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Abstract: In late 2019, a global pandemic occurred. The causative agent was identified as a member
of the Coronaviridae family, called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In
this study, we present an analysis on the substances identified in the human metabolome capable
of binding the active site of the SARS-CoV-2 main protease (Mpro). The substances present in the
human metabolome have both endogenous and exogenous origins. The aim of this research was to
find molecules whose biochemical and toxicological profile was known that could be the starting
point for the development of antiviral therapies. Our analysis revealed numerous metabolites—
including xenobiotics—that bind this protease, which are essential to the lifecycle of the virus. Among
these substances, silybin, a flavolignan compound and the main active component of silymarin, is
particularly noteworthy. Silymarin is a standardized extract of milk thistle, Silybum marianum, and
has been shown to exhibit antioxidant, hepatoprotective, antineoplastic, and antiviral activities. Our
results—obtained in silico and in vitro—prove that silybin and silymarin, respectively, are able to
inhibit Mpro, representing a possible food-derived natural compound that is useful as a therapeutic
strategy against COVID-19.

Keywords: coronavirus; COVID-19; SARS-CoV-2; Mpro; 3C-like protease; 3CL protease; protease
inhibitors; metabolome; silybin; silymarin

1. Introduction

In 2019, an outbreak was reported in China [1], rapidly resulting in a pandemic named
coronavirus disease 2019 (COVID-19) [2]. Severe acute respiratory syndrome coronavirus
2 (SARS-CoV-2) has been identified as the causative agent of this pathology, a new beta-
coronavirus [3], which is, thus, added to other coronaviruses (CoVs) implicated in different
infectious diseases in humans, namely strains 229E, NL63, OC43, HKU1, Middle East
Respiratory Syndrome (MERS-CoV), and severe acute respiratory syndrome coronavirus
(SARS-CoV). Although vaccines are now available, the large-scale immunization of the
entire world population will require a considerable amount of time. Furthermore, the
actual emergence of new variants of SARS-CoV-2 [4–9], as well as the possibility that other
CoVs may emerge as pathogens in the future, make the search for drugs/remedies against
this virus important.

CoVs have large, single-stranded, positive-sense RNA genomes [10–12], particu-
larly encoding the spike (S), membrane (M), envelop (E), and nucleocapsid (N) proteins.
Two-thirds of the RNA genome is covered by ORF1a and ORF1b, which produce two
polyproteins, PP1a and PP1ab, and two cysteine proteases involved in the specific cuts
of these polyproteins [13–18]. The first is a papain-like protease (PLpro), which performs
three cleavage reactions, while the other CoV protease is a chymotrypsin-like enzyme,
known as main protease (Mpro) or 3C-like protease (3CLpro) because of its similarity to
the picornavirus 3C protease. Mpro is responsible for 11 cuts. Mpro recognition sequence
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is X-(L/F/M)-Q | (G/A/S)-X (X: any amino acid; |: cleavage site). These proteases are
therefore excellent targets for the development of a specific antiviral therapy, and specific
inhibitors of Mpro are in the early stages of clinical development [19,20]. Development of
new drugs generally requires several years and high costs. Hence, the need to identify
already approved drugs effective against SARS-CoV-2. Drug repurposing efforts have led
to a large number of candidates using different approaches [21], which are interesting, not
only for the research of drugs of immediate use, but also for identifying new avenues for
future developments. We therefore used as a starting point for this analysis the molecules,
both of endogenous and xenobiotic origin, identified in the human metabolome. In this
work, we describe the results of our approach for the identification of molecules able to
bind the active site of Mpro and, therefore, act as inhibitors of this enzyme.

Among these substances, silybin is particularly noteworthy. Silybin, also known
as flavobin, belongs to a class of organic compounds known as flavonolignans, non-
conventional lignans derived from flavonoids. They are characterized by a p-dioxin ring
substituted at one carbon atom by a C3C6 (phenylpropan) group and fused to the B-ring
of the 2-phenylchromene moiety [22]. Silybin is the main active component of silymarin,
extracted from milk thistle, Silybum marianum [23]. This food-derived natural compound
contains approximately 70% to 80% of the silymarin flavonolignans (silymarin complex)
and approximately 20% to 30% of a chemically undefined fraction, comprising polymeric
and oxidized polyphenolic compounds known as polyphenolic fraction (PP). Besides
silybin (C25H22O10, PubChem CID: 31553), which is a mixture of diastereomers A and
B in, approximately, a 1:1 proportion, considerable amounts of other flavonolignans are
present in the silymarin complex, namely isosilybin, dehydrosilybin, silychristin, silydianin,
and a few flavonoids, mainly taxifolin [23].

