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Abstract

Isoflavones and their related flavonoid compounds exert antiviral properties in vitro and in vivo against a wide range of viruses. Genistein
is, by far, the most studied soy isoflavone in this regard, and it has been shown to inhibit the infectivity of enveloped or nonenveloped
viruses, as well as single-stranded or double-stranded RNA or DNA viruses. At concentrations ranging from physiological to
supraphysiological (3.7–370 μM), flavonoids, including genistein, have been shown to reduce the infectivity of a variety of viruses affecting
humans and animals, including adenovirus, herpes simplex virus, human immunodeficiency virus, porcine reproductive and respiratory
syndrome virus, and rotavirus. Although the biological properties of the flavonoids are well studied, the mechanisms of action underlying
their antiviral properties have not been fully elucidated. Current results suggest a combination of effects on both the virus and the host cell.
Isoflavones have been reported to affect virus binding, entry, replication, viral protein translation and formation of certain virus envelope
glycoprotein complexes. Isoflavones also affect a variety of host cell signaling processes, including induction of gene transcription factors
and secretion of cytokines. The efficacy of isoflavones and related flavonoids in virus infectivity in in vitro bioassays is dependent on the
dose, frequency of administration and combination of isoflavones used. Despite promising in vitro results, there is lack of data confirming the
in vivo efficacy of soy isoflavones. Thus, investigations using appropriate in vivo virus infectivity models to examine pharmacological and
especially physiological doses of flavonoids are warranted.
© 2009 Elsevier Inc. All rights reserved.
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1. Introduction

There is great interest in the potential of soy and soy foods
to prevent or treat chronic diseases, including cardiovascular
disorders, osteoporosis and cancer. These potential benefits
are mostly attributed to dietary isoflavones, a subclass of
flavonoids that possess numerous biological properties and
are most commonly found in legumes, with the highest
amounts found in soybeans [1]. This review will focus on the
potential therapeutic benefits of isoflavones present in soy
and soy foods on acute viral infections, a topic that previously
has received little attention. In order to understand the
potential mechanisms of action of isoflavones against viral
infections, the metabolism and pharmacokinetics of soy
isoflavones, the differences in soy and isoflavones consump-
⁎ Corresponding author. 2808 VMBSB, 2001 South Lincoln Avenue,
Urbana, IL 61801, USA.
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tion and bioavailability in animal and human populations,
and the in vitro and in vivo models used to examine the
biological properties of isoflavones will be briefly described.
After a review of the evidence for antiviral actions of
isoflavones, the possible molecular mechanisms underlying
the antiviral action of soy isoflavones, based both on direct
experimental results and on inferences from the known
biological properties of flavonoids and isoflavones, will be
presented.

2. Metabolism and pharmacokinetics of soy isoflavones

The predominant isoflavones found in soybeans are the
β-glycoside forms of genistein, daidzein and glycitein,
which are not bioavailable [2–4]. Upon ingestion, small
intestinal brushborder membrane enzymes and bacterial β-
glycosidases remove the glycoside group, after which the
isoflavones are readily absorbed and become bioactive.

http://dx.doi.org/10.1016/j.jnutbio.2009.04.004
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Some genistein (aglycone: 2.6%; glycoside: 2.9%) remains
in the intestinal tissue, where it may influence cell
proliferation and virus or bacterial infections [5–8]. Most
of the absorbed isoflavones are glucuronidated or undergo
sulfation at the gut level before entering the enterohepatic
circulation [9–11]. In adult humans, aglycone forms attain
maximal plasma concentrations at 4–8 h following a meal
before being eliminated through the bile and urine within 16
h of ingestion [2]. If not absorbed along the small intestine,
isoflavones are further metabolized by commensal bacteria
in the colon into equol, p-ethyl phenol, O-desmethylango-
lensin or other metabolites through dehydroxylation, reduc-
tion, C-ring cleavage and demethylation [12,13].
3. In vitro and in vivo models of the isoflavone
mechanisms of action

