the PC-based clustering but not in strain-based clustering using the
same compendium [5]. The blue star and blue vertical bar represent the group of drugs very closely clustered in both clustering. The rectangular
dashed line box shows the group of drugs clustered slightly differently in each clustering. The alphabets in parenthesis denote the groups of drugs
with similar mode-of-action supported by literatures. (C) The strain-based hierarchical dendrogram of 82 drugs using the growth fitness of 3,418
strains with at least one measurement above Log2 ratio 0.5 as performed in the compendium paper [5]. (D) The examples of the clusters of PCs in
similar biological functions. We selected three clusters which have at least two PCs with known function. The annotation in the right denotes
‘‘complex ID: complex name: complex localization’’.
doi:10.1371/journal.pcbi.1000162.g003

Protein-Complex-Based Bayesian Factor Analysis
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four of five genes selected are involved in protein neddylation

(GO:0045116). In S. cerevisiae, RUB1 (called NEDD8 in human)

among them is a ubiquitin-like post-translational modifier that is

covalently linked to cullin (Cul)-family proteins in a manner

analogous to ubiquitination [40]. In in vitro mammalian cell lines

[41] and in vivo S. pombe [42], Rub1/NEDD8 attachments to

cullin family members has been correlated with increased

interaction of an S-ester-linked E2 with the E3 ligase, resulting

in an activation of ubiquitination activity. In S. cerevisiae,

conjugation of RUB1 is not essential for normal cell growth, but

occurs selectively in a small set of substrates, CDC53, RTT101,

and CUL3 [39]. Furthermore, it is suggested that such

modification of cullin family by RUB1 conjugation might be

functionally affiliated to the ubiquitin-proteasome system, and play

a regulatory role for that system [39,40].

Taken together, we propose the model of camptothecin toxicity

in S. cerevisiae that RUB1-attachment of CUL3 would enhance the

degradation of TOP1 cleavable complexes and, therefore, the

blocking of RUB1-conjugation pathway could contribute signifi-

cantly to increase the level of camptothecin toxicity in a cell

growth as depicted in Figure 6B.

DNA Damaging-Agents: Cisplatin and MMS. MMS and

cisplatin themselves are potent damaging agents. Genes of their

sensitive strains are related to DNA repair system as expected

Figure 4. Significantly sensitive protein complexes to drugs known for their target pathway. The significance score of the effect of a
compound on a protein complex was estimated using error function (see Method for details). When a significance score of a compound on a complex
was less than a given threshold, and also that complex has relatively positive value of an activity, the complex was defined as the ‘‘sensitive complex’’
to that compound. For rapamycin in cluster I, there is only one sensitive complex, PC 321. There are four sensitive complexes, PC 379, PC 413, PC 148,
and PC 366 to compounds in cluster II which are microtubule-poisons. Those DNA-damaging agents of cluster III have more than five sensitive
complexes, PC 181, PC 170, PC 65, PC 290, and PC 424. The types of biological associations between each sensitive complex and their sensitive strains
are available, and also GO analysis results of the set of those genes of such sensitive strains at http://pombe.kaist.ac.kr/CMA/ModeOfAction.pl.
doi:10.1371/journal.pcbi.1000162.g004

Figure 5. Target pathway of rapamycin. (A) The most sensitive protein complex to rapamycin, PC 321, is composed of ERG1 and SEC2, both of
which are essential genes. Any of components in such complex may be physically or genetically associated with ELP3, TEF4, and TOR1 among gene
products deleted in all the sensitive strains to rapamycin. According to model assumption, it can be interpreted as follows: Strains of complex-
associated gene deletions have deleterious biological interactions with that complex. It may lead to decrease in the growth fitness of those strains in
rapamycin. (B) Target of Rapamycin (TOR) pathway primarily regulated by Target of Rapamycin Complex 1(TORC1) with/without rapamycin. When
the rapamycin is treated in a yeast cell, it binds FKBP12, forming toxic complex, which inhibits specifically TOR1, an essential component of TORC1. It
gives rise to abnormal TORC1 signaling cascades related to broad biological functions, transcription, translation, mRNA stability and permeability.
doi:10.1371/journal.pcbi.1000162.g005

Protein-Complex-Based Bayesian Factor Analysis
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(Table S2). In particular, all of GO terms related to DNA repair

system resided in the top rank, but also had higher significant p-

value and percentages in PC-constrained strains than those in PC-

free strains (Table S2).

