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Abstract
Background: Based	on	the	known	relationship	between	the	human	emotion	and	stand-
ard surface electrocardiogram (ECG), we explored the relationship between features 
extracted from standard ECG recorded during relaxation and seven personality traits 
(Honesty/humility,	 Emotionality,	 eXtraversion,	 Agreeableness,	 Conscientiousness,	
Openness, and Disintegration) by using the machine learning (ML) approach which 
learns from the ECG- based features and predicts the appropriate personality trait by 
adopting an automated software algorithm.
Methods: A	 total	 of	 71	 healthy	 university	 students	 participated	 in	 the	 study.	 For	
quantification of 62 ECG- based parameters (heart rate variability, as well as temporal 
and amplitude- based parameters) for each ECG record, we used computation proce-
dures	together	with	publicly	available	data	and	code.	Among	62	parameters,	34	were	
segregated into separate features according to their diagnostic relevance in clinical 
practice. To examine the feature influence on personality trait classification and to 
perform classification, we used random forest ML algorithm.
Results: Classification accuracy when clinically relevant ECG features were em-
ployed	was	high	for	Disintegration	(81.3%)	and	Honesty/humility	(75.0%)	and	mod-
erate	 to	high	 for	Openness	 (73.3%)	and	Conscientiousness	 (70%),	while	 it	was	 low	
for	Agreeableness	(56.3%),	eXtraversion	(47.1%),	and	Emotionality	(43.8%).	When	all	
calculated features were used, the classification accuracies were the same or lower, 
except	 for	 the	 eXtraversion	 (52.9%).	 Correlation	 analysis	 for	 selected	 features	 is	
presented.
Conclusions: Results indicate that clinically relevant features might be applicable for 
personality	traits	prediction,	although	no	remarkable	differences	were	found	among	
selected groups of parameters. Physiological associations of established relationships 
should be further explored.
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1  |  INTRODUCTION

Electrocardiography (ECG) is a non- invasive clinical technique for 
monitoring electrical heart activity in cardiovascular diagnostics. 
Recently, the rich collection of non- traditional applications of ECG- 
based parameters emerged despite partial or incomplete compre-
hension	of	their	relevance	(Chen,	2018).

In this study, we explored the relationship between ECG- based 
parameters and personality traits, that is, stable patterns of emo-
tion, motivation, cognition, and behavior (DeYoung, 2015). The 
most influential, contemporary models of personality postulate the 
existence	of	five	(McCrae	et	al.,	2005),	six	(HEXACO,	Ashton	et	al.,	
2004), or seven broad traits (recently proposed by some authors, 
such	 as	 (Ashton	 &	 Lee,	 2020;	 Knezevic	 et	 al.,	 2017))	 subsuming	
many narrower ones in the lower level of hierarchy. These traits 
are found to be universal in humans (McCrae et al., 2005) and sub-
human	 species	 (Gosling	&	 John,	 1999),	 longitudinally	 stable,	with	
about	40%	of	their	variability	heritable	(Vukasović	&	Bratko,	2015).	
Available	evidence	indicates	that	personality	traits	have	profound	
relationships	 with	 peripheral	 physiology.	 A	 modular	 influence	 of	
brain structures implicated in personality traits, such as orbitof-
rontal and insular cortex, amygdala, hippocampal formation, and 
hypothalamus	 (Deckersbach	 et	 al.,	 2006;	Depue	&	Collins,	 1999;	
Koelsch	et	al.,	2007;	Panksepp,	1998),	seems	to	be	responsible	for	
these relationships. In addition, data show connections between 
personality traits and peripheral organs and tissues through the au-
tonomic, endocrine, and immune systems (Cloninger, 2000; Depue 
&	Collins,	1999;	Irwin,	2008).	Therefore,	due	to	the	well-	known	and	
established influence of the autonomic nervous system on ECG, 
finding the connection between ECG signal and personality traits 
seems promising.

Available	evidence	showed	that	heart	rate	decreases	and	heart	
rate	 variability	 (HRV)	 increases	with	 Extraversion	 (Brouwer	 et	 al.,	
2013),	 Neuroticism	 correlates	 with	 QT	 interval	 (Minoretti	 et	 al.,	
2006),	and	Agreeableness	correlates	with	P,	QRS,	and	T	amplitude	
(Koelsch	et	al.,	2012).	Typically,	the	relationship	between	personality	
traits and physiological measures is investigated descriptively, that 
is,	 using	 correlations	 (Koelsch	 et	 al.,	 2007)	 or	 by	 trying	 to	predict	
cardiac output with scores on personality questionnaires.

We	used	the	supervised	machine	learning	(ML)	approach	to	ex-
amine this relationship. ML is a computer algorithm that automati-
cally assigns traits to the input set of ECG- based features by going 
through the training and testing phase. The training phase is used 
for constructing an optimal model that learns from the available 
ECG features and corresponding traits, while the testing phase is 
used to evaluate ML performance. Here, we adopted random forest 
(RF) ML algorithm for trait classification and feature selection as it 
achieved high prediction accuracy in similar ECG- based investiga-
tions	(Dissanayake	et	al.,	2019;	Melillo	et	al.,	2015)	and	it	is	suitable	
for processing a large number of variables with complex interactions 
(Breiman, 2001; Strobl et al., 2009).

Random forest ML was applied on ECG- based features with 
proven clinical efficacy in diagnostics, that is, clinically relevant 

features	 (Electrophysiology,	 1996;	 Wagner	 et	 al.,	 2008)	 and	 on	
other parameters due to their attractive and practical characteristic 
as they are calculated from the local ECG extremes being more ro-
bust	to	noise	than	standard	clinically	relevant	parameters	(Arteaga-	
Falconi	et	al.,	2016;	Cabra	et	al.,	2018)	and	have	proven	efficacy	in	
previous	studies	(Cabra	et	al.,	2018;	Israel	et	al.,	2005;	Sansone	et	al.,	
2013; Shen et al., 2010).

1.1  | Aim of the study

We	 test	 a	 novel	 approach	 for	 extracting	 ECG-	based	 features	 re-
lated to personality traits with RF ML algorithm applied on 62 
ECG- based parameters and investigate perceptible changes within 
intervals of parameters in healthy individuals, to detect the pos-
sible relationships between ECG and individual differences in 
personality	 traits.	 An	 exploratory	 analysis	 of	 ECG-	based	 feature	
selection is presented.

2  | METHODS AND MATERIALS

Electrocardiogram	 data	 analyzed	 in	 this	 study	 were	 recorded	 for	
another project aiming to investigate emotions and affects by the 
means	of	physiological	measurements	(Bjegojević	et	al.,	2020).	We	
used baseline recording of 120- s long ECG segment recorded in sit-
ting position before the emotion induction to avoid subjects’ emo-
tion influence.

2.1  |  Study sample

The sample consisted of 71 university students, average age 
20.38	years	(SD =	2.96),	78.8%	female.	Exclusion	criteria	were	pre-
vious cardio- vascular disorders. The study has been approved by 
the Institutional Review Board of the Department of Psychology, 
University	of	Belgrade	No.	2018-	19.	Respondents	signed	informed	
consents	in	accordance	with	the	Declaration	of	Helsinki.

2.2  | Assessment of personality traits

The	HEXACO	Personality	Inventory-	Revised	HEXACO	PI-	R	(Lee	&	
Ashton,	2018)	contains	100	 items	with	a	5-	point	Likert-	type	scale	
ranging from 1 (strongly disagree) to 5 (strongly agree). It assesses 
six personality domains: Honesty/humility, Emotionality, eXtraver-
sion,	 Agreeableness,	 Conscientiousness,	 and	 Openness.	We	 used	
the	Serbian	form	of	HEXACO	PI-	R	(Međedović	et	al.,	2019).	Domain	
scores were calculated as the average scores on all items mapping 
specific domains (ranging from 1 to 5). The Disintegration trait was 
measured	via	a	DELTA	questionnaire	containing	110	items	with	the	
same	5-	point	Likert-	type	scale.	The	score	is	calculated	as	the	aver-
age of scale items (also ranging from 1 to 5).
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2.3  |  Recording procedure

Upon arrival, all respondents were introduced to the study and 
fitted	the	BIOPAC	sensors	(Biopac	Systems	Inc.)	(Bjegojević	et	al.,	
2020). Subjects were seated and instructed to relax with eyes 
open and to avoid movements as much as possible to reduce the 
artifacts. ECG signals were visually inspected for quality on site. 
All	 subjects	were	blinded	 for	 the	ECG	signal	 and	 related	param-
eters. Personality measures were collected separately, before 
physiological measurements.

