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SUMMARY

Locomotor systems generate diverse motor patterns
to produce the movements underlying behavior,
requiring that motor neurons be recruited at various
phases of the locomotor cycle. Reciprocal inhibition
produces alternating motor patterns; however, the
mechanisms that generate other phasic relationships
between intrasegmental motor pools are unknown.
Here, we investigate one such motor pattern in the
Drosophila larva, using a multidisciplinary approach
including electrophysiology and ssTEM-based cir-
cuit reconstruction. We find that two motor pools
that are sequentially recruited during locomotion
have identical excitable properties. In contrast, they
receive input from divergent premotor circuits. We
find that this motor pattern is not orchestrated by
differential excitatory input but by a GABAergic inter-
neuron acting as a delay line to the later-recruited
motor pool. Our findings show how a motor pattern
is generated as a function of the modular organiza-
tion of locomotor networks through segregation
of inhibition, a potentially general mechanism for
sequential motor patterns.

INTRODUCTION

Movements are generated by precise sequences of activity in

motor systems. In spite of decades of research, the logic un-

derlying the neural circuitry that produces these sequences

during locomotion remains unclear (Büschges et al., 2011;

Harris and Weinberg, 2012; McLean and Dougherty, 2015). At-

tempts to decipher this logic have largely focused on the alter-

nating patterns of activity that underlie the recruitment of

antagonistic motor units, such as flexors and extensors (Grill-

ner, 2003; Grillner and Jessell, 2009; McLean and Dougherty,

2015; Talpalar et al., 2011; Tripodi et al., 2011), depressors

and elevators (Burrows, 1996), and the bilaterally homologous

motor units that generate left-right alternation (Grillner, 2003;

Talpalar et al., 2013). A common circuit motif that underlies
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these antiphasic activity patterns are reciprocal inhibitory con-

nections between premotor circuits (Büschges et al., 2011;

Kiehn, 2011).

However, many movements require gradual, overlapping

sequences of muscle contractions. For instance, synergistic mo-

tor pools are tuned across the entire phasic space during fictive

locomotion in the mouse spinal cord (Hinckley et al., 2015; Ma-

chado et al., 2015) and fictive scratching in the turtle (Berkowitz

and Stein, 1994), and many intrasegmental muscles in the cat

contract sequentially with overlaps in their activation during

variousmovements (Pratt et al., 1991). In spite of the prominence

of this type of motor pattern, it is unknown how premotor circuits

generate the required sequential patterns of activity within each

segment in the appropriate motor neurons.

In principle, the sequential pattern can be established through

two non-mutually exclusive mechanisms: first, a common

source of interneuronal input could elicit temporally distinct re-

sponses in motor neurons that have different electrical proper-

ties (Johnson et al., 2005; Matsushima et al., 1993; Wang and

McLean, 2014). Second, premotor networks could recruit motor

units sequentially through differences in the delivery of excitatory

or inhibitory input (Bagnall and McLean, 2014; Gabriel et al.,

2011). In locomotor networks, motor neurons are ordered cen-

trally to represent the spatial organization of their postsynaptic

muscles, forming a myotopic map that also extends to their pre-

synaptic partners (Landgraf et al., 2003; Okado et al., 1990;

Romanes, 1964; Sürmeli et al., 2011; Tripodi et al., 2011). This

conserved feature mediates the segregation of input onto

different classes of motor neurons and could form the basis for

the generation of different motor patterns.

In this study, we draw on the experimental advantages of the

Drosophila larva to determine the neural basis for a motor

pattern that is conceptually similar to the sequential pattern

described in vertebrate motor systems. Specifically, we focus

on delineating the circuit mechanisms underlying the genera-

tion of an intrasegmental sequence of overlapping contractions

of two distinct muscle groups during larval crawling (Heckscher

et al., 2012). First, using whole-cell electrophysiology, we

show that motor neurons that innervate either muscle group

do not differ in their intrinsic electrical properties, suggesting

that their recruitment pattern must be the result of the organiza-

tion of the presynaptic network. Second, reconstructions from

serial section transmission electron microscopy (ssTEM) of
ugust 3, 2016 ª 2016 The Authors. Published by Elsevier Inc. 615
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Figure 1. Motor Neuron Intrinsic Properties Do Not Contribute to the Generation of the Intrasegmental Motor Pattern Underlying Larval

Crawling

(A) Longitudinal muscle LO1 (magenta) and transverse muscles LT1–LT4 (green) in a single segment of the Drosophila larva. Left panel shows GFP-labeled

muscles of hemisegments A3–A5, schematized in the right panel. Scale bar, 200 mm.

(B) Contraction pattern of LT2 and LO1 in segment A4 in (A) during a crawling cycle.

(C) Polar plot of magnitude and phase of coherency of the two waveforms with LO1 as reference. Dashed line indicates a = 0.05 for coherence magnitude

statistically deviating from 0. Data are represented as mean ± 95% confidence interval (CI).

(D and E) Example motor neurons during patch-clamp recording from cell bodies (asterisks) labeled with Alexa Fluor 568 Hydrazide dye, pseudocolored green

(D; MN-LT) or magenta (E; MN-LO1). Blue shading is mCD8::GFP expression under the B-H1 promoter. Scale bar in (E), 5 mm.

(F and G) Example recordings of MN-LT (F) and MN-LO1 (G) during different levels of current injection.

(H–K) (H) Capacitance (Cm), (I) membrane resistance (Rm), (J) membrane voltage threshold to action potential (Vm threshold), and (K) resting membrane potential

(Vm rest) of MN-LTs (green) and MN-LO1s (magenta). Boxplots show mean ± quartiles; whiskers minimum to maximum value. p > 0.05, t tests.