Microtubule Poisons: Nocodazole and Benomyl. Benomyl

and nocodazole are known for microtubule poisons. As expected,

tubulin-folding or binding-related terms were enriched. In

particular, the GO term of Gim/prefolding complex resided in top

rank only in PC-constrained strains. This complex is known for

promoting formation of functional a- and c-tubulin [43].

Those examples showed that the PC-based approach was able

to highlight the subset of important genes in the relevant drug-

target pathway more than PC-free approach. How can PC-

constrained strains narrow down PC-free strains in this sensible

way? A possible reason is as follows: some protein complex itself is

composed of proteins representing specific biological function. In

camptothecin and benomyl examples, PC181 is known for related

ubiquitin activating protein complex, and PC413 known for Gim

protein complex promoting functional microtubule formation

(http://pombe.kaist.ac.kr/CMA/ModeOfAction.pl). By guilty-by-

association, the set of genes of drug-sensitive strains specified by

drug-sensitive complexes with specific biological function would be

involved in the corresponding function although some of them are

not severely sensitive to a given drug. It could give rise to

enrichment of some of GO terms related to drug’s cellular toxicity

in PC-constrained strains.

Our PC-based approach would not properly work if too many

numbers of insufficient and incorrect components of protein

complexes are used as hidden factors to represent whole dynamic

cellular events and also insufficient and incorrect biological

interactions are integrated for the associations between PC and

strains in our model. In that case, some true positives of drug-target

genes would be lost in PC-constrained way, which could lead to too

small a set of genes or a biased set of genes compared with true drug-

targeted genes. It is well known that high throughput interaction data

used in our model is incomplete in the sense that they contain a lot of

false positives and false negatives. Nonetheless, our results showed

that our model is robust against such deficiency in the data. The

problem will be lessened as more and more high-throughput data

become accumulated and validated.

In addition to the data quality of prior knowledge for our

modeling, it should be noted that observed data for our modeling

was not sufficient enough to represent drug’s cellular toxicity on

the genome scale. For the yeast Saccharomyces cerevisiae, each of the

,6,000 potential genes characterized by the genome sequencing

project has been deleted, identifying ,1,000 essential genes and

,5,000 viable deletion mutants. In current study, we used only

chemical-genetic profiles of viable yeast haploid mutants as

observed data for our modeling. It means that the effect of any

essential genes to a bioactive compound was not able to be

included as observations. To overcome this drawback, we will

need to integrate observed data of diploid-heterozygous strains

into our model. Heterozygous deletion strains allow the study of all

1,000 essential gene products. Furthermore, it was reported that

drug-induced haploinsufficiency of diploid-heterozygote strains

could discern the direct effect of bioactive compounds by assessing

the consequence of reducing the amount of gene product [3,4].

We believe that our PC-based modeling of chemical-genetic

profiles can provide appropriate framework to deal with the

combined chemical-genetic profiles of haploid and diploid-

heterozygote strains as observation, and thus such extended model

could especially contribute to predict more precisely relevant

pathway including target-protein that interact directly with

bioactive compounds.

Figure 6. Target pathway of camptothecin. (A) The most sensitive protein complex to camptothecin, PC 181, is composed of ULA1 and UBA3,
both of which are non-essential genes. Any of components in such complex may be physically associated with RUB1, UBA3, ULA1, UBC12, and RPN4
among gene products deleted in all the sensitive strains to camptothecin. (B) Our proposed model of neddylation-enhanced and ubiquitin-
dependent proteasomal degradation of Topoisomerase I-DNA complex stabilized by camptothecin in yeast (details in the text). In this model, we
suggest that RUB1-attachment of CUL3 may enhance the degradation of TOP1-cleavable complexes and, therefore, the blocking of RUB1-conjugation
pathway contributes to significant increase of the level of camptothecin toxicity in cell growth as shown in PC 181-associated strains.
doi:10.1371/journal.pcbi.1000162.g006
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Conclusion
In a seminal article in the journal Cell entitled, ‘‘The cell as a

collection of protein machines: preparing the next generation of

molecular biologists,’’ Bruce Alberts described a cell as a factory:

‘‘Indeed, the entire cell can be viewed as a factory that contains an

elaborated network of interlocking assembly lines, each of which is

composed of a set of large protein machine’’ [9]. In recent

genomewide study of yeast, two independent groups, European

Molecular Biology Laboratory (EMBL), Cellzome (a spin-off

company from EMBL), and the university of Toronto, have

surveyed the first comprehensive protein complexes, called protein

machines by Bruce Alberts, using tandem affinity purification

(TAP) [8,44]. Furthermore, Gavin et al. [8] gives molecular

rationale of protein complexes for gene-to-phenotype relationship.