Silymarin is already well known for its hepatoprotective functions and a growing
body of evidences suggests that this compound has inhibitory activity against numerous
viruses, belonging to different viral families [24].

However, there is very poor evidence about an antiviral effect of silymarin and its
derivatives on the Coronaviridae family [25].

In this study, we aimed to identify some molecules of various origins, present in the
human metabolome, which could be effective against the SARS-CoV-2 Mpro. Through
a series of in silico and in vitro analyses, we have identified silymarin, as a promising
natural, food-derived antiviral molecule that can inhibit the aforementioned enzyme
activity, representing a possible starting point for the development of effective antiviral
therapies.

2. Results
2.1. The Docking Target

The Mpro structure is remarkably similar in all CoVs [13]. The enzyme is a homodimer,
and each monomer consists of two domains: I (residues 8-101 in 6LU7 [26]) and II (residues
102-184). The α-helical domain (domain III) containing residues 201-303 is involved in the
dimerization. The active site of Mpro comprises a catalytic dyad consisting of the conserved
residues, His-41 and Cys-145, which operate a general base catalysis mechanism [27]. An
interesting feature from a biochemical point of view is that a water molecule at 3.2–3.3 Å
from the N-єof His-41 is visible in all of the structures of this enzyme reported in the Protein
Data Bank (PDB); thus, suggesting that a catalytic triad is at work in SARS-CoV-2 Mpro [28].
A detailed analysis of these structures has already been reported elsewhere and will not
be repeated in detail here [28]. We recall only that the Mpro structures are grouped in a
single cluster from which some outliers detach along the first principal component. Based
on these analyses, we chose 5RET [29] as representative of the centroid of the distribution.
After ligand removal from the active site, this structure was exploited to obtain the receptor
for docking, as described in the Materials and Methods section (Figure 1).
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Figure 1. Molecular docking of silybin at the active site of severe acute respiratory syndrome
coronavirus 2 (SARS-COV-2) Mpro. The protein structure corresponds to the PDB entry 5RET.

2.2. The Ligand Database

The strategy used in this work—to identify substances with a known toxicological
profile to be used as drug candidates in the therapy of COVID-19—was to evaluate the
ability of different substances present in the human metabolome to inhibit SARS-CoV-2
Mpro. We implemented this strategy because endogenous metabolites and a large number
of xenobiotics are present in the human metabolome. We first obtained all of the molecules
that met the criteria for drug-like molecules present in the HMDB (see Materials and
Methods section). Among these criteria, the molecular weight was particularly important,
which had to be between 250 and 1000 Da. This was based on the empirical observation
that most substances with pharmacological activity fall in this molecular weight range. The
HMBD entries considered at this stage are reported in the file HMDB_drug_like_subset.csv
(see Supplementary data). Using the SMILES codes of these substances, we searched the
ZINC database for metabolites, for which it was possible to obtain an adequate pdbqt file for
molecular docking. It should be noted that, in some cases, the research on ZINC carried out
in this way does not exactly return the molecule reported in HMDB, particularly if different
isomers of the molecule are present. In any case, these are closely related molecules and
expected in the human metabolome. Our final dataset included 995 ZINC entries (see the
zinc_id.csv file in Supplementary data) on which subsequent analyses were performed.
Docking was carried out on the 5RET structure of the Mpro. The results of this analysis are
reported in the supplementary.csv file. The observed binding affinities of these substances
to Mpro range from −4.3 to −9.3 kcal mol−1. Many of these are actually poorly studied
from a pharmacological point of view or even not purchasable. Substances with best
scores in the in silico set up are reported in Figure 2. Based on the docking analysis,
the substance with the highest binding affinity to the active site of Mpro is isorheagenine
(ZINC253387561, HMDB0029360), with a calculated binding affinity of −9.3 kcal mol−1.
This is an alkaloid identified in Papaver rhoeas, but of which there are no pharmacological
and toxicological studies [30]. Very similar in structure to isorheagenine is the compound
n-methyl-14-o-demethylepiporphyroxine (ZINC100772908, HMDB0030171), which shows
a binding affinity equal to −8.9/−8.8 kcal mol−1, but also for this compound, there are
no pharmacological and toxicological data in the literature. Likewise, there are no such
studies on physalin N (HMDB0039080), an atypical steroid described in plants of the genus
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Physalis. Several stereoisomers of this substance are reported in ZINC, but only some of
these precomputed structural files for molecular docking are available (ZINC100782941,
ZINC100782938, ZINC100782935, ZINC96273223). The best result was obtained with
ZINC100782935, for which a pose with a binding affinity of −9.2 kcal mol−1 was observed,
while with the other stereoisomers, poses were obtained with binding affinity values
between −8.1 and −8.9 kcal mol−1. Due to the lack of information in the literature on
its toxicity and pharmacological action, this compound was not considered further in
this work.
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Figure 2. Structures of the topmost metabolites able to bind the Mpro active site. These compounds
are isorheagenine (a), n-methyl-14-o-demethylepiporphyroxine (b), physalin N (c), and silybin (d).