(L and M) The number of action potentials (L) and delay to first spike (M) as a function of the amplitude of current injection for MN-LTs (green) and MN-LO1s

(magenta). There is no statistically significant difference between the slopes of the linear regression lines in (L) (p > 0.05), and one curve fits best the non-linear fit

in (M). n = 9 for MN-LTs; n = 5 for MN-LO1. Also see Figure S1.
the premotor network show that motor neurons that are re-

cruited at different phases of the intrasegmental locomotor cy-

cle receive input from different sets of interneurons. This con-

trasts with functionally similar motor neurons, which share a

high degree of common input. Third, probing further into the

premotor network, we find that the motor pattern is not orches-

trated by differential excitatory inputs but by a GABAergic

inhibitory interneuron that specifically innervates the later-re-

cruited class of motor neurons and acts as an intrasegmental

delay line. Our results show that the segregation of input onto

distinct intrasegmental motor neurons facilitates the generation

of a widespread motor pattern through selective inhibition of a

motor pool. This might represent a general mechanism for
616 Neuron 91, 615–628, August 3, 2016
generating non-alternating phase relationships between intra-

segmental motor pools.

RESULTS

Motor Neurons Innervating Functionally Distinct
Muscles Have Similar Intrinsic Properties
Previous work established that locomotion in the Drosophila

larva is mediated by peristaltic waves of muscle contractions,

which, during forward locomotion, commence in posterior seg-

ments and propagate anteriorly from one segment to the next

(Crisp et al., 2008). Within each segment, the longitudinal mus-

cles, running parallel to the length of the animal, begin to contract



before transverse muscles, which are oriented perpendicular to

the main body axis (Heckscher et al., 2012; Figures 1A and

1B). This is followed by a period of co-contraction of bothmuscle

sets (Figures 1A and 1B). Therefore, this intrasegmental muscle

contraction sequence is unlike alternating left-right or flexor-

extensor activation, which has been a primary focus of studies

in vertebrate model systems (Kiehn, 2011). This sequence is a

signature of larval crawling in both first and third instar larvae

(Heckscher et al., 2012; Pulver et al., 2015). The contractions

represent highly coherent waveforms with contractions of trans-

verse muscles occurring with an �42� phase lag relative to lon-

gitudinal muscles during forward locomotion (Figure 1C). Impor-

tantly, the sequence is generated independently of sensory

feedback (Pulver et al., 2015), ruling out an essential role of the

musculature or proprioception. This motor pattern is therefore

similar in concept to the sequential recruitment of synergistic in-

trasegmental motor pools in vertebrates.

We set out to study its neuronal basis. One underlying

mechanism could be that the two sets of motor neurons

that innervate longitudinal versus transverse muscles have

different electrical properties, so that the same inputs would

elicit temporally distinct responses (Choi et al., 2004; Gabriel

et al., 2011; Schaefer et al., 2010; Wang and McLean, 2014).

In order to test whether the motor neurons innervating the

transverse muscles have intrinsic properties that delay their

firing relative to motor neurons innervating longitudinal muscles,

we performed whole-cell recordings in current-clamp and

measured membrane voltages in response to steps and ramps

of current injection in representative motor neurons (those inner-

vating muscles lateral transverse 1–4 [MN-LT1–MN-LT4] and

muscle lateral oblique 1 [MN-LO1], respectively; Figure 1). The

membrane properties of these neurons were similar, with no

statistical differences in membrane capacitance (Cm), input

resistance (Rm), action potential threshold, or resting membrane

potential (Figures 1H–1K; p > 0.05). Indeed, the number of

action potentials fired in response to different steps of current

injection was the same for the two representative groups (Fig-

ure 1L; p > 0.05). Crucially, there is no difference in the onset

of firing in response to depolarizing current injection, as quanti-

fied by the delay to first spike (Figure 1M; p > 0.05). During

rhythmic activity of the Drosophila larval motor network, the

firing properties of motor neurons can be modulated by the ac-

tion of the Na+/K+-ATPase in response to bursts of action po-

tentials (Pulver and Griffith, 2010). However, we found that

with rhythmic current injections the delay to first spike does

not deviate between the two groups of motor neurons (Figures

S1A and S1B, available online; p > 0.05). Furthermore, we could

find no evidence of plateau potentials or rebound depolariza-

tions in these cells (data not shown). Indeed, recording the ac-

tion potentials these cells fire as the result of endogenous rhyth-

mic excitatory input, we found no difference between the two

groups of motor neurons in the duration between the onset of

depolarization and the onset of firing (Figures S1C and S1D;

p > 0.05). Taken together, these electrophysiological data sug-

gest that the intrasegmental motor pattern is not mediated by

differences in the intrinsic excitable properties of the output mo-

tor neurons. The data therefore point to divergence in premotor

network input.
Functionally Distinct Motor Neurons Receive Divergent
Input
Recent studies in vertebrate systems have suggested that func-

tionally distinct motor units receive input from different comple-

ments of presynaptic neurons (Bagnall andMcLean, 2014; Goetz

et al., 2015; Stepien et al., 2010; Tripodi et al., 2011). Having es-

tablished that the intrasegmental motor sequence in the

Drosophila larva does not depend on the intrinsic properties of

the output neurons, we next investigated the organization of

the motor network presynaptic to representatives of the two

different groups of motor neurons. To this end, we took advan-

tage of an ssTEM volume of an entire first instar larval CNS,

which is currently being reconstructed in a community-based

effort (Fushiki et al., 2016; Heckscher et al., 2015; Ohyama

et al., 2015). Within this ssTEM volume, we reconstructed in

segment A1 MN-LT1–MN-LT4 as well as MN-LO1. These have

the same axonal trajectory but distinct territories of dendritic

arborization (Figure 2A). Next, we reconstructed the morphol-

ogies of all presynaptic partners of these motor neurons, a total

of 198 arbors from thoracic, abdominal, and subesophageal

segments (Figure S2; see Experimental Procedures for details).