Electrocardiogram signals were recorded from standard bipolar 
Lead	I	using	the	BIOPAC	MP150	unit	with	AcqKnowledge	software	
and	 ECG	100C	module	with	 surface	H135SG	Ag/AgCl	 electrodes	
(Kendall/Covidien).	 Before	 electrode	 placement,	 the	 skin	 was	
cleaned	with	Nuprep	gel	 (Weaver	&	Co.)	 to	reduce	skin–	electrode	
impedance.	The	sampling	frequency	was	set	at	2000	Hz.

2.4  |  ECG preprocessing and feature extraction

The complete procedure of ECG preprocessing and feature extrac-
tion	is	described	in	Boljanić	et	al.	(2021).	Computed	ECG	peak	loca-
tions	and	corresponding	absolute	peak	amplitudes	were	employed	
for extracting three groups of clinically relevant and clinically non- 
relevant	features	based	on	the	HRV,	temporal	parameters,	and	rela-
tive amplitude.

We	used	three	domains	to	calculate	HRV-	based	features:	time,	
frequency,	and	geometry.	The	overview	of	HRV-	based	features	is	
displayed in Table 1 together with the relevant references related 
to	 its	 application	 and	 calculation.	 All	 HRV-	based	 features	 were	
classified	as	clinically	relevant	features,	except	for	the	HRV	index,	
as it has been defined and consequently used for 24- h ambula-
tory ECG monitoring and not for short- term recordings of 2- min 
duration	as	applied	here	(Cripps	et	al.,	1991;	Kouidi	et	al.,	2002).	
Therefore, we applied RF ML on all features with and without the 
HRV	index.

The overview of extracted temporal features is displayed in 
Table 2.

The overview of extracted amplitude- based features is dis-
played	 in	Table	3.	The	Ek	parameter	has	been	suggested	as	a	car-
diac signature of emotionality and personality in previous studies 
(Koelsch	 et	 al.,	 2007,	 2012).	 It	 presents	 a	weighted	 linear	 relation	
of ECG amplitudes unrelated to the person’s BMI with a direct cor-
relation	 with	 Emotionality.	 Thus,	 higher	 Ek	 indices	 correspond	 to	
higher	Emotionality	measured	by	the	Revised	Toronto	Alexithymia	
Scale	(Taylor	et	al.,	1992)	and	vice	versa.	Originally,	Ek	indices	are	de-
termined	from	the	12-	lead	resting	ECG	(Koelsch	et	al.,	2007,	2012).	
By	carefully	studying	the	proposed	Ek	and	its	practical	significance	
(BMI and electrode positioning compensations), we concluded that 
Ek	can	be	calculated	for	one-	channel	ECG.

The	ECG	signal	with	marked	time	distances	and	amplitude	differ-
ences is shown in Figure 1.

2.5  | Analytic strategy

We	applied	RF	ML	separately	for	each	personality	trait.	As	psycho-
logical test results ranged from 1 to 5, to perform classification and 
test our hypothesis on a more distinctive personality scores group-
ing,	we	used	the	following	reasoning	for	splitting	data:	1	for	1.00–	
1.50,	2	 for	1.51–	2.50,	3	 for	2.51–	3.50,	4	 for	3.51–	4.50,	 and	5	 for	
4.51–	5.00.	The	distribution	of	classes	is	presented	in	Figure	2.

Random forest is an ensemble ML algorithm, consisting of basic 
models called decision trees where the predictions of all individual 
trees are combined. Each tree returns a predicted class for the same 
classification problem and the class that most trees vote for is re-
turned as the prediction of the ensemble and as the final outcome of 
the algorithm. RF also enables the calculation of feature importance 
by counting the number of times each variable is selected by all in-
dividual	 trees	 in	 the	 ensemble	 termed	 feature	 importance.	Unlike	
other	nonlinear	classifiers,	RF	ML	is	robust	to	over-	fitting	(working	
perfectly well on a small dataset and poorly on a more general data-
set) and yields good classification results even without extensive 
tuning	of	the	algorithm	parameters	(Breiman,	2001;	IJzerman	et	al.,	
2016; Shen et al., 2007; Zhou et al., 2019). RF ML was also used to 
estimate variable importance.

Parameters were split into three groups and RF was applied on 
all	parameters	with	(62	overall)	and	without	HRV	index	(61),	and	on	
clinically relevant parameters (34). By clinically relevant parameters, 
we	observed	HRV-	based	features	except	for	the	triangular	index	(16),	
temporal	features	(8	×	2),	and	Ek	(2).	Each	dataset	was	divided	into	a	
training	and	a	testing	set	 (75%	and	25%	of	data,	 respectively	 (Attia	
et	al.,	2019)).	We	used	R	function	createDataPartition that randomly 
splits	the	data	taking	into	the	class	distribution	balance.	We	further	
applied 10- fold cross- validation on the training set using trainControl 
function that provided an overall accuracy estimate (Ross et al., 2009).

For RF ML application, we tuned decision trees used in the for-
est (ntree) and random variables used in each decision tree (mtry) by 
application of tuning Caret	procedure	to	minimize	parameters	effect	
on	the	final	accuracy	(Brownlee,	2016).	We	reported	mean	classifi-
cation accuracies and confident intervals.

For	personality	traits	with	accuracies	≥75%,	the	first	10	feature	
importances	were	plotted	for	three	sets	of	parameters.	We	used	the	
varImp function from the Caret	package	for	ranking	features	by	im-
portance. Furthermore, to assess the degree of association between 
the test scores (both original and mapped into categories) and the 
top 10 features as in Melillo et al. (2015), we used the Spearman 
correlation coefficient and calculated the statistically significant cor-
relations	as	suggested	before	(Koelsch	et	al.,	2007;	Minoretti	et	al.,	
2006). p	Values	were	set	to	.05,	.01,	and	.001.

3  |  RESULTS

Descriptive statistics for all personality measures are shown in 
Table 4.
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In Table 5, mean classification accuracies when 10- fold cross- 
validation	of	RF	ML	algorithm	was	performed	with	95%	confident	
intervals for all seven personality traits when all features and only 
clinically relevant features were used are presented. Classification 
accuracies	 for	 the	 special	 case	 (without	HRV	 index)	 are	 also	 pre-
sented (Table 5).

The top 10 feature importances are presented for Disintegration 
and Honesty/humility in Figure 3. Statistically significant Spearman 
correlations between scores of personality traits and top 10 features 
are reported in Figure 3 together with the correlation sign. Only 
statistically significant correlations with p < .05 and p < .01 were 
found (Figure 3). For Disintegration, significant (p < .05) negative 

TA B L E  1 Heart	rate	variability	(HRV)-	based	features	for	three	feature	domains	(time,	frequency,	and	geometry)	with	corresponding	units	
and related references

Feature
Feature 
domain Unit References Description

HR mean Time bpm Abadi	et	al.	(2015),	Kim	and	Andre	(2008),	
Tulppo et al. (1996)

Average	heart	rate

RR mean Time s Abadi	et	al.	(2015),	Dissanayake	et	al.	(2019),	
Electrophysiology	(1996),	Kim	and	Andre	
(2008)

Average	of	all	RR	intervals

rmssd Time s Abadi	et	al.	(2015),	Abbasi	(2004),	Dissanayake	
et	al.	(2019),	Electrophysiology	(1996),	Kim	
and	Andre	(2008)

Root mean square of all RR intervals

sdnn Time s Standard deviation of all RR intervals

m_nn Time s Abadi	et	al.	(2015),	Dissanayake	et	al.	(2019),	
Kim	and	Andre	(2008),	Koelsch	et	al.	(2012)

Maximal RR interval

nn50 Time count Abadi	et	al.	(2015),	Abbasi	(2004),	Dissanayake	
et	al.	(2019),	Electrophysiology	(1996),	Kim	
and	Andre	(2008)