In our study, those protein complexes are regarded as functional

units for yeast cell growth, and then protein complex based

Bayesian factor analysis is performed to relate growth fitness of

genomewide deletion strains to hidden activities of protein

complexes in a cell. In other words, at the organism’s phenotype

level, the chemical-genetic profiles representing relative growth

fitness of systematic deletion strains are modeled in terms of

protein complexes at the molecular levels.

To show that our model assumption (Figure 1) is reasonable and

the inferred complex activities are reliable, hierarchical clustering

analysis and literature survey were performed, which showed

predictive power of common mode-of-action of bioactive com-

pounds as well as grouping of protein complexes with similar

biological behavior. In addition, we performed drug’s target-

pathway prediction based on our model assumption (Figure 1) to

show how practical our model framework is. GO analysis and

literature survey shows that complex-based way of drug’s target-

pathway prediction narrows down lots of drug-sensitive genes

involved in various biological pathway to a handful of genes

important in the relevant pathway perturbed by a drug. For

example, we were able to highlight target-protein, TOR1, of

rapamycin as well as RUB1, UBA3, UBC12, and ULA1 related to

protein neddylation as relevant biological pathway for cellular

toxicity of camptothecin.

From the purely computational standpoint, our model and

Bayesian hidden component analysis (BHCA) developed by

Sabatti and James [11] are essentially the same, as we pointed

out in Method section. We did not try to improve the BHCA, even

though there may be a number of ways to improve the algorithm

itself, simply because that was not our main objective. Main focus

of this study is to model the chemical-genetic profiles at the

molecular level, more specifically using protein complexes, and we

found that BHCA is an appropriate computational framework.

The reasons are as follows: first, central assumption on a hidden

factor is conceptually similar. The goal of BHCA in transcriptional

regulation is to infer hidden activities of transcription factors under

the assumption of combinatorial regulation of a gene by a set of

transcription factors. Similarly, our goal is to infer hidden activities

of protein complexes under the assumption of combinatorial effect

of cell growth by a set of protein complexes. Under this

assumption, we were able to set up BHCA-like Bayesian factor

model, as shown in Figure 2. Key component of the model is Z
matrix (binary association matrix), which not only allowed us to

robustly compute the equation, but also provided a window

through which relevant biological information such as protein-

protein interactions and genetic interactions can be integrated

with experimental data. Second, the estimation of protein complex

activities by Bayesian factor model is more robust and stable

because estimands are obtained by tens of thousands of samplings.

Deterministic factor analysis methods [10,12,13] often give rises to

numerically unstable solutions especially when improper prior

knowledge is used in the analysis. In our modeling, protein

complexes and genetic interactions as prior information are still

insufficient and inaccurate, which makes it inappropriate to use

deterministic methods such as network component analysis (NCA)

for our study [10].

To improve the hierarchical clustering, Parsons et al. also

utilized a matrix decomposition method known as probabilistic

sparse matrix factorization (PSMF). Both PSMF and our factor

model all decompose chemo-genomic profiles into some factors

and their weights. These decompositions of the two methods

contribute to noise-reduction of original data, and so reveal more

essential features. For example, Parsons et al. discussed two cases

(‘‘factor 6’’ and ‘‘factor 5’’ in [5]) where PSMF method improved

the results over hierarchical clustering. For our method, we have

already illustrated a number of those examples in Results and

Discussion Section. Moreover, if we compare the results from the

strain-based clustering, PSMF, and the present method (PC-based

clustering) all together, our PC-based clustering tend to produce

the results that are more similar to those of PSMF than those of

strain-based clustering (Figure S6), indicating that both decompo-

sition-based methods represent some essential features through

noise-reduction from original observation. What is different,

however, is that our model uses known protein complexes as

factors and fixed relationships between factors and observations,

while PSMF infers both of them from observations. Therefore, our

model is suitable when prior knowledge on factors and

observations is available, and PSMF is suitable in case of no prior

knowledge. Direct performance comparison between both meth-

ods is difficult because only four blocks in the whole ‘‘factorgram’’

are available from [5]. One distinctive advantage of our method

over PSMF, however, is that because we use protein complexes as

factors and integrate biological prior knowledge in our model, the

inferred results are biologically interpretable, which allowed us to

develop an effective way to predict drug’s target pathway. In

contrast, in PSMF biological meaning of factors is not clear. In

addition, our model provides hidden activities of protein

complexes from original data, which are difficult to measure in

real wet experiment.