The evidence for the potential beneficial health effects of
isoflavones is based on in vitro (a wide range of cell types),
in vivo (rodents, swine and primates) and human epidemio-
logical studies. The extrapolation of study results to humans
is often challenging within the experimental model used due
to important metabolic phenotype differences observed
between species [14]. Recently, it has been shown that a
woman's serum isoflavone profiles closely resemble those of
a female swine, whereas a female monkey's profiles are
more similar to those of laboratory rats after dietary intake of
soy protein isolates. In addition, humans are non-equol or
poor-equol producers, significantly differing from both
monkeys and rats [14]. Interpretation of results is further
complicated by differences in isoflavone consumption
among different human populations.
4. Soy and isoflavone consumption in
different populations

The mean isoflavone consumption by adults is higher in
Asian countries (11–47 mg/day) than in Western countries
(1–2 mg/day). However, infants fed soy formula (4 months'
duration) in Western countries ingest much higher concen-
trations of isoflavones (22–45 mg/day) than adults [15].
These differences in isoflavone consumption are reflected by
higher plasma concentrations in soy-formula-fed infants than
in adults in Asian or Western countries. The mean plasma
concentrations of isoflavones are 1640 nM for genistein and
1160 nM for daidzein for infants fed soy formula; 492.7 nM
for genistein and 282.5 nM for daidzein in Japanese men;
and 33.2 nM for genistein and 17.9 nM for daidzein in
British men [15]. Although humans are able to absorb
isoflavones from a range of soy-rich foods, the food matrix,
as well as the form in which isoflavones are consumed
(aglycone or glycoside), influences the pharmacokinetic
profiles of isoflavones [2]. Overall, genistein appears to have
a bioavailability higher than that of daidzein [13]. Thus,
when attempting to extrapolate results from in vitro or
animal models to possible effects in humans, it is critical to
be aware of the differences in isoflavone consumption,
absorption and effective serum and tissue concentrations
among species, including different human populations.

5. General mechanisms of action of isoflavones

To better understand the potential mechanisms of the
antiviral action of isoflavones, it is necessary to first
understand their general biological functions. Isoflavones
affect cellular functions through a number of mechanisms,
including acting as estrogen receptor (ER) effectors,
inhibition of protein tyrosine kinases (PTKs) and inhibition
of topoisomerase II and others [16,17]. Isoflavones can exert
both estrogenic and antiestrogenic properties depending on
dosage, circulating endogenous estrogen concentration and
target tissue [16]. In addition, isoflavones preferentially bind
to ERβ, whereas classic estrogens exert their effects via both
ERα and ERβ [18]. Accordingly, isoflavones may act as
natural selective ER modulators but exhibit potency that is at
least 1000-fold lower than that of estrogen [18,19]. Although
this is a very important property of isoflavones, the
estrogenic or antiestrogenic effects are unlikely to be
involved in the modulation of viral infections at the intestinal
or systemic level.

There is evidence that soy isoflavones induce antioxidant
and phase II enzymes [20]. Quinine reductase, glutathione-S-
transferase and UDP-glucuronosyltransferase activities were
increased in various tissues of rats fed a high-isoflavone diet
(0.81 mg/g) for 2 weeks [20]. In addition, genistein (0.1 mg/
kg) injected subcutaneously in rats produced a mild anti-
inflammatory effect in a model of chronic parasitic ileitis, as
demonstrated by reduction in nitric oxide production,
gametocyte infiltration and improved intestinal mucosal
architecture [21]. The mechanism(s) by which genistein
reduced inflammatory response may be linked to an
inhibition of both transcription nuclear factor-κB (NF-κB)
activation and chemokine-8 secretion [18,22,23] via a
decrease in either caspase-3 or PTK activity [24,25]. This
anti-inflammatory property of isoflavones may be critical in
host responses to viral infection.