Out of 198 arbors, 111 different cell types could be identified

based on morphology, providing 1,300 (92%) of the total of

1,409 input synapses onto the dendrites of both classes of motor

neurons. Comparison of the complements of interneurons that

are presynaptic to the two classes of motor neurons revealed a

considerable degree of divergence between them (Figures 2B–

2G). For example, MN-LT2 (representing a transverse-muscle

motor neuron unit) and MN-LO1 (representing a longitudinal

muscle-motor neuron unit) receive 82% of their input synapses

from different presynaptic partners. In contrast, operationally

similar motor neurons receive the vast majority of their input

from common partners (e.g., 82% between MN-LT1 and MN-

LT2). In order to determine the significance of this divergence

in presynaptic partners, we compared the relative importance

of the shared input between pairs of motor units: MN-LT1 and

MN-LT2 versus MN-LT2 and MN-LO1. We find that presynaptic

neurons that synapse onto two operationally similar motor neu-

rons provide similar numbers of synapses to both (Figure 2F;

Pearson’s r = 0.76; p < 0.0001). In contrast, where the same

presynaptic neuron forms synaptic connections with two opera-

tionally distinct motor neurons, there is no such correlation

(Figure 2G; p > 0.05). In other words, functionally distinct motor

neurons share few presynaptic partners; moreover, those that

are shared either make few synaptic connections to both, or

are more strongly connected to only one of them, further empha-

sizing the significance of the divergence of the presynaptic

network. This circuit architecture suggests that the characteristic

intrasegmental motor sequence could indeed be the result of the

organization of the premotor network.

The Contribution of Premotor Excitatory Drive to the
Motor Pattern
The distinct premotor circuits of the two classes of motor neu-

rons could reflect a functional segregation of excitatory input,

capable of delivering temporally distinct excitation. To test this

hypothesis, we probed the premotor network to find cell types

that could provide this excitation.
Neuron 91, 615–628, August 3, 2016 617



Figure 2. Functionally Distinct Motor Neurons Receive Divergent Input

(A) Dorsal (left) and posterior (right) views of the reconstructedmotor neurons in segment A1 (MN-LTs in green; MN-LO1s inmagenta), with efferents (arrowheads)

and dendrites (chevrons) indicated. Mesh represents outline of the nervous system; dashed line indicates midline.

(B) Dorsal (left) and posterior (right) views of the reconstructed interneurons presynaptic to MN-LTs (green, ‘‘preLT’’), MN-LO1s (magenta, ‘‘preLO1’’), and both

groups of motor neurons (gray, ‘‘preCommon’’). Scale bars in (A) and (B), 10 mm.

(C) Force-directed network diagram showing reconstructed motor neurons and all of their presynaptic interneurons. The number of synapses between nodes

determines the thickness of edges, which are color coded according to the identity of the postsynaptic node. In this graph, nodes similar in connectivity will be in

close proximity. Motor neurons on the left side of the graph are from the left hemisegment of A1; those on the right are from the right hemisegment.

(legend continued on next page)
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First, we identified GAL4 driver lines that allow visualization of

discrete sets of pre-motor interneurons (Li et al., 2014), as iden-

tified by ssTEM reconstructions. Next, we determined which of

these interneuron types stained positive for the biosynthetic

enzyme for the main excitatory neurotransmitter in this system,

choline acetyltransferase (Baines et al., 1999). Among this

subset we focused on those neurons that made more than 35

synaptic release sites onto the dendrites of the transverse-mus-

cle motor neurons MN-LT1–MN-LT4 (>2.75% of total number of

synaptic sites), but not onto MN-LO1. We thus identified three

contralaterally projecting interneuron types (Figures 3 and S3),

excitatory interneurons 1, 2, and 3 (eIN-1–eIN-3), derived from

lineage 18/NB2-4 (eIN-1) and lineage 01/NB1-2 (eIN-2, eIN-3),

respectively (Lacin and Truman, 2016). They are among the

most strongly connected premotor interneurons within this pre-

motor network, providing 14.6%, 13.5%, and 6.7% of total input

synapses onto the transverse-muscle motor neurons MN-LT1–

MN-LT4 per segment, respectively. Moreover, each of these

three excitatory interneurons also synapses onto other motor

neurons innervating other transverse muscles, such as MN-DT1.

To assess whether eIN-1–eIN-3 could play a role in setting the

intrasegmental phase relationship between MN-LO1 and MN-

LT1–MN-LT4 during larval crawling, we performed functional im-

aging of activity within these neurons. Specifically, we used a

well-characterized fictive crawling activity paradigm, in which

the nerve cord has been isolated from the periphery (Berni,

2015; Pulver et al., 2015; Experimental Procedures). Because

there is no clean GAL4 driver line for MN-LO1, we used the

segmentally repeated aCC motor neuron as a robust indicator

of fictive crawling phases and cycles (Figures 3G and S3; Pulver

et al., 2015). MN-aCC is readily identifiable using RRF-GAL4

(Fujioka et al., 2003), while MN-LO1 and the transverse-muscle

motor neurons MN-LT1–MN-LT4 selectively express GAL4 in

the B-H1-GAL4 line (Garces et al., 2006; Sato et al., 1999). Using

these reagents and paired whole-cell recording of their activity

during fictive crawling, we established that, consistent with the

fact that they both innervate longitudinal muscles, the MN-aCC

and MN-LO1 motor neurons are active in phase during fictive

locomotion (Figure S4).

We then measured fluorescence changes of the genetically

encoded calcium indicator GCaMP6f (Chen et al., 2013) selec-

tively expressed in a given eIN (see Experimental Procedures

for details on driver lines) and the phase reference marker,

MN-aCC. This experiment therefore allowed us to determine

whether eIN-1, eIN-2, and eIN-3 are recruited during locomotion

and to relate their activity to the activity pattern of the early re-

cruited MN-aCC.