Number	of	pairs	of	adjacent	RR	intervals	
differing by more than 50 ms in the entire 
recording

pnn50 Time % nn50 count divided by the total number of all 
RR intervals

sdsd Time s Abadi	et	al.	(2015),	Abbasi	(2004),	
Electrophysiology	(1996),	Kim	and	Andre	
(2008),	Tulppo	et	al.	(1996)

Standard deviation of differences between 
adjacent RR intervals

HRV	index Time n.u. Abbasi	(2004),	Cripps	et	al.	(1991),	
Electrophysiology	(1996),	Kouidi	et	al.,	
2002)

HRV	triangular	index	-		integral	of	the	
density distribution (the number of all 
RR intervals) divided by the maximum 
of the density distribution at a discrete 
scale of 1/fs bins, where fs is a sampling 
frequency

LF Frequency s2 Abadi	et	al.	(2015),	Abbasi	(2004),	Dissanayake	
et	al.	(2019),	Electrophysiology	(1996),	Kim	
and	Andre	(2008),	Koelsch	et	al.	(2012),	
Tulppo et al. (1996)

Spectral power of low frequency 
(0.04–	0.15	Hz)

HF Frequency s2 Spectral power of high frequency 
(0.15–	0.40	Hz)

LFHF Frequency n.u. Abbasi	(2004),	Dissanayake	et	al.	(2019),	
Electrophysiology	(1996),	Kim	and	Andre	
(2008),	Koelsch	et	al.	(2012),	Tulppo	et	al.	
(1996)

LF to HF ratio

LFnu Frequency n.u. Abbasi	(2004),	Dissanayake	et	al.	(2019),	
Electrophysiology (1996)

LF	in	normalized	units	in	relation	to	the	total	
power without very low frequencies

HFnu Frequency n.u. HF	in	normalized	units

Total power Frequency s2 Total PSD power

SD1 Geometry s Dissanayake	et	al.	(2019),	Kim	and	Andre	
(2008),	Koelsch	et	al.	(2012)

Length of the transverse line of the Poincaré 
plot in the perpendicular direction. 
Poincaré plot presents a scatter plot of 
the current RR interval in relation to the 
prior RR interval.

SD2 Geometry s Length of the longitudinal line of the 
Poincaré plot in the perpendicular 
direction

Abbreviations:	bpm,	beats	per	minute;	n.u.,	no	unit.
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correlations	 were	 found	 between	 categories	 and	 QTnorm_mean	
(−0.203)	and	HRV.index	(−0.245),	while	significant	positive	correla-
tions were found for RT.ampl (0.335) and m_nn (0.279) being partly 
in line with score classification in Figure 3. For Honesty/humility, 
statistically significant correlations (p < .05) were found between 
trait	categories	and	lfnu	(−0.270),	lfhf	(−0.273),	RQa.sd	(−0.224),	and	
hfnu (0.210).

4  | DISCUSSION

In presented study, RF ML approach success varied across per-
sonality	traits:	from	31.3%	(being	less	than	the	probability	of	coin	
flips)	 for	Emotionality	 to	81.3%	for	Disintegration	 (Table	5).	The	
highest classification accuracy was obtained for Disintegration 
(mean	 accuracy	 of	 81.3%)	 and	 for	Honesty/humility	 (75.0%)	 for	
all feature sets (Table 5). This “robust” result to the feature set 
might be the consequence of the distribution of subjects across 
categories for traits in Figure 2 (we assessed personality traits 
only	in	university	students,	known	to	have	higher	Openness	and	
lower Disintegration).

We	used	a	considerably	 large	 list	of	 features	providing	a	more	
general approach by selecting the most influencing features. Our 
feature list is exhaustive, and there are many correlated features 
such as hf and hfnu, so the feature importance list based solely on 
RF	should	be	taken	with	precaution.	Previous	studies	have	shown	
that multicolinearity does not affect the classification accuracy1, 
but	does	influence	feature	importances	(Strobl	et	al.,	2008;	Toloşi	&	
Lengauer, 2011). This is in line with our results as the feature impor-
tance	instability	is	visible	in	Figure	3	for	61	and	62	parameters.	We	
used both Spearman correlation coefficients and importance plots 
to discuss selected features appropriately.

Recently,	 QT	 variability	 index	 (QTVI)	 was	 previously	 com-
pared	with	Anger	 and	Hostility	 traits	 in	 patients	with	 implantable	
cardioverter	 defibrillator	 patients	 had	 significantly	 higher	 QTVI	
than	 controls	 (Krantz	 et	 al.,	 2021).	We	 found	 a	 statistically	 signif-
icant negative correlation between the Disintegration category 
and	QTnorm_mean	which	was	 not	 expected	 as	QT	 interval	 dura-
tion which reflects the time for ventricular recovery increases with 
Neuroticism	(Minoretti	et	al.,	2006).	This	disagreement	might	be	a	
consequence of categories distribution (Figure 2), which could have 
caused	a	spurious	correlation.	More	likely,	these	discrepancies	might	

TA B L E  2 Temporal	features—	clinically	relevant	and	clinically	not	relevant	parameters	with	normal	values	and	ranges	where	applicable

Distance Description Features References Normal range (s)

PR Measured from the fiducial point P to 
the	R	peak

PR_min, PR_max, PR_mean, 
PR_median, PR_sd

Cabra	et	al.	(2018),	
Dissanayake	et	al.	(2019)

Na

ST Measured from the fiducial point S to 
the fiducial point T

ST_min, ST_max, ST_mean, 
ST_median, ST_sd

Na

QRS Measured	from	the	fiducial	point	Q	to	
the fiducial point S

QRS_min,	QRS_max,	
QRS_mean,	QRS_median,	
QRS_sd

Na

PR intervala Measured from the beginning of the P 
wave	to	the	beginning	of	the	QRS	
complex

PRinterval_mean, 
PRinterval_sd

Wagner	et	al.	(2008) 0.12–	0.20

PR segmenta Measured from the end of the P wave to 
the	beginning	of	the	QRS	complex

PRsegment_mean, 
PRsegment_sd

0.05–	0.12

ST intervala Measured	from	the	end	of	the	QRS	
complex to the end of the T wave

STinterval_mean, 
STinterval_sd

0.42

ST segmenta Measured	from	the	end	of	the	QRS	
complex to the beginning of the T 
wave

STsegment_mean, 
STsegment_sd

0.005–	0.150

QRS	complexa Measured from the beginning of the 
QRS	complex	to	the	end	of	the	QRS	
complex

QRScomplex_mean,	
QRScomplex_sd

0.08–	0.12

P wavea Measured from the beginning of the P 
wave to the end of the P wave

Pwave_mean, Pwave_sd ≤0.12

T wavea Measured from the beginning of the T 
wave to the end of the T wave

Twave_mean, Twave_sd 0.10–	0.25

QTc	intervala Measured from the beginning of the 
QRS	complex	to	the	end	of	the	T	
wave and compensated according to 
Bazzet's	formula

QTnorm_mean,	QTnorm_sd Men: <0.45
Women:	<0.46
0.35–	0.43	(QT)

Abbreviations:	na,	not	available;	QTc,	corrected	QT	interval;	Suffixes	_min,	_max,	_mean,	_median	and	_sd	stand	for	minimal	value,	maximal	value,	
mean, median, and standard deviation, respectively.
aClinically	relevant	parameters.	Bazzet’s	formula:QTc = QT∕

√

RR .
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be the consequence of the different methods to assess Emotionality: 
They	used	NEO2	personality	inventory	(NEO	PI-	R)	(Costa,	1992)	to	
assess	Neuroticism,	which	is	conceptually	close	to	Emotionality	used	
here	(Fearfulness	and	Anxiety),	but	there	are	important	differences:	
Neuroticism	in	NEO	PI-	R	has	contents	related	to	low	Agreeableness	
(Angry	 Hostility,	 and	 Impulsiveness)	 and	 Depression,	 while	
Emotionality	 contains	 aspects	 characterizing	 agreeable	 persons	
(Dependability	 and	 Sentimentality)	 without	 Depression	 (Ashton	
et	al.,	2004).	Alternatively,	 the	 fact	 that	Neuroticism	correlates	 to	
some	extent	with	Disintegration	 (Knežević	et	al.,	2016)	might	also	
explain	this	discrepancy.	Though	prolongation	of	QT	interval	is	asso-
ciated with a variety of acute and chronic cardio- vascular conditions 
(Campbell	et	al.,	1985),	its	relationship	with	personality	traits	should	
be further explored.