Genistein also acts as a PTK inhibitor through a variety of
mechanisms, including competing with adenosine tripho-
sphate (ATP) at the tyrosine kinase ATP-binding site of
epidermal growth factor receptors [26,27], inhibiting c-src
[28,29] (a PTK involved in mitogen-activated protein kinase
(MAPK)] or activating p38 MAPK at the transforming
growth factor-β receptor level [30]. Isoflavone-mediated
inhibition of PTK has also been demonstrated in studies
investigating tumor necrosis factor (TNF), Toll-like receptor
and growth factor signaling cascades [18,31]. Isoflavone
PTK-inhibitory activity has been identified as a mechanism
of action in reducing the infectivity of a number of viruses.
Isoflavones can also bind to nuclear receptors (such as, but
not limited to, ER-related receptor, peroxisome proliferator-
activated receptor and aryl hydrocarbon receptor), interfere
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with Ca2+ transport and/or Na+/K+ ATPases, alter lipid and
lipoprotein profiles, block cell cycle in G2/M transition and
inhibit Akt kinase, topoisomerase II and cAMP-phospho-
diesterase-4 enzymes. These effects have been reported to
occur over a wide range of genistein concentrations ranging
from less than 1 μM to greater than 0.5 mM [6,18,31,32].

6. Antiviral activity of isoflavones

Flavonoids and isoflavones possess antiviral properties
against a wide range of viruses under both in vitro and in
vivo conditions (Table 1). Flavonoids, including genistein,
reduced the infectivity of nonenveloped viruses, including
the following: single-stranded RNA poliovirus, coxsackie
virus and echovirus from the Picornaviridae family
[44,50,55–58]; double-stranded RNA viruses such as
rotavirus [59] and double-stranded DNA viruses including
adenovirus [33,34]; and John Cunningham (JC) virus [48]
and simian virus 40 (SV40) [54] from the Adenoviridae and
Polyomaviridae (JC and SV40) families (Table 1). Flavo-
noids also inhibited the infectivity of a variety of enveloped
viruses such as single-stranded RNA viruses in the
Reoviridae, Arenaviridae, Flaviviridae, Coronaviridae, Ret-
Table 1
Viruses inhibited by isoflavones or its related compounds

Inhibitory compound Inhibito

Adenovirus Genestin 5–20 μ
Quercetin 0.2 mM

Arenaviruses Genestin 100 μM
BHV-1 Genestin 25 μM
Bovine viral
diarrhea virus

Genistein 185–37

Coronavirus Luteolin 11 μMa

Quercetin 83 μMa

EBV Genistein 30–50
HSV-1 Genestin 5–25 μ

Torvanol Ab 21 μM
Kaempferol 0.4 mM
5,6,7-Trimethoxyflavonec 10–30

HSV-2 Genestin 50 μM
Human CMV Genestin 50 μM

5,6,7-Trimethoxyflavonec 26 μM
HHV-8 Genestin 100–20
HIV Genestin 3.7–37
JC virus Irisolidone 7.5 μM
MoMLV Genestin 62–92
Poliovirus 5,6,7-Trimethoxyflavonec 0.1 mM

3-Methylkaempferold b10 μM
3(2H)-Isoflavene 20 μM

PRRS virus Isoflavones mixe 15–37
Respiratory
syncytial virus

Genestin 25–50

Rotavirus Genestin 33 μM
SV40 Genestin 200 μM

a IC50.
b From Solanum torvum.
c From Callicarpa japonica.
d From Psiadia dentate.
e Reported as genestin equivalent.
roviridae [both human immunodeficiency virus (HIV) and
Moloney murine leukemia virus (MoMLV)], Arteriviridae
and Paramyxoviridae families, including arenavirus [35],
bovine viral diarrhea virus [37], coronavirus [38], HIV [47],
MoMLV [49], porcine reproductive and respiratory syn-
drome (PRRS) virus [51] and respiratory syncytial virus
[52]; and double-stranded DNA viruses, including bovine
herpes virus (BHV) [36], Epstein–Barr virus (EBV) [39],
herpes simplex virus (HSV) 1 [34,40,41,44] and HSV-2 [41],
herpes human virus (HHV) 8 [46] and human cytomegalo-
virus (CMV) [45,60] from the Herpesviridae family.