A very interesting compound, among the best candidates in the metabolome as
potential inhibitors of Mpro, is ZINC2033588, one of the stereoisomers obtained from the
query on ZINC using the SMILES code of HMDB0030583, whose common name is silybin.
This compound exhibits a binding affinity for the Mpro active site of −8.9 kcal mol−1.
What makes this compound particularly interesting, on which the subsequent analysis
has focused (see below), is that it is a well-known and widely used compound, belonging
to the flavonolignan family, and is the main active component of the aforementioned
silymarin. As this compound was further analyzed in vitro (see below), the stability of the
complex obtained by molecular docking was analyzed by a molecular dynamics analysis
(see Methods). As shown in Figure 3, after equilibration and reaching a steady state (judged
by the protein’s root-mean-square deviation (RMSD), the complex is stable on the binding
site on a nanosecond timescale, with a distance between the cysteine mass centers of the
active site and that of the ligand equal to 8.4 ± 0.7 Å (means ± sd).

Finally, our in silico analyses revealed a large number of high affinity compounds,
including rubroskyrin, cepagenin, and a number of compounds conjugated with glucuronic
acid (4-hydroxyphenytoin glucuronide, kaempferol 3-glucuronide, 11-oxo-androsterone
glucuronide), which have not been further evaluated, because toxic, not described from a
pharmacological point of view, or were not available on the market.
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Figure 3. RMSD of the Mpro linked to silybin. The SARS-CoV2 protease was subjected to molecular
dynamics in a water box with periodic boundary conditions, as described in the Methods section, to
evaluate the stability of the protease-silybin (ZINC2033588) complex. On the right in the figure, the
conformations of the protease–ligand complex at time zero (start of the simulation after minimization
and equilibration, structure at the top right) and at 1.6 ns (structure at the bottom right) are shown.
The protease is reported as the orange surface and silybin as the van der Waals structure.

2.3. Effect of Silymarin on SARS-CoV-2 Mpro Activity

The efficacy of silymarin in inhibiting the SARS-CoV-2 Mpro was tested by in vitro
assays to validate the evidences acquired in silico for silybin, the main component of
silymarin. These analyses were performed using the purified enzyme as described in the
Materials and Methods section. The enzymatic kinetic was evaluated at concentrations of
enzyme and substrate, such as to have linear kinetics (zero-order kinetics). The measure-
ments of the enzymatic V0 at various concentrations of silymarin (expressed as silybin A +
silybin B, considering their w/w fraction in silymarin, as reported in [23]), were assessed
at least in triplicate. Figure 4 shows an example of the traces obtained in an experimental
session. The residual activity of the inhibited enzyme by silymarin was calculated as the
ratio between the V0 of the enzyme and the V0 of the latter in the absence of silymarin.
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Black, green, red, and yellow dots represent control, 100 µM taxifolin, 95.6 µM silybin A + silybin B,
and 100 µM GC376, respectively. Reported traces are the average of three experiments.