Another	 interesting	parameter	 is	the	HRV	index	that	appeared	
among the top 10 features for Disintegration (Figure 3), but it was 
not statistically correlated with this trait. It could be discussed 
whether	the	HRV	index	was	calculated	properly	or	it	influenced	the	
importance plot as a garbage feature. Interval of 120 s was sufficient 
for	all	calculated	parameters	except	for	the	HRV	index	being	com-
monly	calculated	 for	Holter	 recordings	 (Cripps	et	al.,	1991;	Kouidi	
et al., 2002). More in- depth analysis in our study revealed that the 
HRV	index	was	statistically	related	(positive	correlation	of	.281)	to	
the Extraversion, but it showed a poor classification accuracy of 

35.3%.	Decreased	HRV	index	has	been	associated	with	higher	risks	
of cardiovascular death in patients with atrial fibrilation (Hämmerle 
et al., 2020) with a possible meaning that less extroverted persons 
would	 be	more	 prone	 to	 cardiovascular	 diseases.	Decreased	HRV	
index	can	be,	therefore,	useful	for	risk	stratification	as	a	measure	of	
sympathovagal	balance.	Relationship	of	Introversion	with	HRV	index	
and	its	risk	in	healthy	respondents	is	yet	to	be	established.

Further analysis of obtained results showed that Disintegration 
(Figure	 3)	 was	 characterized	 by	 variation	 in	 P	 wave—	it	 was	 neg-
atively	 correlated	with	 the	Pwave_sd	 (−.107).	On	 the	contrary,	we	
found that Honesty/humility was positively correlated with Pwave_
sd (.196), which is not surprising given the negative correlation be-
tween Honesty and Disintegration. P wave reflects atrial conduction 
delay, and multivariate logistic regression analysis revealed that it is 
significantly longer in patients with atrial fibrillation (Steinberg et al., 
1993). This is probably a consequence of depressed conduction that 
resulted in prolonged atrial activation and loner P wave. P wave vari-
ation was associated with atrial fibrillation in patients (Censi et al., 
2016). Higher variability in the P wave indicates changes in atrial 
conduction,	 and	we	 can	only	 speculate	whether	 it	 presents	 a	 risk	
factor for atrial fibrillation in healthy subjects with higher Honesty/
humility and lower Disintegration scores.

For Honesty/humility, we identified in the current study the 
following important clinical features with positive correlation 

TA B L E  3 Amplitude-	based	ECG	parameters

Distance Feature (n.u.) References Description

PRa PRa_mean, PRa_sd Cabra	et	al.	(2018),	MNUA Relative amplitude differences between P and R

RQa RQa_mean,	RQa_sd Arteaga-	Falconi	et	al.	(2016),	Cabra	
et	al.	(2018)

Relative	amplitude	differences	between	R	and	Q

RSa RSa_mean, RSa_sd Relative amplitude differences between R and S

RTa RTa_mean, RTa_sd Cabra	et	al.	(2018),	MNUA Relative amplitude differences between R and T

Sta STa_mean, STa_sd Relative amplitude differences between S and T

QSa QSa_mean,	QSa_sd Relative	amplitude	differences	between	Q	and	S

Ek Ek_mean,	EK_sd Koelsch	et	al.	(2007,	2012) Calculating	formula	is	available	in	Boljanić	et	al.	(2021)

Abbreviations:	MNUA,	Mentioned	in	literature	not	used	for	analysis;	n.u.	no	unit.

F IGURE  1 Normal	heartbeat	ECG	signal	marked	with	temporal	and	amplitude-	based	features:	clinically	not	relevant	(left-	hand	panel)	and	
clinically relevant (right- hand panel) parameters
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STsegment_mean (.239), hfnu (.231), and Pwave_sd (.196), while neg-
atively	 correlated	clinical	 features	were	 lfnu	 (−.280)	and	 lfhf	 (−.278).	
The prolonged ST segment is related to the increased Honesty/humil-
ity score. ST segment presents interval between ventricular depolar-
ization	and	repolarization.	Prolonged	ST	segment	in	the	absence	of	Q	
wave	in	a	case	study	was	related	to	the	heart	tumor	(Hartman,	1982).	
However, there is no stronger evidence on psychophysiological bases 
of	 ST	 duration.	 As	 lfnu,	 hfnu,	 and	 lfhf	 are	 interrelated,	 the	 positive	
correlation with hfnu and negative with lfnu and lfhf were expected. 
Lfhf ratio reflects the autonomic balance of the sympathetic and 
parasympathetic parts of the autonomic nervous system, and it has 
been shown that maturity (being self- directed, cooperative, and self- 
transcendent)	was	negatively	associated	with	the	lfhf	(Koelsch	et	al.,	
2012;	Zohar	et	al.,	2013).	As	Honesty/humility	assumes	more	mature	
behavior, our finding on the negative correlation between Honesty/
humility and lfhf is in line with the previous ones. Higher hf was also 

found in individuals that were more sensitive to positive states of oth-
ers indicating more successful maintaining of social relationship with 
pronounced	parasympathetic	activity	(Lischke	et	al.,	2017).

Overall, though physiological basis of adoption of clinically rele-
vant parameters exist, the exact and the most influential parameters 
in relation to specific personality trait are yet to be discovered as the 
current	base	of	knowledge	is	vastly	related	to	clinical	conditions.	We	
believe that this study provides a perspective in ECG- based features 
potential for studying personality traits in relation to ECG parame-
ters changes within healthy ranges, as well as for further investiga-
tion personality traits in individuals with cardio- vascular diseases. 
Once the relationships are clearly determined, we may be able to an-
swer	whether	individual	traits	present	risk	factor	for	cardio-	vascular	
condition or vice versa, or the relationship is of a different origin and 
complexity.

For nonclinical features, we identified positive correlations of 
Honesty/humility	with	RT.ampl	(.135)	and	negative	with	RQa.sd	of	
−.324	(Figure	3).	RT.ampl	and	RQa.sd	have	been	previously	used	and	
proposed	 for	 person	 identification.	 No	 known	 physiological	 basis	
for their explanation exists, although we observed that a higher R 
peak	concerning	the	T	peak	and	lower	variability	of	R	and	Q	peaks	
yields to increased Honesty/humility. Distances between local ex-
trema on ECG signal are termed amplitude and temporal distances 
(Arteaga-	Falconi	et	al.,	2016;	Cabra	et	al.,	2018;	Israel	et	al.,	2005),	
and though there is no clear clinical rationale for the application of 
these parameters, we computed them due to the demonstrated re-
sults	 (Shen	&	Tompkins,	 2005).	Our	 results	 (Table	 5)	 suggest	 that	
Conscientiousness classification benefits the most from the sole ap-
plication	of	clinically	based	parameters	with	an	increase	from	9.1%	

F IGURE  2 Distribution	of	five	categories	of	personality	traits	for	70	subjects	presented	with	box	plots

TA B L E  4 Descriptive	statistics	(N = 71)

Personality traits M SD Range Skew Kurt

Honesty/Humility 3.57 0.66 1.69–	4.88 −0.54 2.98

Emotionality 3.47 0.67 1.44–	4.88 −0.22 3.24

Extraversion 3.34 0.71 1.56–	4.50 −0.37 2.79

Agreeableness 3.13 0.71 1.63–	4.75 −0.22 2.72

Conscientiousness 3.67 0.67 1.88–	4.94 −0.42 2.67

Openness 3.85 0.59 1.81–	4.88 −0.97 4.14

Disintegration 2.07 0.50 1.10–	3.81 0.97 4.87

Abbreviations:	Kurt,	kurtosis;	M, mean; SD, standard deviation; 
Skew-	skewness.
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to	20.1%.	The	unreserved	advantage	of	clinical	 features	 is	 in	 their	
proven relation to physiological processes, but the potential of clini-
cally	not	relevant	features	should	not	be	forsaken.