We found that all three eINs show wave-like activity during

fictive locomotion (Figures 3G, 3H, and S3), with GCaMP6f

dynamics highly coherent with those of MN-aCC. Unexpect-

edly, eIN activity is closest in phase with the early recruited

MN-aCC located within the same segment (Figures 3I and

S3). Therefore, these results do not support the hypothesis of
(D and E) Overlap in Venn diagrams is proportionate to the number of shared presy

indicated for functionally similar (D) and distinct (E) motor neurons.

(F and G) Pairwise comparison of relative synaptic contributions of shared presyna

Figure S2.
sequential excitation generating the sequential intrasegmental

motor pattern.

In order to further probe the role of excitation in the intraseg-

mental motor pattern, we decided to investigate the excitatory

drive to the early recruited MN-LO1. This motor neuron receives

input from many different cell types (a total of 70 arbors,

providing a mean of 2.4 synapses each). We focused our efforts

on the three most strongly connected cell types, which we

named eIN-4–eIN-6. Collectively, eIN-4–eIN-6 provide 49 synap-

ses (28.9% of MN-LO1 input) and, staining positive for choline

acetyltransferase (Figure S4), are presumed excitatory. We char-

acterized the activity patterns of these neurons during fictive

locomotion. As before, we related the activity of eIN-4–eIN-6 to

the activity of the segmentally repeated MN-aCC motor neuron

by selectively expressing GCaMP6f both in a given eIN and in

the phase reference marker MN-aCC (see Experimental Proce-

dures for details on driver lines). We found that eIN-4–eIN-6 all

show wave-like activity during fictive locomotion (Figure S4)

and, similar to eIN-1–eIN-3, are highly coherent and closest in

phase with the MN-aCC in the segment they innervate (Fig-

ure S5). These results indicate that the main excitatory premotor

interneurons of both early recruited MN-LO1 and those of the

later recruited MN-LTs have temporally similar activity patterns,

in phase with MN-aCC. This strongly suggests that temporally

distinct excitatory drive is unlikely to underlie the sequential

motor pattern.

In order to further probe the role of the eINs in the generation

of the motor pattern, we performed optogenetic stimulation of

eIN-1–eIN-3, which are presynaptic to the MN-LTs. We selec-

tively expressed UAS-CsChrimson (Klapoetke et al., 2014) in

eIN-1–eIN-3, one cell type at a time, and assessed the effect

of stimulating these neurons by measuring contractions of

the transverse muscle LT2 and longitudinal muscle LO1 in a

novel semi-intact preparation that exhibits the characteristic in-

trasegmental motor sequence (see Experimental Procedures).

Acute, high-level stimulation (617 nm, 1.1 mW/mm2) of eIN-1,

eIN-2, or eIN-3 induces contraction of muscle LT2, but

not muscle LO1 (Figures 3J and S3), suggesting that these

neurons are indeed capable of driving the MN-LTs selectively

and efficiently. Interestingly, chronic, low-level stimulation

(617 nm, 0.01 mW/mm2) of any of these eINs caused muscle

LT2 to contract earlier than normal in the locomotor cycle,

thus reducing the phase offset between LT2 and LO1 contrac-

tions (Figures 3K, 3L, and S3) (p < 0.05, Hotelling paired test,

n R 5). This excitation level-dependent shift in the recruitment

of MN-LTs suggests that during the normal locomotion cycle, a

source of inhibition might selectively delay the recruitment of

the MN-LTs.

The Intrasegmental Motor Sequence Depends on
GABAergic or Glutamatergic Inhibition
In various other motor systems (Grillner and Jessell, 2009;

Kiehn, 2011), inhibitory inputs generate alternating sequences
naptic partners, with percentage of total input synapses these partners provide

ptic partners for functionally similar (F) and distinct (G) motor neurons. Also see
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Figure 3. eIN-1 Innervates Transverse Motor Neurons and Is Recruited in Phase with Longitudinal Output in the Same Segment
(A and B) Posterior views of ssTEM reconstruction of eIN-1 (A) and light microscopy image of R58F03 > MCFO (see Experimental Procedures) (B).

(C) Single optical slice of SS01970 > myrGFP (expressing in eIN-1) showing pronounced ChAT staining in neurites (arrows).

(D) Dorsal view of an eIN-1 innervating the contralateral MN-LTs.

(E) Electron micrograph showing the apposition of eIN-1 and two MN-LTs, with presynaptic density indicated (chevrons).

(legend continued on next page)
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of muscle activation. We reasoned that the observed segrega-

tion of input in our system may reflect differences in inhibition

that underlie the pattern of activation of the two classes of motor

neurons examined. We therefore performed muscle-imaging

experiments in our semi-intact preparation (Figure 4A; see

Experimental Procedures). We then bath-applied picrotoxin

(PTX, 10�6 M; Figure 4B) to block glutamate and GABA-gated

Cl�-channel-mediated inhibition (Liu and Wilson, 2013; Mauss

et al., 2014; Rohrbough and Broadie, 2002). Whereas in control

experiments the longitudinal and transverse muscle groups con-

tract in sequence, we found that application of PTX effectively

and selectively changes this motor pattern: while intersegmental

waves remain intact, the longitudinal and transverse muscle

groups within each segment now contract in synchrony (Figures

4C–4F; Hotelling paired test, p < 0.01, n = 5). This suggests that

the motor network provides a source of PTX-sensitive inhibition

that mediates the motor sequence.

A GABAergic Cell Type Presynaptic to One Class of
Motor Neurons Is Required for the Motor Pattern
We reasoned that the source of the inhibition that generates the

intrasegmental motor sequence likely resides within the network

that is presynaptic to the later firing, transverse-muscle motor

neurons. To test this hypothesis, we identified cells within the

extensive premotor network that (1) contain GABA neurotrans-

mitter, (2) exclusively innervate the transverse-muscle motor

neurons, (3) are recruited during locomotion, and (4) are function-

ally required for the intrasegmental motor sequence.