We also tested the single separate effect of taxifolin, a flavonolignan present in the
silymarin complex, as shown in Figure 4, but it does not seem to exercise any significant
inhibitory effect on the Mpro, as shown by the residual enzyme activity (86%), compared
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to the control Mpro activity in the absence of any substances. We also performed our
experiments in the presence of 1 mM dithiothreitol (DTT). We observed that the V0 of the
enzyme in the presence (and the absence) of DTT was 3.58 A.U. min−1 (S.E.M. ± 0.09)
and 4.35 A.U. min−1 (S.E.M. ± 0.12), respectively. Moreover, the silymarin inhibitory
action decreases in the presence of 1 mM DTT and the residual activity is around 53.9%
(S.E.M. ± 0.9) (data not shown). In the absence of DTT, the residual Mpro activity is around
27.7% at 100 µM of silymarin (S.E.M. ± 1.9), with respect to the control. To date, GC376,
an experimental veterinary drug (IC50 equal to 0.42 µM) is the best term of comparison
that can be used in evaluating the Mpro inhibition activity of SARS-CoV-2, so this drug
represents the positive control in our experimental sessions.

Using the data obtained in the experimental DTT free conditions, the IC50 of the sily-
marin was calculated. The estimation of the IC50 obtained by considering a linear function
in the semi-logarithmic graph is equal to 47.11 mg L−1, as shown in Figure 5. This value,
considering the calculated mean content of silybin A and silybin B in the standardized sily-
marin extract, as reported in [23], is equal to 46.88 µM. This value, in order of micromolar
concentration, is really interesting, and indicates that silymarin can be considered one of
the most effective Mpro inhibitors among the potential natural food-derived compounds
capable of inhibiting SARS-CoV-2 (compare the trace shown in Figure 4, obtained at almost
the same concentration value of 100 µM GC376).

Molecules 2021, 26, x FOR PEER REVIEW 6 of 11 
 

 

We also tested the single separate effect of taxifolin, a flavonolignan present in the 
silymarin complex, as shown in Figure 4, but it does not seem to exercise any significant 
inhibitory effect on the Mpro, as shown by the residual enzyme activity (86%), compared 
to the control Mpro activity in the absence of any substances. We also performed our exper-
iments in the presence of 1 mM dithiothreitol (DTT). We observed that the V0 of the en-
zyme in the presence (and the absence) of DTT was 3.58 A.U. min−1 (S.E.M. ± 0.09) and 
4.35 A.U. min−1 (S.E.M. ± 0.12), respectively. Moreover, the silymarin inhibitory action de-
creases in the presence of 1 mM DTT and the residual activity is around 53.9% (S.E.M. ± 
0.9) (data not shown). In the absence of DTT, the residual Mpro activity is around 27.7% at 
100 µM of silymarin (S.E.M. ± 1.9), with respect to the control. To date, GC376, an experi-
mental veterinary drug (IC50 equal to 0.42 µM) is the best term of comparison that can be 
used in evaluating the Mpro inhibition activity of SARS-CoV-2, so this drug represents the 
positive control in our experimental sessions. 

Using the data obtained in the experimental DTT free conditions, the IC50 of the si-
lymarin was calculated. The estimation of the IC50 obtained by considering a linear func-
tion in the semi-logarithmic graph is equal to 47.11 mg L−1, as shown in Figure 5. This 
value, considering the calculated mean content of silybin A and silybin B in the standard-
ized silymarin extract, as reported in [23], is equal to 46.88 µM. This value, in order of 
micromolar concentration, is really interesting, and indicates that silymarin can be con-
sidered one of the most effective Mpro inhibitors among the potential natural food-derived 
compounds capable of inhibiting SARS-CoV-2 (compare the trace shown in Figure 4, ob-
tained at almost the same concentration value of 100 µM GC376). 

 
Figure 5. Inhibition of Mpro by silymarin. Circles represent the mean of at least three independent 
replicates. 

3. Discussion 
The xenobiotics can be either drugs or substances deriving from their transformation 

and conjugation by the detoxification systems, and substances of natural origin, particu-
larly secondary metabolites of vegetable origin. These can result from the ingestion of food 
or from the deliberate intake of particular preparations (i.e., herbal products). Although 
these substances are very often present in minimal quantities in the analyzed metabo-
lomes, nevertheless their pharmacological characteristics, and their toxicity, have been ex-
tensively described in many cases. It is therefore an innovative strategy, although similar 
in some respects to traditional “drug repurposing”, to investigate their effects on SARS-
CoV-2 Mpro. Moreover, although this is only a hypothesis at this stage, it is possible that, 
at least in part, the considerable individual variability in the clinical outcomes of SARS-
CoV-2 infections may be directly attributable to individual metabolome differences. 