We	identified	the	following	limitations	of	the	study:

1.	 We	 used	 RF	ML	 due	 to	 its	 proven	 efficiency	 for	 emotion	 rec-
ognition and prediction of cardiovascular events when classifying 

ECG-	based	 features	 (Dissanayake	 et	 al.,	 2019;	 Melillo	 et	 al.,	
2015).	 A	 careful	 selection	 of	 the	 most	 appropriate	 algorithm	
should be performed.

2.	 Additional	data	from	the	general	population	and	especially	from	
an independent cohort are needed for further confirmation of 
presented associations between ECG- based parameters and per-
sonality traits, although our results present a firm base for future 

TA B L E  5 Mean	classification	accuracies	for	personality	traits	using	all	features	and	only	clinically	relevant

Trait

All features (62) All features without HRV index (61) Clinically relevant features (34)

Mean accuracy 
[%]

95% Confident 
interval

Mean accuracy 
[%]

95% Confident 
interval

Mean accuracy 
[%]

95% Confident 
interval

Honesty/Humility 75.0 47.6–	92.7 75.0 47.6–	92.7 75.0 47.6–	92.7

Emotionality 31.3 11.0–	58.7 37.5 15.2–	64.6 43.8 19.8–	70.1

Extraversion 35.3 14.2–	61.7 52.9 27.8–	77.0 47.1 23.0–	72.2

Agreeableness 56.3 29.9–	80.3 50.0 24.7−75.4 56.3 29.9–	80.3

Conscientiousness 64.7 38.3–	85.8 58.8 32.9–	81.6 70.6 44.0–	89.7

Openness 73.3 44.9–	92.2 73.3 44.9–	92.2 73.3 44.9–	92.2

Disintegration 81.3 54.4–	96.0 81.3 54.4–	96.0 81.3 54.4–	96.0

Note: 95%	confidence	intervals	are	presented	for	single	classification	accuracy.	With	mean	accuracies,	10-	fold	cross-	validation	results	of	random	
forest classifiers are presented.

F IGURE  3 Top	10	feature	importances	for	Honesty/humility	and	Disintegration:	all	62	features	(left-	hand	panel),	all	features	without	
HRV	index	(middle	panel),	and	clinically	relevant	features	(right-	hand	panel).	NOTE:	Feature	importances	are	normalized	to	100.	Statistically	
significant Spearman correlations are presented with *p < .05, and with **p <	.01.	Sign	–		presents	negative	correlation	and	sign	+positive 
correlation. For feature abbreviations, please see Section 2
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research as changes detected in the student sample should be 
more prominent in the general population. For future compari-
sons and meta- analysis, the dataset used in this study is publicly 
available	(Boljanić	et	al.,	2021).

3. Results presented by RF ML cannot provide exact relation di-
rection (positive and/or negative) and additional approaches are 
needed to distinguish the exact relation of cardiac parameters 
and personality.

4. In this stage of understanding of the relationships between 
disposition- based behavioral regularities (personality) and cardiac 
parameters, we consider a prediction- focused approach based 
on ML of exceptional importance. Premature and incorrect ex-
planatory conclusions appearing to be simple and elegant were 
shown to have detrimental effects on the development of a sci-
entific field. It was shown that good predictive models based on 
machine learning can improve our understanding of such relation-
ships	(Yarkoni	&	Westfall,	2017)—	prior	to	focusing	on	the	precise	
underlying neural mechanisms.

5  |  CONCLUSIONS

The	main	contribution	is	an	enhanced	body	of	knowledge	regarding	
the relationships between ECG- based features and personality traits 
(HEXACO	model	complemented	with	Disintegration	trait)	based	on	
a	novel	analytical	strategy—	machine	learning.

Random forest ML and Spearman’s correlations allowed us to 
formulate associations out of a large number of ECG- based features 
indicating the following statements that should be re- confirmed:

1. higher Honesty/humility is directly related to the lower lfhf 
ratio suggesting that more mature behavior and fairness in 
dealing with others is related to more pronounced vagal tone,

2. less Extraverted persons could be more prone to cardiovascular 
diseases	as	revealed	by	the	HRV	triangular	index,	and

3.	 Disintegration	 (proneness	 to	 psychotic-	like	 experiences/behav-
iors)	was	found	to	be	related	to	QT	interval	duration	and	P	wave	
variance,	as	well	as	HRV.

Replication of presented findings especially with the focus on 
Disintegration and Honesty/humility in an independent cohort 
would be a highly welcomed first step toward the development of 
more explanation- oriented (neural) theories and studies. Our re-
sults include open data as well as open and free software for further 
in- depth exploratory investigation, replication, and future meta- 
analysis	(Boljanić	et	al.,	2021).
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ENDNOTES
 1	We	reconfirmed	this	statement	as	suggested	by	reviewer.	We	applied	
principal	component	analysis	 (PCA)	prior	to	RF	ML	and	showed	that	
classification accuracies were higher only in two cases (~6%	 higher	
with	 relatively	 low	 resulting	 classification	 accuracies	 of	 56.3%	 and	
62%)	for	all	traits	and	all	three	datasets	when	only	10	principal	compo-
nents were used as RF ML input.

 2	NEO	inventory	was	named	after	acronym	of	the	three-	factor	per-
sonality	model	including	Neuroticism,	eXtraversion,	and	Openness	
personality traits, but now it covers two additional factors 
Agreeableness	and	Conscientiousness	and	is	used	to	present	five-	
factor model.

REFERENCES
Abadi,	M.	 K.,	 Correa,	 J.	 A.	M.,	Wache,	 J.,	 Yang,	H.,	 Patras,	 I.,	 &	 Sebe,	

N.	 (2015).	 Inference	 of	 personality	 traits	 and	 affect	 schedule	
by analysis of spontaneous reactions to affective videos. 2015 
11th IEEE International Conference and Workshops on Automatic 

https://orcid.org/0000-0002-3933-6076
https://orcid.org/0000-0002-3933-6076
https://orcid.org/0000-0003-1629-3699
https://orcid.org/0000-0003-1629-3699
https://orcid.org/0000-0001-8951-3774
https://orcid.org/0000-0001-8951-3774


10 of 11  |     BOLJANIĆ et AL.

Face and Gesture Recognition (FG),	 1–	8.	 https://doi.org/10.1109/
FG.2015.7163100

Abbasi,	W.	A.	 (2004).	Time series analysis of heart rate variability (HRV) 
signals.	https://doi.org/10.13140/	RG.2.2.30988.33921

Arteaga-	Falconi,	J.	S.,	Al	Osman,	H.,	&	El	Saddik,	A.	(2016).	ECG	authen-
tication for mobile devices. IEEE Transactions on Instrumentation 
and Measurement, 65(3),	 591–	600.	 https://doi.org/10.1109/
TIM.2015.2503863

Ashton,	M.	C.,	&	 Lee,	K.	 (2020).	 Recovering	 the	HEXACO	personality	
factors	–		And	psychoticism	–		From	variable	sets	assessing	normal	
and abnormal personality. Journal of Individual Differences, 41(2), 
68–	77.	https://doi.org/10.1027/1614-	0001/a000305

Ashton,	 M.	 C.,	 Lee,	 K.,	 Perugini,	 M.,	 Szarota,	 P.,	 de	 Vries,	 R.	 E.,	 Di	
Blas,	 L.,	 Boies,	 K.,	 &	 De	 Raad,	 B.	 (2004).	 A	 six-	factor	 struc-
ture of personality- descriptive adjectives: Solutions from psy-
cholexical studies in seven languages. Journal of Personality and 
Social Psychology, 86(2),	 356–	366.	 https://doi.org/10.1037/002
2-	3514.86.2.356

Attia,	Z.	I.,	Friedman,	P.	A.,	Noseworthy,	P.	A.,	Lopez-	Jimenez,	F.,	Ladewig,	
D.	 J.,	 Satam,	 G.,	 Pellikka,	 P.	 A.,	Munger,	 T.	M.,	 Asirvatham,	 S.	 J.,	
Scott,	C.	G.,	Carter,	R.	E.,	&	Kapa,	S.	(2019).	Age	and	sex	estimation	
using artificial intelligence from standard 12- lead ECGs. Circulation: 
Arrhythmia and Electrophysiology, 12(9),	 e007284.	 https://doi.
org/10.1161/CIRCEP.119.007284

Bjegojević,	 B.,	 Milosavljević,	 N.,	 Dubljević,	 O.,	 Purić,	 D.,	 &	 Knežević,	
G. (2020). In pursuit of objectivity: Physiological measures as a 
means of emotion induction procedure validation. XXIVI Scientific 
Conference on Empirical Studies in Psychology,	in–	print.