First, we determined which of the premotor cell types found in

our ssTEM reconstructions stained positive for the neurotrans-

mitter GABA, and then selected those that made more than 35

synaptic release sites exclusively onto the dendrites of the trans-

verse motor neurons (>2.75% of total number of synaptic sites;

same threshold as for eINs). We thus identified three contralater-

ally projecting interneuron types (Figure 5; data not shown for

inhibitory interneuron [iIN]-2 and iIN-3), iIN-1–iIN-3, which pro-

vide 2.8%, 15.1%, and 9.8% of total input synapses onto the

transverse-muscle motor neurons per segment, respectively.

Moreover, the majority of postsynaptic neurons of iIN-1–iIN-3

that could be identified are motor neurons with target muscles

of similar orientation as muscles LT1–LT4 (Figure 5F). These

three interneuron cell types therefore meet the first two selection

criteria.

Next, to determine which of these iINs are recruited during

locomotion, we performed functional imaging of neuronal activ-

ity as before. We found that only iIN-1, derived from abdominal
(F) eIN-1 is presynaptic to MN-DT1 (yellow), which innervates a muscle of simila

muscle (cyan); as well as the MN-LTs (green). Included here are all connections o

muscles.

(G and H) (G) Stills showing GCaMP6f activity in eIN-1 (blue dashed circles) and M

White arrow and dashed line in (G) indicate approximate front of peristaltic wave

(I) Coherency between eIN-1 and MN-aCC in segments A4 and A3.

(J) Acute high-intensity optogenetic stimulation (617 nm, 1.1 mW/mm2) of eIN-1

(K and L) (K) Low-level chronic stimulation of eIN-1 (617 nm, 0.01mW/mm2) cause

Gray lines in (L) indicate individual preparations; black line represents mean. Hot

n = 10 stimulations for (J), n = 5 animals for GCaMP imaging experiments, and n =

and (L). Scale bar, 5 mm (C), 10 mm (G). See also Figures S3–S5.
lineage 14/NB4-1 (Lacin and Truman, 2016), shows wave-like

activity during fictive locomotion (Figures 5G and 5H; data not

shown for iIN-2 and iIN-3). iIN-1 GCaMP6f activity is highly

coherent with that of MN-aCC, and is closest in phase to the

aCC motor neuron located within the same segment (Figure 5I).

Therefore, only iIN-1 fulfills all three criteria: it has a transmitter

complement and activity profile consistent with it having the

potential for introducing a delay in firing between longitudinal

and transverse-muscle motor neurons.

To determine whether the activity of iIN-1 is required to

generate the sequential intrasegmental motor pattern, we per-

formed muscle-imaging experiments in animals in which we

selectively inhibited the output of iIN-1 by expressing the hy-

perpolarizing potassium channel Kir2.1 (Baines et al., 2001).

We found that targeting the expression of UAS-Kir2.1 to iIN-1

using R83H09-GAL4 interferes with the motor pattern: with

each peristaltic wave, the intrasegmental sequence of muscle

contractions that is normally observed is changed, so that

now both muscle groups contract largely in synchrony (Figures

6A–6C; also see Figure S6; p = 0.003, n = 7). These results are

consistent with our observation that the excitatory drive to the

transverse-muscle motor neurons is in phase with activation of

the longitudinal motor pool. We noticed that while R83H09-

GAL4 expresses in iIN-1 in all abdominal segments, it also ex-

presses in other, as yet unidentified cell types in abdominal,

thoracic, and subesophageal segments and the brain (Fig-

ure 6D). We therefore repeated the experiment using a more

selective intersectional ‘‘split-GAL4’’ driver line, SS01411-

GAL4, which expresses exclusively in iIN-1, though in a smaller

number of abdominal segments (Figure 6D). The intrasegmental

motor pattern defects seen with SS01411-GAL4 targeted

expression of UAS-Kir2.1 were indistinguishable from those

seen with R83H09-GAL4 (Figure 6C; p = 0.004, n = 5). To

corroborate the outcome of these experiments, we interfered

with iIN-1 synaptic transmission in a different way, by targeting

expression of UAS-TeTxLC, which prevents evoked neuro-

transmitter release (Sweeney et al., 1995). This has the same

disruptive effect on the intrasegmental motor pattern as ex-

pressing Kir2.1 (Figure 6C; p = 0.0005, n = 6).

The data suggest that the activity of iIN-1 might act as a

delay line to the transverse-muscle motor neurons and that

this determines the intrasegmental motor pattern. If this is

indeed the case, then, we reasoned, experimentally elevated

levels of activity of iIN-1 should cause an enhanced phase shift

between muscle contractions of LT2 versus LO1 during fictive

crawling. To test this hypothesis, we optogenetically activated
r orientation as the MN-LTs; a motoneuron innervating an as yet unidentified

f more than five synapses. Muscle diagram indicates identities of known target

N-aCC (magenta dashed circles) as indicated in schematic; quantified in (H).

.

induces contraction specifically of transverse muscles.

s transverse muscles to contract earlier in the locomotor cycle; quantified in (L).

elling paired test, p < 0.05 for (L).

7 for (K) and (L). Data are represented as mean ± 95%CI in (I); mean ± SD in (J)

Neuron 91, 615–628, August 3, 2016 621



Figure 4. The Intrasegmental Motor Pattern Is Sensitive to PTX
(A–D) Muscle-imaging data showing contraction of muscles LT2 (green) and LO1 (magenta) during a single peristaltic wave before (A) and after (B) bath

application of 10�6 M PTX; quantified in (C) and (D). Control data are the same as in Figure 1. Scale bar in (B), 200 mm. Arrows in (A) and (B) indicate muscles

contracting.

(E) Coherency between muscles LT2 and LO1 before and after bath application of PTX in individual animals.

(F) Phase relationship between muscles LT2 and LO1 before and after bath application of PTX. Gray lines indicate individual preparations; black line represents

mean. p < 0.01, Hotelling paired test. n = 5.