Although flavonoids and isoflavones possess antiviral
activity against a variety of viruses, this property must be
considered in the context of the flavonoid concentrations or
doses used. The amounts of genistein necessary to exert
antiviral activities span a range from physiological to
supraphysiological doses (3.7–370 μM; Table 1). Although
genistein is found at approximately 33 μM in soy-based
infant formula, which provides 6–11 mg/kg/day genistein
to infants [59,61], the concentrations in intracellular
compartments and blood are estimated to be much lower.
In a recent review by Klein and King [31], concerns about
the definition of a ‘physiological’ dose for genistein were
ry dose Model References

M SW480 cells [33]
a BCC-1/KMC cells [34]

Vero cells [35]
MDBK cells [36]

0 μM MDBK cells [37]

Vero cells [38]
Vero cells [38]

μM Ramos cells [39]
M Vero cells [40,41]

Vero cells [42]
Vero cells [43]

μMa Vero and MRC-5 cells [44]
Vero cells [41]
HEL 299 cells [45]
Vero and MRC-5 cells [44]

0 μM HFF cells [46]
μM Primary macrophages [47]
a Primary astrocytes [48]
μM XC cells [49]

Vero and MRC-5 cells [44]
Vero cells [50]
HeLa R19 cells [55]

mg/kg/day Pigs (in vivo) [51]
μM Vero cells [52]

MA-104 [59]
CV-1 cells [53,54]
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raised. According to their analysis, a low concentration of
genistein should be defined as less than or equal to 5 μM,
which corresponds to the serum or plasma levels of human
adults following ingestion of soy foods or an isoflavone
supplement (1–5 μM). Considering this definition, very
few studies have examined the effects of physiological
doses of isoflavones. Nevertheless, if one considers
isoflavones and genistein as nutraceuticals or pharmaceu-
ticals, then studies examining even the highest isoflavone
doses are still relevant, assuming possible toxicity effects
are also examined.

Flavonoids and isoflavones other than genistein have also
been tested for their potential antiviral properties. These
include flavanols (quercetin, kaempferol and 3-methylk-
aempferol), flavones (luteolin and 5,6,7-trimethoxyflavone),
isoflavans [3(2H)-isoflavenes] and isoflavones (torvanol A
and irisolidone). Such compounds are found in fruits,
vegetables, plants and trees. Quercetin inhibited adenovirus
and coronavirus infections at 0.2 mM and 83 μM,
respectively [34,38]. Kaempferol and 3-methylkaempferol
reduced HSV-1 and poliovirus at 0.4 mM and b10 μM,
respectively [43,50]. Luteolin was effective against corona-
virus at 11 μM, whereas 5,6,7-trimethoxyflavone inhibited
HSV-1, HIV and poliovirus at doses ranging from 10 μM to
0.1 mM [38,44]. The isoflavones torvanol A and irisolidone
were effective against HSV-1 and JC virus, respectively, at
concentrations ranging between 7.5 and 11 μM [42,48]. In
addition, seven flavonoids isolated from Rhus succedanea
and Garcinia multiflora (from the Anacardiaceae and
Clusiaceae families, respectively) inhibited influenza A and
influenza B viruses, HSV-1, HSV-2 and measles in vitro
[62]. Finally, 3(2H)-isoflavene inhibited poliovirus type 2
infection at 20 μM [55,56,63]. In a recent study, the order of
Virus entry 

Inhibition of  tyrosine kinase ac
(adenovirus [33]; HHV-8 [46]; MoMLV

Binding inhibition 
(HSV-1 [44]; Rotavirus [59])

Virus binding 

Virus ass

Virus replication TNF-α secretion

Glycoprote
complex

H
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t c
el
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Induction of transcription factors

Viral p
synth
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Inhibition of TNF-αα secretion (HIV [47])

Fig. 1. Antiviral mechanisms of action of isoflavones and related compounds. This
lines and italicized script). The flavonoid-mediated inhibition of virus infectivity and
have been shown to affect virus binding, entry and replication, viral protein synthes
induction of transcription factors. Each mechanism of action is followed by the n
potency of flavonoids in inhibiting the neuraminidase
activity of influenza virus was found to be as follows:
auronesNflavon(ol)esNisoflavonesNflavanon(ol)es and fla-
van(ol)es. Optimal inhibitory activity required the presence
of 4′-OH, 7-OH, C4O and C2C3 functional groups, but was
markedly reduced by the presence of a glycosyl moiety [64].