In current study, we used only chemical-genetic profiles of

viable yeast haploid mutants as observed data for modeling.

Consequently, it has a limitation for excluding the data for ,1,000

essential genes in yeast. This drawback can be overcome by

combining chemical-genetic profiles of homozygous and hetero-

zygous deletion strains. We believe that our complex-based

approach can provide appropriate framework for modeling such

combined fitness data, which might especially contribute to predict

more precisely relevant pathway including target-proteins that

interact directly with bioactive compounds.

Method

Protein Complex (PC)-Based Bayesian Factor Analysis
Model for Chemical-Genetic Profiles

Various types of factor models have been developed to model

the transcriptional regulatory networks [10–13]. In factor models

for transcriptional regulation, transcription factors are defined as

hidden factors so that estimated effects of the factors can be

biologically interpreted as the activities of transcription factors

directly involved in the transcription. In a similar way, we

developed a protein complex based Bayesian factor analysis

(PCBA) for modeling chemical-genetic profiles. In essence, our

model is similar to Bayesian hidden component analysis (BHCA)

model by Sabatti et al. developed for the transcriptional regulation

Protein-Complex-Based Bayesian Factor Analysis
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network analysis [11]. For convenience, we used the same

notations and equations as described in the original BHCA paper.

The central assumption of our model was that the observed

growth fitness measurements of each strain were determined by

combined effects of the activities of a collection of the protein

complexes (PCs) in each cell under different treatments. By log-

transforming strains’ fitness measurements, a linear model was

formulated so that eit = SL
j = 1 aij*pjt+cit, where eit represented the

relative fitness of a strain i in an experiment t; aij the association

strength of the protein complex j on the strain i; pjt the relative

activity for the protein complex j in the experiment t; L the number

of protein complexes as hidden factors; and finally cit the

measurement errors and the biological variability. We assumed

that cit was an independent and identically distributed Gaussian

random variable following N (0, s2). If the number of strains is N

and the number of experiments is M, the model can be rewritten

in a matrix notation as follows:

E~APzC ð1Þ

Here, E denoted an N6M matrix eitf gN,M
i~1,t~1. A was a matrix

aij

� �N,L

i~1,j~1
and represented unknown association strengths

between strains and protein complexes. P denoted the matrix

pjt

� �L,M

j~1,t~1
.

In our model, there are the following features: (1) the ‘‘factors’’,

row vectors in the P matrix have a clear interpretation, as they

correspond to specific protein complexes. (2) The specific value of

the pjt is the primary interest for the prediction of drug’s

mechanism. (3) The matrix A is known to contain a large number

of zeroes, corresponding to the sparseness of the network. This

sparseness in our model is very important feature to solve the

notorious non-identifiable problem in the factor model, by which

multiple sets of different parameter values lead to the nearly

identical likelihood. Therefore, the identifiability should be

achieved by imposing some sort of constraints in the model. A

typical way in biological analysis is to constrain the loading matrix

of factors by the same size of the matrix with a specific pattern of

zeros. In our factor model, the sparse network topology as such

constraints was represented in Z matrix with the same size as the A
matrix but with only 0 or 1 values (Figure S4).

The procedure for constructing Z matrix was shown in (A) and (C)

of Figure 2. The entries, zij were assumed to be independent. If there

was the association between the knockout gene of a strain i and at

least one of components in a protein complex j, we set zij = 1.

Otherwise we set zij = 0. By letting pij = Pr(zij = 1), we assigned 1 to

the pij because of limited memory size and computation time. By

doing so, we lost the chance to remove false positive associations.

The remaining entries of Z were set to zero. The other priors on A, P
and s|Z were also defined as follows:

aij zij

�� ~1*N 0,s2
a

� �
, pjt*N 0,s2

p

� �
, Pr zij~1

� �
~pij,

1

s2
i

*

Gamma ai,bið Þ
ð2Þ

The parameters aij, pjt and s2
i were assumed mutually independent.

The priors on A, P and s were mainly used for regularization. To

explore the posterior distributions of the four parameter groups Z, A,

P, and s2
i , we used the collapsed Gibbs sampling based on the

full conditional distributions of Z, A, P, and s2
i , which were

derived from those conjugate-like priors and joint probabilities, and

described in the BHCA paper.