Boljanić,	T.,	Miljković,	N.,	Lazarević,	B.	L.,	Knežević,	G.,	&	Milašinović,	G.	
(2021). Surface electrocardiogram (ECG) dataset recorded during re-
laxation in 70 healthy subjects (Version 1) [Data set]. Zenodo. https://
doi.org/10.5281/ZENODO.5599239

Breiman, L. (2001). Random forests. Machine Learning, 45(1),	 5–	32.	
https://doi.org/10.1023/A:10109	33404324

Brouwer,	 A.-	M.,	 van	 Schaik,	 M.,	 van	 Erp,	 J.,	 &	 Korteling,	 H.	 (2013).	
Neuroticism,	 extraversion	 and	 stress:	 Physiological	 correlates.	
2013 Humaine Association Conference on Affective Computing 
and Intelligent Interaction,	 429–	434.	 https://doi.org/10.1109/
ACII.2013.77

Brownlee,	 J.	 (2016).	Machine learning mastery with R: Get started, build 
accurate models and work through projects step- by- step. Machine 
Learning Mastery.

Cabra,	J.-	L.,	Mendez,	D.,	&	Trujillo,	L.	C.	(2018).	Wide	machine	learning	
algorithms evaluation applied to ECG authentication and gender 
recognition. Proceedings of the 2018 2nd International Conference on 
Biometric Engineering and Applications -  ICBEA ’18,	58–	64.	https://
doi.org/10.1145/32308	20.3230830

Campbell,	R.	W.	F.,	Gardiner,	P.,	Amos,	P.	A.,	Chadwick,	D.,	&	Jordan,	R.	
S.	(1985).	Measurement	of	the	QT	Interval.	European Heart Journal, 
6(Suppl	D),	81–	83.	https://doi.org/10.1093/eurhe	artj/6.suppl_D.81

Censi,	F.,	Corazza,	I.,	Reggiani,	E.,	Calcagnini,	G.,	Mattei,	E.,	Triventi,	M.,	&	
Boriani, G. (2016). P- wave variability and atrial fibrillation. Scientific 
Reports, 6(1),	26799.	https://doi.org/10.1038/srep2	6799

Chen,	 W.	 (2018).	 Electrocardiogram.	 In	 T.	 Tamura,	 &	W.	 Chen	 (Eds.),	
Seamless healthcare monitoring	 (pp.	 3–	44).	 Springer	 International	
Publishing.	https://doi.org/10.1007/978-	3-	319-	69362	-	0_1

Cloninger, C. R. (2000). Biology of personality dimensions. Current Opinion 
in Psychiatry, 13(6),	 611–	616.	 https://doi.org/10.1097/00001	504-	
20001 1000- 00024

Costa, P. T. (1992). NEO personality inventory- revised (NEO PI- R). Odessa, 
Fla.	 (P.O.	 Box	 998,	 Odessa	 33556):	 Psychological	 Assessment	
Resources.

Cripps,	T.	R.,	Malik,	M.,	Farrell,	T.	G.,	&	Camm,	A.	J.	 (1991).	Prognostic	
value of reduced heart rate variability after myocardial infarction: 
Clinical evaluation of a new analysis method. Heart, 65(1),	14–	19.	
https://doi.org/10.1136/hrt.65.1.14

Deckersbach,	T.,	Miller,	K.	K.,	Klibanski,	A.,	Fischman,	A.,	Dougherty,	D.	
D.,	Blais,	M.	A.,	Herzog,	D.	B.,	&	Rauch,	S.	L.	(2006).	Regional	cere-
bral brain metabolism correlates of neuroticism and extraversion. 
Depression and Anxiety, 23(3),	 133–	138.	 https://doi.org/10.1002/
da.20152

Depue,	R.	A.,	&	Collins,	 P.	 F.	 (1999).	Neurobiology	of	 the	 structure	 of	
personality: Dopamine, facilitation of incentive motivation, and 
extraversion. Behavioral and Brain Sciences, 22(3),	491–	517.	https://
doi.org/10.1017/S0140 525X9 9002046

DeYoung, C. G. (2015). Cybernetic Big Five Theory. Journal of Research 
in Personality, 56,	33–	58.	https://doi.org/10.1016/j.jrp.2014.07.004

Dissanayake,	T.,	Rajapaksha,	Y.,	Ragel,	R.,	&	Nawinne,	 I.	 (2019).	An	en-
semble learning approach for electrocardiogram sensor based 
human emotion recognition. Sensors, 19(20), 4495. https://doi.
org/10.3390/s1920 4495

Electrophysiology,	T.	F.	O.	T.	E.	S.	O.	C.	T.	N.	A.	(1996).	Heart	rate	vari-
ability: Standards of measurement, physiological interpreta-
tion, and clinical use. Circulation, 93(5),	 1043–	1065.	 https://doi.
org/10.1161/01.CIR.93.5.1043

Gosling,	S.	D.,	&	John,	O.	P.	(1999).	Personality	dimensions	in	nonhuman	
animals:	A	cross-	species	review.	Current Directions in Psychological 
Science, 8(3),	69–	75.	https://doi.org/10.1111/1467-	8721.00017

Hämmerle,	 P.,	 Eick,	C.,	Blum,	 S.,	 Schlageter,	V.,	Bauer,	A.,	 Rizas,	K.	D.,	
Eken,	C.,	Coslovsky,	M.,	Aeschbacher,	S.,	Krisai,	P.,	Meyre,	P.,	Vesin,	
J.,	Rodondi,	N.,	Moutzouri,	E.,	Beer,	J.,	Moschovitis,	G.,	Kobza,	R.,	
Di	Valentino,	M.,	&	Corino,	V.	D.	A.,	…	Swiss-	AF	Study	Investigators.	
(2020). Heart rate variability triangular index as a predictor of car-
diovascular mortality in patients with atrial fibrillation. Journal of the 
American Heart Association, 9(15),	 1–	10.	 https://doi.org/10.1161/
JAHA.120.016075

Hartman,	R.	B.	(1982).	Pronounced	and	prolonged	ST	segment	elevation:	
A	pathognomonic	sign	of	tumor	 invasion	of	the	heart.	Archives of 
Internal Medicine, 142(10), 1917. https://doi.org/10.1001/archi 
nte.1982.00340	23016	5026

IJzerman,	H.,	Čolić,	M.	V.,	Hennecke,	M.,	Hong,	Y.,	Hu,	C.	-	P.,	Joy-	Gaba,	
J.,	Lazarević,	D.,	Lazarević,	L.	B.,	Parzuchowski,	M.,	Ratner,	K.	G.,	
Schubert,	T.,	Schütz,	A.,	Stojilović,	D.,	Weissgerber,	S.	C.,	Zickfeld,	
J.,	Lindenberg,	S.	 (2017).	Does	distance	from	the	equator	predict	
self- control? Lessons from the Human Penguin Project. Behavioral 
and Brain Sciences, 40(e86),	 22–	23.	 http://dx.doi.org/10.1017/
s0140 525x1 6001035

Irwin,	M.	R.	 (2008).	Human	psychoneuroimmunology:	20	Years	of	dis-
covery. Brain, Behavior, and Immunity, 22(2),	 129–	139.	https://doi.
org/10.1016/j.bbi.2007.07.013

Israel,	S.	A.,	Irvine,	J.	M.,	Cheng,	A.,	Wiederhold,	M.	D.,	&	Wiederhold,	
B.	K.	(2005).	ECG	to	identify	individuals.	Pattern Recognition, 38(1), 
133–	142.	https://doi.org/10.1016/j.patcog.2004.05.014

Kim,	J.,	&	Andre,	E.	(2008).	Emotion	recognition	based	on	physiological	
changes in music listening. IEEE Transactions on Pattern Analysis and 
Machine Intelligence, 30(12),	 2067–	2083.	 https://doi.org/10.1109/
TPAMI.2008.26