7. Possible mechanisms of the antiviral activity
of isoflavone

The mechanism(s) whereby isoflavones and related
flavonoids inhibit virus infectivity has yet to be fully
elucidated. Given the variety of reported effects of iso-
flavones on numerous viruses and their target host cells,
antiviral activity is likely due to a combination of several
effects modulating both the viral particle and the host cell. A
review of the current literature indicated that isoflavones
affected virus binding to cell membranes, entry into the cell,
replication and virus protein translation within the host cell,
and formation of certain glycoprotein complexes of the virus
envelope (Fig. 1). At the host cell level, isoflavones can affect
the induction of certain transcription factors and secretion of
cytokines; most of these effects have been attributed to a
reduction in PTK activity [33,49,53,54]. Inhibition of PTK
activity decreased adenovirus, HHV-8, MoMLV and SV40
viral entry in host cells. Proposed mechanisms included a
reorganization of the cytoskeleton, which may include
blocking of virus-induced actin changes and recruitment of
dynamin II to membrane-bound virus particles [33,49,53,54].
Inhibition of PTK activity at later stages of virus infection
resulted in decreased phosphorylation of HSV-1 polypeptides
[40] and BHV-1 glycoprotein E [36], which in turn decreased
overall virus replication. In the presence of 50 μM genistein,
tivity (p130CAS, focal adhesion kinase, cell surface receptor)
[49]; SV40 [53,54])

Inhibition tyrosine phosphorylation
of glycoprotein E (BHV-1 [36])embly

in 

Inhibition viral gene expression
and protein function 
(CVM [45]; JC virus [48]; poliovirus [50])

rotein 
esis 

Inhibition phosphorylation

     

-2 and CREB phosphorylation (arenavirus [35])
kB induction (CMV [45])

 
of viral polypeptides (HSV1 [40])

diagram summarizes the various steps in virus–host cell interactions (dotted
propagation is represented in solid lines. Isoflavones and related compounds
is and assembly of the glycoprotein complex, as well as TNF-α secretion and
ame of the virus(es) and the corresponding reference(s).
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the reduction in HSV-1 viral replication was not due to a
reduction in viral adsorption into the cells, but rather due to a
significant reduction in the phosphorylation of tyrosine
residues in specific viral polypeptides ICP-6, ICP-19 and
ICP-26 at a late stage of HSV-1 infection, without apparent
cytotoxicity to Vero cells [40].

Genistein-mediated inhibition of protein phosphorylation
also reduced the activation of the activator of Fe transcription
2 (ATF-2), cyclic AMP response element-binding protein
(CREB) and NF-κB transcription factors in arenavirus and
CMV-infected host cells, leading to a reduction in viral
infectivity [35,45]. Using a model of arenavirus infection in
Vero cells, pretreatment of cells with genistein at 100 μM for
1 h prior to infection decreased virus titers by 90% in a
plaque assay and reduced virus nucleoprotein and glycopro-
tein expressions without altering cellular transferring
receptor levels compared to untreated Vero cells [35].
When genistein (100 μM) was added at 0 h, 30 min and 8
h postinfection, it induced a 66.5%, 59.6% and 33.6%
reduction in virus titers, respectively, via inhibition of
transcription factor ATF-2 and CREB phosphorylation and
via stimulation of pERK phosphorylation.