Data are represented as mean ± 95% CI in (E); mean ± SD in (F).
iIN-1 using UAS-CsChrimson expressed in iIN-1 with R83H09-

GAL4 and assessed the effect on the motor pattern during

fictive crawling in our semi-intact preparation. Acute, high-level

stimulation of iIN-1 (617 nm, 1.1 mW/mm2) led to relaxation of
622 Neuron 91, 615–628, August 3, 2016
muscle LT2 while leaving muscle LO1 unaffected (Figure 6E).

Consistent with our hypothesis that iIN-1 acts as a delay line

to the transverse-muscle motor neurons, low-level stimulation

of iIN-1 (617 nm, 0.1 mW/mm2) caused an increase in the



Figure 5. iIN-1 Specifically Innervates Transverse Motor Neurons and Shows Wave-like Activity during Fictive Locomotion

(A and B) Posterior view of ssTEM reconstruction (A) and light microscopy data (B) of iIN-1.

(C) Immunohistochemical labeling of R83H09 > myrGFP showing pronounced GABA staining.

(D) Dorsal view of an iIN-1 innervating the contralateral cluster of MN-LTs.

(E) Electron micrograph showing the apposition of iIN-1 and an MN-LT.

(F) iIN-1 is presynaptic to other motor neurons innervating muscles of similar orientation as the MN-LTs. Cyan motor neurons innervate unknown muscles; gray

node indicates interneuron. Included in this diagram are all connections of more than five synapses. Muscle diagram indicates identity of known target muscles,

color coded according to the left panel.

(G and H) (G) Stills showing GCaMP6f activity of iIN-1 and aCC motor neurons as indicated in schematic; quantified in (H).

(I) Coherency between iIN-1 and aCC motor neurons in segments A5 and A6. Data are represented as mean ± 95% CI, n = 5.

Scale bar, 5 mm (C), 10 mm (G).
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Figure 6. The Output of iIN-1 Is Required to

Generate the Intrasegmental Motor Pattern

(A and B) Contraction of muscles LT2 (green) and

LO1 (magenta) in a +/UAS-Kir2.1 control animal (A)

and an R83H09 > Kir2.1 animal (A0), the coherency

between which is quantified in (B).

(C) Phase relation between muscles LT2 and LO1

for various genotypes tested. Pairwise Watson-

Williams test, p = 0.003, p = 0.004, and p = 0.0005

for R83H09 > Kir2.1, SS01411 > Kir2.1, and

SS01411 > TeTxLC, respectively (nR 5). Boxplots

show mean ± quartiles; whiskers minimum to

maximum value.

(D) Expression patterns of GAL4 drivers used in

this experiment, enlarged in (D0 ). Asterisks indicate
example cell bodies.

(E) Acute high-intensity optogenetic stimulation

(617 nm, 1.1 mW/mm2) of iIN-1 induces specific

relaxation of the transverse muscles. Mean ± SEM

of ten trials.

(F) Low-level chronic stimulation of iIN-1 (617 nm,

0.1 mW/mm2) causes transverse muscles to

contract later in the locomotor cycle. Mean ± SEM

of ten consecutive contractions of muscles LO1

and LT2 in the same animal (F) pre-stimulation and

(F0) during stimulation.

(G) The phase delay between muscle LO1 and

LT2 contractions is enhanced in response to

low-level chronic stimulation of eIN-1 (617 nm,

0.1 mW/mm2). Gray lines indicate individual pre-

parations ± SD; black line represents mean.

p < 0.05, Hotelling paired test, n = 7.

See also Figure S6.
phase shift between muscles LO1 and LT2 (Hotelling paired

test, p < 0.05, n = 7). Taken together, our results suggest

that the intrasegmental phase relationship between the longi-

tudinal and transverse motor units is set by the subset-specific

iIN-1. Moreover, iIN-1 seems to act as a delay line that

modulates the effects of coincidental excitation to both motor

pools.

DISCUSSION

The circuit mechanisms that generate movements have been

studied for many decades, in large part focusing on the alter-

nating contractions of antagonistic muscles such as flexors

and extensors (Büschges et al., 2011; Goulding, 2009; Kiehn,

2011; Miri et al., 2013). However, manymotor pools are recruited
624 Neuron 91, 615–628, August 3, 2016
sequentially, in largely overlapping pat-

terns of activity (Berkowitz and Stein,

1994; Hinckley et al., 2015; Machado

et al., 2015; Pratt et al., 1991). In this

study, we investigate the neural mecha-

nisms of such a pattern, focusing on an

intrasegmental sequence of muscle con-

tractions that is characteristic for larval

crawling. Working with the Drosophila

larva, we demonstrate that motor neurons

that are recruited at different phases
of the intrasegmental locomotor cycle receive largely divergent

input and that the activity of an identified inhibitory interneuron

is required for generating the phase delay.

Intrinsic Excitable Properties and the Recruitment of
Motor Neurons
The output of a neural network is shaped by the intrinsic proper-

ties of its constituent neurons. For instance, the biophysical

properties of different motor neuron populations in part deter-

mine their differential recruitment in the zebrafish spinal cord

(Gabriel et al., 2011; McLean et al., 2007). In theDrosophila larva,

a delay to action potential firing ismediated by aShal-encoded IA
current in the RP2 motor neuron (Choi et al., 2004; Schaefer

et al., 2010). Focusing on themotor neurons that are sequentially

recruited during larval crawling, we found no evidence of



differences in their electrical properties. Instead, we found that

the sequential intrasegmental recruitment is due to differences

in the synaptic input that these different motor units receive.