Knežević,	 G.,	 Lazarević,	 L.	 B.,	 Bosnjak,	 M.,	 Purić,	 D.,	 Petrović,	 B.,	
Teovanović,	 P.,	Opačić,	 G.,	 &	 Bodroža,	 B.	 (2016).	 Towards	 a	 per-
sonality model encompassing a disintegration factor separate 
from	the	Big	Five	traits:	A	meta-	analysis	of	the	empirical	evidence.	
Personality and Individual Differences, 95,	 214–	222.	 https://doi.
org/10.1016/j.paid.2016.02.044

Knezevic,	G.,	Savic,	D.,	Kutlesic,	V.,	&	Opacic,	G.	(2017).	Disintegration:	
A	reconceptualization	of	psychosis	proneness	as	a	personality	trait	
separate from the Big Five. Journal of Research in Personality, 70, 
187–	201.	https://doi.org/10.1016/j.jrp.2017.06.001

Koelsch,	S.,	Enge,	J.,	&	Jentschke,	S.	 (2012).	Cardiac	signatures	of	per-
sonality. PLoS One, 7(2), e31441. https://doi.org/10.1371/journ 
al.pone.0031441

Koelsch,	 S.,	 Remppis,	 A.,	 Sammler,	 D.,	 Jentschke,	 S.,	 Mietchen,	 D.,	
Fritz,	 T.,	 Bonnemeier,	 H.,	 &	 Siebel,	 W.	 A.	 (2007).	 A	 cardiac	

https://doi.org/10.1109/FG.2015.7163100
https://doi.org/10.1109/FG.2015.7163100
https://doi.org/10.13140/RG.2.2.30988.33921
https://doi.org/10.1109/TIM.2015.2503863
https://doi.org/10.1109/TIM.2015.2503863
https://doi.org/10.1027/1614-0001/a000305
https://doi.org/10.1037/0022-3514.86.2.356
https://doi.org/10.1037/0022-3514.86.2.356
https://doi.org/10.1161/CIRCEP.119.007284
https://doi.org/10.1161/CIRCEP.119.007284
https://doi.org/10.5281/ZENODO.5599239
https://doi.org/10.5281/ZENODO.5599239
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1109/ACII.2013.77
https://doi.org/10.1109/ACII.2013.77
https://doi.org/10.1145/3230820.3230830
https://doi.org/10.1145/3230820.3230830
https://doi.org/10.1093/eurheartj/6.suppl_D.81
https://doi.org/10.1038/srep26799
https://doi.org/10.1007/978-3-319-69362-0_1
https://doi.org/10.1097/00001504-200011000-00024
https://doi.org/10.1097/00001504-200011000-00024
https://doi.org/10.1136/hrt.65.1.14
https://doi.org/10.1002/da.20152
https://doi.org/10.1002/da.20152
https://doi.org/10.1017/S0140525X99002046
https://doi.org/10.1017/S0140525X99002046
https://doi.org/10.1016/j.jrp.2014.07.004
https://doi.org/10.3390/s19204495
https://doi.org/10.3390/s19204495
https://doi.org/10.1161/01.CIR.93.5.1043
https://doi.org/10.1161/01.CIR.93.5.1043
https://doi.org/10.1111/1467-8721.00017
https://doi.org/10.1161/JAHA.120.016075
https://doi.org/10.1161/JAHA.120.016075
https://doi.org/10.1001/archinte.1982.00340230165026
https://doi.org/10.1001/archinte.1982.00340230165026
http://dx.doi.org/10.1017/s0140525x16001035
http://dx.doi.org/10.1017/s0140525x16001035
https://doi.org/10.1016/j.bbi.2007.07.013
https://doi.org/10.1016/j.bbi.2007.07.013
https://doi.org/10.1016/j.patcog.2004.05.014
https://doi.org/10.1109/TPAMI.2008.26
https://doi.org/10.1109/TPAMI.2008.26
https://doi.org/10.1016/j.paid.2016.02.044
https://doi.org/10.1016/j.paid.2016.02.044
https://doi.org/10.1016/j.jrp.2017.06.001
https://doi.org/10.1371/journal.pone.0031441
https://doi.org/10.1371/journal.pone.0031441


    | 11 of 11BOLJANIĆ et AL.

signature	 of	 emotionality:	 A	 cardiac	 signature	 of	 emotionality.	
European Journal of Neuroscience, 26(11),	 3328–	3338.	 https://doi.
org/10.1111/j.1460-	9568.2007.05889.x

Kouidi,	 E.,	 Haritonidis,	 K.,	 Koutlianos,	 N.,	 &	 Deligiannis,	 A.	 (2002).	
Effects of athletic training on heart rate variability triangu-
lar	 index:	 Athletic	 training	 and	 heart	 rate	 variability.	 Clinical 
Physiology and Functional Imaging, 22(4),	 279–	284.	 https://doi.
org/10.1046/j.1475- 097X.2002.00431.x

Krantz,	D.	S.,	Harris,	K.	M.,	Rogers,	H.	L.,	Whittaker,	K.	S.,	Haigney,	M.	C.	
P.,	&	Kop,	W.	J.	 (2021).	Psychological	factors	and	cardiac	repolar-
ization	instability	during	anger	in	implantable	cardioverter	defibril-
lator patients. Annals of Noninvasive Electrocardiology, 26(4),	 1–	8.	
https://doi.org/10.1111/anec.12848

Lee,	 K.,	 &	 Ashton,	 M.	 C.	 (2018).	 Psychometric	 properties	 of	 the	
HEXACO-	100.	 Assessment, 25(5),	 543–	556.	 https://doi.
org/10.1177/10731 91116 659134

Lischke,	 A.,	 Lemke,	D.,	 Neubert,	 J.,	 Hamm,	 A.	O.,	 &	 Lotze,	M.	 (2017).	
Inter- individual differences in heart rate variability are associated 
with inter- individual differences in mind- reading. Scientific Reports, 
7(1),	11557.	https://doi.org/10.1038/s4159	8-	017-	11290	-	1

McCrae,	 R.	 R.,	 &	 Terracciano,	 A.,	 &	 78	 Members	 of	 the	 Personality	
Profiles of Cultures Project (2005). Universal features of person-
ality traits from the observer’s perspective: Data from 50 cultures. 
Journal of Personality and Social Psychology, 88(3),	547–	561.	https://
doi.org/10.1037/0022-	3514.88.3.547

Međedović,	 J.,	 Čolović,	 P.,	 Dinić,	 B.	M.,	 &	 Smederevac,	 S.	 (2019).	 The	
HEXACO	personality	inventory:	Validation	and	psychometric	prop-
erties in the Serbian language. Journal of Personality Assessment, 
101(1),	25–	31.	https://doi.org/10.1080/00223	891.2017.1370426

Melillo,	 P.,	 Izzo,	 R.,	 Orrico,	 A.,	 Scala,	 P.,	 Attanasio,	 M.,	 Mirra,	 M.,	 De	
Luca,	N.,	&	Pecchia,	L.	 (2015).	Automatic	prediction	of	cardiovas-
cular and cerebrovascular events using heart rate variability anal-
ysis. PLoS One, 10(3),	 e0118504.	 https://doi.org/10.1371/journ	
al.pone.0118504

Minoretti,	P.,	Politi,	P.,	Martinelli,	V.,	Emanuele,	E.,	Bertona,	M.,	Falcone,	
C.,	&	Geroldi,	D.	(2006).	QT	interval	duration	in	apparently	healthy	
men is associated with depression- related personality trait neurot-
icism. Journal of Psychosomatic Research, 61(1),	19–	23.	https://doi.
org/10.1016/j.jpsyc hores.2006.01.001

Panksepp,	J.	(1998).	Affective neuroscience: The foundations of humanand 
animal emotions. University Press.