Datasets for the PC-Based Bayesian Factor Model
We used the compendium of chemical-genetic profiles for 82

different bioactive compounds by screening them against the yeast

haploid deletion collection, of ,5,000 viable strains [5]. Each

value in the profiles was represented by the combined average log2

ratio (control/experiment) of both barcodes (up tag and down tag)

corresponding to each strain. We excluded multidrug-resistant

genes [5], and genes of deletion strains not associated with any

protein complexes. Finally, the profiles of 3,241 strains were used

for our Bayesian factor model. We used the collection of 490

protein complexes (PCs) defined by the first genomewide

characterization in an organism, budding yeast, using affinity

purification and mass spectrometry [8]. The 488 PCs associated

with at least one strains were used for our Bayesian factor model.

For PC–strain associations, we used the BioGRID version 2.0.20

release containing physical and genetic interactions known in S.

cerevisiae [45].

Inference of Protein Complex Activities from the PC-
Based Bayesian Factor Model

We obtained the posterior distributions of all the parameters of

A and P matrices in our models using the collapsed Gibbs sampler

derived in the BHCA paper [11]. The following hyperparameters

were set for the Gibbs sampling: a = 0.7 and b = 0.3 for the

gamma distribution as a prior of inverse s2
i , and sa = 1, 10, 30, 60,

70, 90, 100 and sp = 1, 10, 30, 50 for a priori standard normal

distributions of aij and pjt.

We first ran the Gibbs sampler for 11,000 iterations written in

statistical language R [46] to select the optimal hyper-parameters,

sa and sp. The initial 1000 iterations were discarded as burn-in,

and the results of one per ten iterations were recorded, as

suggested by Sabatti and James [11]. To assess the overall chain

behavior, we monitored the sum of squared error (SSE). Given

hyper parameters, sa = 30 and sp = 1, the convergence of SSE was

best (Figure S5) so that we obtained multiple chains by Gibbs

sampler under such hyper-parameter condition. For each chain of

those multiple chains, we collected about 400 to 500 samples, one

per ten iterations, after discarding initial 5,000 iterations as burn-

in. All of samples obtained from each chain were merged so that

they were used as each posterior (or sample) distribution of each

parameter. Then, posterior means and posterior variances of each

posterior distribution were used as estimands of each parameter. In

this study, we focused on the analysis of posterior mean of each

element in P matrix because our goal is to infer the hidden relative

activities of protein complexes.

Hierarchical Clustering Analysis
Hierarchical agglomerative clustering was performed by Gene

Cluster 3.0 [47] for (A) and (D) of Figure 3 or by hclust function of

standard R package stat [46] for (B) and (C) of Figure 3 using

Pearson’s correlation as a distance measure, and average linkage

for compounds and complete linkage for protein complexes as an

agglomeration method. The figures of clustering results were

generated by Java TreeView [48] or by plclust function of

standard R package stat.

Selection of Significantly Sensitive Protein Complexes to
a Bioactive Compound

To estimate the significance of the effect of a drug on a protein

complex, we modified the error model used for haploinsufficiency-

based direct drug-target identification in Yeast [4]. For this, first,

the relative activities of all the protein complexes under different

compounds were expressed as a matrix P with rows of 1…i…488

Protein-Complex-Based Bayesian Factor Analysis
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complexes and columns of 1…j…82 compounds, and the

reference set of each complex was defined as a collection of

activities of each protein complex under different 82 compounds,

{Pi,j = 1..82}. For every activities (Pij) of a given protein complex

under a given compound, the drug effect (eij) on a protein complex

was calculated by subtracting the mean (X̄i) of its reference set

from Pij, and the uncertainty (s2
ij ) of the drug effect was obtained

by pooling of the variance (s2
i ) of its reference set and sample

variance (s2
ij,Gibbs) of Pij obtained from tens of thousands of Gibbs

sampling (Equations 3 and 4).

eij~Pij{ �XXi, s2
ij~s2

i zs2
ij,Gibbs ð3Þ

�XXi~
1

N

XN

j~1

Pij , s2
i ~

1

N{1

XN

j~1

Pij{ �XXi

� �2 ð4Þ

where N represented the number of compounds, 82.

The drug effect (eij) on a protein complex and its pooled

variance (s2
ij ) were applied to error function (Equation 5) so that

significance of the effect of a given compound to a given complex

was scored as a real value in the range of 0 to 1.

erfc x~
eijffiffiffi
2
p

sij

 !
~1{erf xð Þ~ 2ffiffiffi

p
p
ð?

x

e{t2

dt ð5Þ

When error function scores of complexes were less than 0.25, such

complexes were regarded as being significantly affected by a given

compound. When a protein complex has relatively positive value

of activity, it was called a ‘‘sensitive complex’’. In the opposite

case, it was called a ‘‘resistant complex’’.