Figure 5. Inhibition of Mpro by silymarin. Circles represent the mean of at least three indepen-
dent replicates.

3. Discussion

The xenobiotics can be either drugs or substances deriving from their transformation
and conjugation by the detoxification systems, and substances of natural origin, particularly
secondary metabolites of vegetable origin. These can result from the ingestion of food
or from the deliberate intake of particular preparations (i.e., herbal products). Although
these substances are very often present in minimal quantities in the analyzed metabolomes,
nevertheless their pharmacological characteristics, and their toxicity, have been extensively
described in many cases. It is therefore an innovative strategy, although similar in some
respects to traditional “drug repurposing”, to investigate their effects on SARS-CoV-2 Mpro.
Moreover, although this is only a hypothesis at this stage, it is possible that, at least in part,
the considerable individual variability in the clinical outcomes of SARS-CoV-2 infections
may be directly attributable to individual metabolome differences.

Although the main target of this analysis was the search for xenobiotic substances
contained in the human metabolome, some endogenous metabolites deserve a separate
mention that could be interesting to analyze in future studies. We particularly remember
dTDP-4-dehydro-6-deoxy-L-mannose and NADPH, the reduced form of the nicotinamide
adenine dinucleotide phosphate. Both metabolites show a significant interaction in silico
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with the active site of Mpro, with a binding energy of −8.5 and −8.6 kcal mol−1, respectively,
as reported in the supplementary.csv file.

According to our results, in a previous in silico study the authors showed that several
selected structures, such as NAD-NADH or NAD-like derivatives, present the best fit in
the SARS CoV-2 Mpro cavity, suggesting a pivotal role of these molecules in the modulation
of SARS CoV-2 infection in case of chronic oxidative stress at a cellular level [31]. Moreover,
biliverdin was significant in silico affinity for the Mpro active site, with a binding energy of
−8.4 kcal mol−1.

In recent years (2020, in particular), several studies have focused on the research of natu-
ral food-derived compounds exhibiting antiviral activities both in silico and in vitro [32–34].
Among these substances, flavonoids are particularly noteworthy [35–37]. One of the first
papers exploring the antiviral effects of flavonoids on coronaviruses was conducted in
1990 [38]. Here, the authors showed that quercetin, at a concentration value of 60 µg/mL,
reduced infectivity of human and bovine coronaviruses, OC43, and NCDCV by 50%.
Quercetin may be considered a promising candidate for further preclinical studies as its
ability to influence the thermal stability of SARS-CoV-2 Mpro, interact with SARS-CoV-2
Mpro, and bind to its active site has recently been demonstrated [39]. Based on the results
obtained in silico, our group decided to test, by a series of in vitro experiments, the effect of
a natural compound known as silymarin on SARS-CoV-2 Mpro. Silymarin exerts a remark-
able inhibitory action, as the EC50 observed by our research group is in the micromolar
range. In addition, an interesting parameter is the residual activity of the Mpro because
of its very low value. We also analyzed the potential effect of taxifolin, a component
of the silymarin complex. Docking has shown that taxifolin is not an excellent protease
ligand (calculated binding energy −7.7 kcal mol−1) and this was further confirmed by the
experimental analysis (see Figure 4). These data confirm our hypothesis that the active
component of silymarin is silybin.

The choice of using the silymarin complex and not silybin (investigated in silico) is
because it is more readily accessible to clinicians and patients, because it is commercially
available in the form of supplements containing 51–78% w/w of silymarin.

However, a study conducted using computational and experimental approaches has
delineated the ability of silybin to target the virus replication machinery by targeting
RdRp/nsp12, a central component of a multi-subunit RNA-synthesis complex [25]. Sily-
marin, and its derivative silybin, present another interesting property as reactive oxygen
species (ROS) scavengers and modulators of glutathione levels in various organs [40]. Thus,
despite our analysis showed that the silymarin inhibitory action decreases in the presence
of DTT, its efficacy may not be reduced in cells or tissues containing high concentrations
of glutathione.