Isoflavones also inhibit virus infectivity by mechanisms
independent of the reduction in PTK activity. Reduction in
virus binding to host cells has been demonstrated in HSV-1
and rotavirus infections [44,59], whereas a reduction in virus
gene expression has been shown in CMV, JC virus and
poliovirus, through a possible inhibition of transcriptional
factor binding to the viral promoter [45,48,50] or an
alteration of virus protein function [45]. Although the
binding of poliovirus type 2 to its cellular receptor was
unaffected by 3(2H)-isoflavene, virus uncoating was effi-
ciently blocked by the isoflavene ring interacting with the
VP1 virus capsid protein [55,56]. In a model of human CMV
infection, genistein blocked early and late viral gene
expressions and protein synthesis [45]. Genistein also
inhibited human CMV DNA replication by approximately
95% at 72 h postinfection [45]. Unlike its well-known
property, genistein did not prevent viral entry by targeting
PTK activity in this model [45]. In addition, viral cell cycle
perturbation and induction of transcription factor NF-κB
were absent in cells treated with genistein compared to
untreated cells [45]. At the host cell level, isoflavones have
also been shown to inhibit TNF-α secretion following
infection [47,65].

Importantly, genistein concentration has been shown to
decrease rapidly in a culture medium used in BHV-1
infectivity studies [45]. Genistein was metabolized faster
by cells infected with BHV-1 than by noninfected cells.
Accordingly, sequential doses of genistein (25 μM) were
more effective than a single dose in decreasing the BHV-1
titer at 24 h postinfection [45]. Therefore, it is possible that
isoflavones may be more effective as antiviral agents if they
are ingested more frequently at low doses rather than
administered as a single high dose. In a different study,
kaempferol and its derivatives were more efficient inhibitors
of HSV-1 infection when used in combination, suggesting a
possible synergy in the antiviral properties of isoflavones
and related flavonoids [43]. Thus, when investigating the
antiviral properties of isoflavone or flavonoid mixtures, the
dose, frequency and combination of the flavonoids used
should be carefully considered.

To our knowledge, there was only one study that
examined the antiviral properties of genistein in vivo.
Dietary genistein (11–37.3 mg/kg body weight/day) pro-
vided for 19 days prior to inoculation with PRRS virus
enhanced systemic serum virus elimination and body growth
in postweaning pigs [51]. Virus concentrations in serum
decreased, whereas interferon activity and body weight
increased proportionally with dietary genistein concentra-
tion. It should be noted that pigs were exposed to higher
doses of genistein (15.2–37.3 mg/kg body weight/day
genistein equivalent) than were infants fed soy-based
formula (6–11 mg/kg/day [61]). Using the same model,
Greiner et al. [66] demonstrated that daidzein did not alter
virus elimination from serum or affect the immune response
of the host in virally challenged pigs. Thus, genistein, but not
daidzein, was demonstrated as a potential antiviral com-
pound that can modulate the inflammatory and immune
responses of a challenged host. Since genistein, but not
daidzein, inhibits PTK activity, the authors speculated that
PTK inhibition was the primary mechanism of action of
genistein against PRRS virus.

8. Conclusions

According to the current literature, isoflavones and
related flavonoids exert antiviral activity against a wide
range of viruses. However, caution needs to be taken when
interpreting currently available data. The majority of these
studies were conducted in vitro using a single host cell line
and supraphysiological doses of isoflavones that may not be
obtained from target cellular compartments in vivo. Differ-
ences in the reported in vivo and in vitro virus-inhibitory
potencies of various isoflavones also add confusion regard-
ing their efficacy as antiviral agents. Although several
studies have reported on the use of a selective index (defined
as the ratio of isoflavone concentration causing 50% cell
toxicity to isoflavone concentration causing 50% inhibition
of virus infectivity), the use of such a normalizing index has
not been widely adopted. Finally, there are very few studies
addressing the in vivo efficacy of isoflavones as antiviral
agents. Clearly, comprehensive investigations using appro-
priate in vivo virus infectivity models and physiological
doses of flavonoids are needed to validate the wide range of
effects observed in vitro. To avoid future confusion when
comparing the results of different studies, researchers should
provide a detailed and unambiguous description of the
flavonoids (e.g., glycoside vs. aglycone), concentrations and
dietary formulations used in their studies, as well as a
discussion of the physiological significance of their results
relative to the range of dietary or pharmacological doses of
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soy and isoflavones typically ingested and/or tissue
concentrations achieved [67].
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