Segregation of Premotor Connectivity
For many sensory systems, axon terminals are arranged in the

CNS to form neural representations of sensory neuron modality

and topography (Fitzpatrick and Ulanovsky, 2014). This straight-

forward link between neuronal anatomy and function has been

less clear in motor systems. In the mouse spinal cord, the

dorsal-ventral segregation of motor pools pre-figures sensory-

motor connectivity (Sürmeli et al., 2011), and largely spatially

segregated sets of interneurons connect to antagonistic motor

neurons that innervate flexor and extensor muscles in the mouse

(Tripodi et al., 2011).

Here, we characterized with single-synapse resolution the

premotor circuitry of operationally different motor neurons in

the Drosophila larva by electron microscopy (EM)-based

reconstructions. This allowed us to establish that the myotopic

organization of motor neurons is accompanied by a similarly

segregated divergence of their presynaptic inputs: functionally

similar motor neurons share many of their presynaptic partners

(34/75 [45%] for MN-LT1 and MN-LT2), whereas functionally

distinct motor neurons share few (9/112 [8%] between MN-LT2

and MN-LO1). Moreover, functionally similar motor neurons

receive the majority of their synaptic input from shared presyn-

aptic partners (82% of synapses provided by 45% of all presyn-

aptic cells). In contrast, the few presynaptic partners that are

shared between operationally distinct motor neurons are gener-

ally connected more strongly to one, or weakly to both, type of

motor neuron.

As a note of caution, in our EM analysis, given previous evi-

dence, we assumed that synapse number positively correlates

with synapse strength. First, the number of synapses between

two cells in this system was found to positively correlate with

the responsiveness of the postsynaptic cell to presynaptic

stimulation (Ohyama et al., 2015). Second, at the larval neuro-

muscular junction the strength of the postsynaptic response

also correlates with synapse number (Budnik and Ruiz-Canada,

2006; Büschges et al., 2011; McLean and Dougherty, 2015).

Third, we found little variability in the size of pre- and postsyn-

aptic densities within the CNS of the Drosophila larva (M.F.Z.

and A.C., unpublished data), in marked contrast to synapses in

mammals, which can range in size over several orders of magni-

tude (Harris and Weinberg, 2012; Talpalar et al., 2011; Tripodi

et al., 2011). These strands of evidence suggest that the number

of synapses between central neurons likely correlates with the

physiological relevance of connections.

Divergent Input and the Generation of Different Motor
Patterns
It has been proposed that alternating muscle contractions are

generated by largely divergent sets of premotor neurons,

providing the antiphasic rhythmic drive through reciprocal inhib-

itory interactions (Grillner, 2003; Kiehn, 2011; Talpalar et al.,

2011). It has been unclear how more gradual, overlapping se-

quences of muscle contractions, which are common to most

movements, are generated (Bellardita and Kiehn, 2015; Berko-
witz and Stein, 1994; Hinckley et al., 2015; Machado et al.,

2015; Pratt et al., 1991). In the zebrafish, different groups of

motor neurons are incrementally recruited with increasing

swimming speeds by distinct sub-populations of V2a excitatory

interneurons (Ampatzis et al., 2014; Gabriel et al., 2011; McLean

et al., 2008). In the larval Drosophila motor network, we found

that sequentially recruited groups of motor neurons receive input

from different complements of interneurons. Unexpectedly, we

found that the sets of excitatory premotor interneurons that

innervate the early and late-acting motor pools are recruited in

phase. Instead, we found that the sequential motor pool recruit-

ment is generated by the GABAergic premotor interneuron iIN-1,

which selectively innervates the later recruited MN-LTs. Further-

more, chronic, low-level optogenetic stimulation of this inhibitory

neuron caused the MN-LTs to be recruited later in the locomotor

cycle, while low-level stimulation of the eINs presynaptic to

MN-LTs caused their earlier recruitment. Our data are compat-

ible with a model in which the balance between excitation and

inhibition shapes the phase delay, with the iIN-1 in effect acting

as a delay line for the later recruited transverse-muscle motor

neurons. An obvious functional implication of the segregated

and diversified architecture is an inherent capacity for generating

distinct motor patterns by differentially recruiting premotor ele-

ments, thereby mediating the ability to perform the diverse

movements underlying the animal’s behavioral repertoire. For

example, one could envisage how selective recruitment of

iIN-1 could mediate a switch from a behavior in which the longi-

tudinal and transverse muscles contract in sequence (e.g.,

crawling) to another in which they co-contract. In this light, it

will be interesting to see whether similar segregated sources of

inhibition mediate the generation of gradual sequences of

muscle contractions in other systems, such as those innervating

synergistic muscles in vertebrates (Bikoff et al., 2016; Goetz

et al., 2015; Laine et al., 2015; Tripodi et al., 2011).

Conclusions
Wehave identified a circuit motif embedded in themyotopicmap

that generates the sequential contraction of two muscle groups,

which is characteristic for crawling inDrosophila larvae. Our find-

ings on the segregated premotor circuitry are consistent with

reports from mouse and zebrafish (Bagnall and McLean, 2014;

Tripodi et al., 2011), suggesting that their last common ancestor

contained a modular motor system that evolved to support the

axial and limb networks that allow for the differential control of

muscles (Büschges et al., 2011). Similar circuit motifs may be

responsible for sequential motor patterns manifest in many

behaviors across the animal kingdom.

EXPERIMENTAL PROCEDURES

Animal Rearing and Fly Strains

All animals were raised at 25�C on standard cornmeal-based food, supple-

mented with all-trans retinal (1 mM) in the case of optogenetic stimulation

experiments. First instar larvae were used in the ssTEM data; feeding third

instar larvae were used for all other experiments. We used the following geno-

types: w-;+;B-H1-GAL4 (Sato et al., 1999) crossed to UAS-mCD8::GFP

animals for electrophysiology; w-;UAS-GCaMP6f; RRF-GAL4 (Chen et al.,

2013; Fujioka et al., 2003) crossed to w-;R83H09-GAL4 or w-;R09A07-GAL4

from the Rubin collection, or the split-GAL4 drivers (Luan et al., 2006; Pfeiffer
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et al., 2010) SS01956-GAL4, SS01404-GAL4, SS01379-GAL4, SS02056-

GAL4, SS01411-GAL4, and SS01970-GAL4, based on the Rubin collection

for GCaMP6f imaging; the muscle marker line w-;G203;ZCL2144 (Crisp

et al., 2008) for Figure 4; w-;UAS-Kir2.1 (Baines et al., 2001) and w-;UAS-

TeTxLC (Sweeney et al., 1995) to inhibit neural activity; w-;UAS-CsChrimson::

mVenus (Klapoetke et al., 2014) crossed to the appropriate GAL4 driver lines

for optogenetic stimulation. The ‘‘FLP-out’’ approach for stochastic single-

cell labeling (MCFO) has been described in detail elsewhere (Nern et al., 2015).