Finally, pharmacokinetic studies [41] have shown that silymarin is absorbed by the
oral route and distributes into the alimentary tract. It is subject to enterohepatic circulation,
ensuring that low doses of intake could be sufficient. Acute, subacute, and chronic toxicity is
very low. Silymarin can also be consumed in pregnancy because it is devoid of embryotoxic
potential [41]. Moreover, silymarin is safe at therapeutic doses and is well tolerated at high
doses [42]. For these reasons, we hypothesize that it can be used not only as a therapeutic
strategy, but also as a preventive measure against SARS-CoV-2 infection, because of a
possible maintenance of its circulating levels. Surely, to confirm this hypothesis, future
clinical trials are needed.

In conclusion, our study proves that silymarin, as a natural food-derived compound,
whose pharmacological, toxicological, and therapeutic profiles are known, can be consid-
ered a promising and safe therapeutic strategy against COVID-19. Obviously, these data
obtained in silico and in vitro should be confirmed by further in vivo studies, to set the
optimal dosages, and assess the efficacy of this compound in inhibiting SARS-CoV-2 Mpro

in humans.
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4. Materials and Methods
4.1. In Silico Analyses

The human metabolome is the complete collection of molecules present in the human
body, including amino acids, peptides, lipids, nucleic acids, organic acids, carbohydrates,
biogenic amines, minerals, vitamins, food additives, drugs, cosmetics, contaminants, pol-
lutants, and any chemical that humans assume or metabolize, or come into contact with.
We used the Human Metabolome Database (HMDB; https://hmdb.ca/ (accessed on 28
February 2021)) to get the list of human metabolites to be used for analysis [22,43–45]. We
restricted the search to molecules with molecular weight (M.W.) between 250 and 1000 Da
for which a structure file was available. Further considerations, essentially based on the
rule of five, were made for the selection of the molecules to be analyzed [46]. SMILES
codes [47] of these molecules have been used in ZINC 15 to obtain files in pdbqt format [48].
Further data on the selected molecules were obtained from PubChem [49]. The struc-
tural analysis of Mpro was conducted, essentially as previously described [26,50–52] in a
VMD (version 1.9.3) [53] environment. Atomic coordinates of the SARS-CoV-2 Mpro were
obtained from the PDB [54] entry 5RET [29]. Molecular docking was performed using
the AutoDock Vina software (version 1.1.2 linux_x86) [55]; pdbqt files were obtained the
same software or by the Open Babel toolbox (version 2.3.2) [56]. Docking analyses were
performed on the 5RET structure [29]. The protein target pdbqt files were obtained by
adding hydrogen atoms and charges were assigned using the Gasteiger method, using
AutoDock Tools (version 1.5.6) [57]. Docking boxes were centered on the sulfur atom of
Cys-145. The box dimensions were (28 × 32 × 34) Å.

To test the stability of the Mpro-ligand complex [58,59], molecular dynamics of the
complex has been performed using NAMD [60], in a water box with periodic boundary
conditions essentially as described [61]. The parameterization of the ligand was carried out
by means of the CHARMM-GUI [62–64].

4.2. In Vitro Analyses

Enzymatic assays were performed essentially as described in our previous work [65].
Briefly, we used the purified SARS-CoV-2 Mpro Untagged purchased from BPS Bioscience
(cat. no. 100823-1) (San Diego, CA, United State) at a final concentration value of 0.5 ng/µL
in the reaction buffer supplied by the manufacturer (BPS Bioscience; Cat. No. 79956).
Silymarin (Cat. No. HY-N7073) and taxifolin (cat. no. HY-N0136) were purchased
from MedChemExpress (MCE) (Monmouth Junction, NJ 08852, USA). Experiments were
performed at room temperature in a Tecan microplate reader using an internally quenched
fluorogenic FRET substrate (DABCYL-KTSAVLQSGFRKME-EDANS) (BPS Bioscience; Cat.
No. 79952-1) as substrate at a concentration value of 40 µM. For this peptide, a Km of
17 µM and a Kcat of 1.9 s−1 on the Mpro have been reported. The experimental veterinary
drug GC376 [19,20] (BPS Bioscience; Cat. No. 78013) was used at a concentration value of
100 µM as a positive control. The latter is capable of inhibiting SARS-CoV-2 Mpro with an
IC50 of approximately 0.42 µM. The assays were carried out in the reaction buffer supplied
by the manufacturer, in the presence of 0.1 µM of DTT derived from the storage solution of
the enzyme (DTT free condition) or in the presence of 1 mM of DTT.

Supplementary Materials: The following are available online. Table S1: The metabolites data set
and binding energies on 5RET.
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