Ross,	K.	A.,	Jensen,	C.	S.,	Snodgrass,	R.,	Dyreson,	R.,	&	Aggarwal,	C.	C.	
(2009).	Cross-	validation.	In	Özsu,	M.	T.	&	Liu,	L.	(Eds),	Encyclopedia 
of database systems	 (pp.	532–	538).	Boston,	MA:	Springer.	https://
link.sprin	ger.com/refer	encew	ork/10.1007/978-	0-	387-	39940	-	9

Sansone,	M.,	Fratini,	A.,	Cesarelli,	M.,	Bifulco,	P.,	Pepino,	A.,	Romano,	M.,	
Gargiulo,	F.,	&	Sansone,	C.	 (2013).	 Influence	of	QT	correction	on	
temporal and amplitude features for human identification via ECG. 
2013 IEEE Workshop on Biometric Measurements and Systems for 
Security and Medical Applications,	 22–	27.	 https://doi.org/10.1109/
BIOMS.2013.6656144

Shen,	K.-	Q.,	Ong,	C.-	J.,	Li,	X.-	P.,	Hui,	Z.,	&	Wilder-	Smith,	E.	P.	V.	(2007).	
A	feature	selection	method	for	multilevel	mental	fatigue	EEG	clas-
sification. IEEE Transactions on Biomedical Engineering, 54(7),	1231–	
1237.	https://doi.org/10.1109/TBME.2007.890733

Shen,	 T.	W.,	 &	 Tompkins,	W.	 J.	 (2005).	 Biometric	 Statistical	 Study	 of	
One- Lead ECG Features and Body Mass Index (BMI). 2005 IEEE 
Engineering in Medicine and Biology 27th Annual Conference,	1162–	
1165. https://doi.org/10.1109/IEMBS.2005.1616629

Shen,	T.-	W.-	D.,	Tompkins,	W.	J.,	&	Hu,	Y.	H.	(2010).	Implementation	of	a	
one- lead ECG human identification system on a normal population. 
Journal of Engineering and Computer Innovations, 2(1),	12–	21.

Steinberg,	J.	S.,	Zelenkofske,	S.,	Wong,	S.	C.,	Gelernt,	M.,	Sciacca,	R.,	&	
Menchavez,	E.	(1993).	Value	of	the	P-	wave	signal-	averaged	ECG	for	
predicting atrial fibrillation after cardiac surgery. Circulation, 88(6), 
2618–	2622.	https://doi.org/10.1161/01.CIR.88.6.2618

Strobl,	C.,	Boulesteix,	A.-	L.,	Kneib,	T.,	Augustin,	T.,	&	Zeileis,	A.	(2008).	
Conditional variable importance for random forests. BMC 
Bioinformatics, 9(1),	307.	https://doi.org/10.1186/1471-	2105-	9-	307

Strobl,	C.,	Malley,	J.,	&	Tutz,	G.	(2009).	An	introduction	to	recursive	par-
titioning: Rationale, application, and characteristics of classification 
and regression trees, bagging, and random forests. Psychological 
Methods, 14(4),	323–	348.	https://doi.org/10.1037/a0016973

Taylor,	G.	 J.,	Bagby,	M.,	&	Parker,	 J.	D.	A.	 (1992).	The	 revised	Toronto	
alexithymia scale: Some reliability, validity, and normative data. 
Psychotherapy and Psychosomatics, 57(1–	2),	 34–	41.	 https://doi.
org/10.1159/00028	8571

Toloşi,	L.,	&	Lengauer,	T.	(2011).	Classification	with	correlated	features:	
Unreliability	of	feature	ranking	and	solutions.	Bioinformatics, 27(14), 
1986–	1994.	https://doi.org/10.1093/bioin	forma	tics/btr300

Tulppo,	M.	P.,	Makikallio,	T.	H.,	Takala,	T.	E.,	Seppanen,	T.,	&	Huikuri,	H.	
V.	(1996).	Quantitative	beat-	to-	beat	analysis	of	heart	rate	dynamics	
during exercise. American Journal of Physiology- Heart and Circulatory 
Physiology, 271(1),	 H244–	H252.	 https://doi.org/10.1152/ajphe	
art.1996.271.1.H244

Vukasović,	T.,	&	Bratko,	D.	 (2015).	Heritability	of	personality:	A	meta-	
analysis of behavior genetic studies. Psychological Bulletin, 141(4), 
769–	785.	https://doi.org/10.1037/bul00	00017

Wagner,	G.	S.,	Lim,	T.	H.,	Strauss,	D.	G.,	&	Simlund,	J.	A.	C.	O.	B.	(2008).	
Interpretation	 of	 the	 normal	 electrocardiogram.	 In	 Wagner,	 G.	
S. (Eds), Marriott’s practical electrocardiography, 9, 50. Lippincott 
Williams	&	Wilkins.

Yarkoni,	 T.,	 &	 Westfall,	 J.	 (2017).	 Choosing	 prediction	 over	 explana-
tion in psychology: Lessons from machine learning. Perspectives 
on Psychological Science, 12(6),	 1100–	1122.	 https://doi.
org/10.1177/17456 91617 693393

Zhou,	T.,	Omisore,	O.	M.,	Du,	W.,	Wang,	L.,	&	Zhang,	Y.	(2019).	Adapting	
random forest classifier based on single and multiple features for sur-
face electromyography signal recognition. 2019 12th International 
Congress on Image and Signal Processing, BioMedical Engineering and 
Informatics (CISP- BMEI),	 1–	6.	 https://doi.org/10.1109/CISP-	BMEI4	
8845.2019.8965719

Zohar,	A.	H.,	Cloninger,	C.	R.,	&	McCraty,	R.	(2013).	Personality	and	heart	
rate variability: Exploring pathways from personality to cardiac co-
herence and health. Open Journal of Social Sciences, 01(06),	32–	39.	
https://doi.org/10.4236/jss.2013.16007

SUPPORTING INFORMATION
Additional	 supporting	 information	 may	 be	 found	 in	 the	 online	
 version of the article at the publisher’s website.

How to cite this article:	Boljanić,	T.,	Miljkovic,	N.,	 
Lazarević,	L.	B.,	Knezevic,	G.,	&	Milašinović,	G.	(2022).	
Relationship between electrocardiogram- based features and 
personality traits: Machine learning approach. Annals of 
Noninvasive Electrocardiology, 27, e12919. https://doi.
org/10.1111/anec.12919

https://doi.org/10.1111/j.1460-9568.2007.05889.x
https://doi.org/10.1111/j.1460-9568.2007.05889.x
https://doi.org/10.1046/j.1475-097X.2002.00431.x
https://doi.org/10.1046/j.1475-097X.2002.00431.x
https://doi.org/10.1111/anec.12848
https://doi.org/10.1177/1073191116659134
https://doi.org/10.1177/1073191116659134
https://doi.org/10.1038/s41598-017-11290-1
https://doi.org/10.1037/0022-3514.88.3.547
https://doi.org/10.1037/0022-3514.88.3.547
https://doi.org/10.1080/00223891.2017.1370426
https://doi.org/10.1371/journal.pone.0118504
https://doi.org/10.1371/journal.pone.0118504
https://doi.org/10.1016/j.jpsychores.2006.01.001
https://doi.org/10.1016/j.jpsychores.2006.01.001
https://link.springer.com/referencework/10.1007/978-0-387-39940-9
https://link.springer.com/referencework/10.1007/978-0-387-39940-9
https://doi.org/10.1109/BIOMS.2013.6656144
https://doi.org/10.1109/BIOMS.2013.6656144
https://doi.org/10.1109/TBME.2007.890733
https://doi.org/10.1109/IEMBS.2005.1616629
https://doi.org/10.1161/01.CIR.88.6.2618
https://doi.org/10.1186/1471-2105-9-307
https://doi.org/10.1037/a0016973
https://doi.org/10.1159/000288571
https://doi.org/10.1159/000288571
https://doi.org/10.1093/bioinformatics/btr300
https://doi.org/10.1152/ajpheart.1996.271.1.H244
https://doi.org/10.1152/ajpheart.1996.271.1.H244
https://doi.org/10.1037/bul0000017
https://doi.org/10.1177/1745691617693393
https://doi.org/10.1177/1745691617693393
https://doi.org/10.1109/CISP-BMEI48845.2019.8965719
https://doi.org/10.1109/CISP-BMEI48845.2019.8965719
https://doi.org/10.4236/jss.2013.16007
https://doi.org/10.1111/anec.12919
https://doi.org/10.1111/anec.12919