Reconstruction of Premotor Circuits Using ssTEM Data

ssTEM data were analyzed as described in Ohyama et al. (2015). Motor neu-

rons were identified and reconstructed within the ssTEM volume based on

their axonal projection patterns (all MN-LTs and MN-LO1 assessed here

project through segmental nerve a [SNa]; Landgraf et al., 1997), cell body

position, and dendritic morphologies (M.L. and J. Lupton, unpublished data).

All synapses onto these motor neurons were annotated and used to identify

and reconstruct all presynaptic partners.

Electrophysiology

All electrophysiology experiments were performed as described in Marley and

Baines (2011). The fluorescent dye Alexa Fluor 568 Hydrazide (100 mM,

ThermoFisher Scientific) was added to the intracellular solution to aid identifi-

cation of patched neurons. Data were collected with a multi-clamp 700B

amplifier and digitized at 10 kHz using a Digidata 1550 (both Molecular

Devices). Recordings were analyzed using custom scripts in Spike2 (Cam-

bridge Electronic Design).

Immunohistochemistry

Immunohistochemistry was performed as described in Li et al. (2014). We

dissected out larval CNSs as described before (Zwart et al., 2013), and fixed

them in 4% paraformaldehyde for 30 min at room temperature to stain for

GABAergic interneurons, or in Bouin’s fixative for 5 min at room temperature

to stain for cholinergic interneurons. Antibodies used were polyclonal

anti-GABA antibody (Sigma-Aldrich; 1:200) or monoclonal ChAT-4B1 antibody

(DSHB Hybridoma Product ChAT4B1, deposited to the DSHB by Salvaterra,

P.M.; 1:100). Images were taken with a 710 laser-scanning confocal micro-

scope (Zeiss) using a 203/0.8 NA objective and contrast adjusted using Fiji

software (Schindelin et al., 2012).

Calcium Imaging

For all calcium imaging experiments, we used a 488 nm diode laser (Thorlabs)

in conjunction with a spinning disk confocal imager (Crest X-Light) mounted on

an Olympus BX51WI microscope. We collected images at 5–10 Hz with an

Andor iXon Ultra 897 EMCCD camera (Andor Technologies) using Winfluor

software (John Dempster, University of Strathclyde), which was also used to

drive the piezo controller (Physik Instrumente) moving the objective (Olympus,

20X/1.0 NA) for generating z stacks. Custom MATLAB scripts were used to

measure and extract changes in fluorescence in regions of interest. Optical

signals were then visualized and analyzed in Fiji, MATLAB, and Spike2.

Live Imaging of Muscle Activity

We developed a semi-intact preparation to record contractions of muscles

with reduced sensory feedback. Third instar larvae were dissected as in Pulver

and Griffith (2010), but two to three segmental nerve roots were left intact. We

loosely pinned the preparation to a Sylgard-covered dish. Individual muscle

contractionswithin innervated segments were then imaged using a 103 objec-

tive on an Olympus BX51WI microscope. The aperture of the field diaphragm

was reduced to ensure the nervous system was not illuminated. The posterior

and anterior attachment points of LO1 (also known as m5), as well as the

medial and lateral attachment points of LT2 (also known as m22) were tracked

using the manual tracking plugin (Fiji). Muscle length was calculated and used

as ameasure ofmuscle activation. In a subset of experiments, we applied 10�6

M PTX (Sigma-Aldrich) to preparations by manually exchanging the bath

solution with a Pasteur pipette. For optogenetic stimulation experiments,

617 nm light provided by an OptoLED light source (Cairn) was delivered

onto the preparation through the objective.
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Coherence Analysis of Periodic Activity

To determine the phase relationship between periodic signals in calcium-im-

aging and muscle-imaging experiments, we used direct multi-taper estimates

of power spectra and coherency (Cacciatore et al., 1999; Percival andWalden,

1993; Pulver et al., 2015; Taylor et al., 2003). In all experiments, we first

performed a fast Fourier transform of the reference waveform (either the

LO1 muscle or MN-aCC) in order to determine its spectral composition. We

then determined the frequency at which the reference signal had the greatest

power (the ‘‘dominant’’ frequency) and compared the coherence and phase

relationship at that particular frequency between the reference signal and

the other muscles or neurons, as appropriate. This analysis can efficiently

compare the phase relationships between relatively complex waveforms,

while attaching less weight to the peaks of activity, which are generally less

informative in this context. Estimates were calculated with a time-bandwidth

product of five and seven tapers. All spectral calculations were carried out

using custom scripts written in MATLAB, now freely available online (https://

github.com/JaneliaSciComp/Groundswell).

Statistics

Throughout the text, values are given in mean ± SE unless otherwise stated.

We tested data for normality using the Shapiro-Wilk test, with a = 0.05.

When data were normally distributed, t tests were used to test for significant

differences. Otherwise, two-sample Wilcoxon tests were used. Linear regres-

sion, non-linear fitting of curves, and correlation analyses were performed in

Prism (GraphPad Software); angular statistical analyses of results obtained

with coherency analysis were carried out in Oriana. p < 0.05 was considered

statistically significant in all experiments.
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