In similar way, we defined ‘‘sensitive strain’’ and ‘‘resistant

strain’’, all of whose relative fitness values had greater than 0.5 or

less than 20.5. Based on known biological associations between

‘‘sensitive/resistant complexes’’ and ‘‘sensitive/resistant strains’’,

Gene Ontology (GO) analysis for all of 82 compounds were

performed, and those results were available at http://pombe.kaist.

ac.kr/CMA/ModeOfAction.pl. Each set of genes of sensitive/

resistant strains associated with sensitive/resistant complexes was

used for GO analysis, which was also performed against all of

genes of sensitive strains to compare complex-based with strain-

based GO results in terms of highlighting relevant cellular

pathway targeted by a compound.

Supporting Information

Figure S1 The distribution of essential and non-essential genes

in protein complexes. (A) The distribution of essential and non-

essential genes involved in each protein complex is shown. The

protein complex is composed of 5.5 essential and 7.8 non-essential

genes in average. (B) All of 488 protein complexes include 1490

non-redundant genes, which consist of 580 essential and 910 non-

essential genes. In particular, 52% of 1114 essential genes reported

in Saccharomyces Genome Deletion project are included in 488

protein complexes.

Found at: doi:10.1371/journal.pcbi.1000162.s001 (0.07 MB PDF)

Figure S2 Hierarchical clustering according to noise removal.

(A) When chemical-genetic profiles of 4111 haploid strains just

excluding non-viable and multi-drug sensitive strains were applied

to hierarchical clustering, many of clusters are different from those

obtained after 17% removal (Figure 5C in text). (B) When the

relative activities of PCs lower than 0.015 and greater than

20.015 are set to 0, 133 of 488 PCs are removed (27%

decreasing). Nonetheless, most of clusters are similar to those

obtained before 27% removal (Figure 5B in text).

Found at: doi:10.1371/journal.pcbi.1000162.s002 (0.06 MB PDF)

Figure S3 Two-dimensional hierarchical clustering. The set of

the inferred protein complex activities was visualized by two-

dimensional hierarchical clustering. In total, 82 compounds were

clustered on the vertical axis, based upon the similar patterns of

protein complexes, and 488 PCs were also clustered on the

horizontal axis, according to the similar patterns of bioactive

compounds

Found at: doi:10.1371/journal.pcbi.1000162.s003 (8.71 MB PDF)

Figure S4 The row (strain)-wise and column (complex)-wise

statistics of binary associations of Z matrix. The Z matrix

comprises 488 columns (PCs) and 3241 rows (strains). The

sparseness of Z matrix is shown in column- and row-wise

counting. (A) The x-axis represents the number of strains

associated with a protein complex. The y-axis represents the

frequency of protein complexes with same number of associations

with strains. The minimum, average, and maximum values of

strains associated with a protein complex are shown in the

histogram. (B) The x-axis represents the number of protein

complexes associated with a strain. The y-axis represents the

frequency of strains with same number of association with protein

complexes. The minimum, average, and maximum values of

protein complexes associated with a strain are shown in the

histogram.

Found at: doi:10.1371/journal.pcbi.1000162.s004 (0.05 MB PDF)

Figure S5 Plot of the sum of squared error (SSE). The chain of

SSE sampled from Gibbs sampler seemed not to be sticky. It is

used for monitoring overall convergences of parameters.

Found at: doi:10.1371/journal.pcbi.1000162.s005 (0.02 MB PDF)

Figure S6 Comparison of grouping of drugs by probabilistic

sparse matrix factorization (PSMF), protein complex (PC)-based

hierarchical clustering and strain-base hierarchical clustering. The

red arrow indicates drugs comprising a specific factor obtained by

PSMF. (A) Group of drugs comprising factor 6. (B) Group of drugs

comprising factor 5. The original factorgram images in the paper

by Parsons et al. [5] were used in this figure.

Found at: doi:10.1371/journal.pcbi.1000162.s006 (0.18 MB PDF)

Table S1 Functional annotations of protein complexes clustered

together.

Found at: doi:10.1371/journal.pcbi.1000162.s007 (0.02 MB PDF)

Table S2 GO analysis of drug-sensitive strains associated with

drug-sensitive protein complexes.

Found at: doi:10.1371/journal.pcbi.1000162.s008 (0.04 MB PDF)
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