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ABSTRACT

Objective: Phenobarbital increases electroclinical uncoupling and our preliminary observations suggest it
may also affect electrographic seizure morphology. This may alter the performance of a novel seizure
detection algorithm (SDA) developed by our group.

Objective: The objectives of this study were to compare the morphology of seizures before and after
phenobarbital administration in neonates and to determine the effect of any changes on automated sei-
zure detection rates.

Methods: The EEGs of 18 term neonates with seizures both pre- and post-phenobarbital (524 seizures)

administration were studied. Ten features of seizures were manually quantified and summary measures

for each neonate were statistically compared between pre- and post-phenobarbital seizures. SDA seizure

detection rates were also compared.

Results: Post-phenobarbital seizures showed significantly lower amplitude (p <0.001) and involved

fewer EEG channels at the peak of seizure (p < 0.05). No other features or SDA detection rates showed

a statistical difference.

Conclusion: These findings show that phenobarbital reduces both the amplitude and propagation of sei-

zures which may help to explain electroclinical uncoupling of seizures. The seizure detection rate of the

algorithm was unaffected by these changes.

Significance: The results suggest that users should not need to adjust the SDA sensitivity threshold after

phenobarbital administration.

© 2016 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. This is an
open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Seizures are common in the neonatal period but clinical diagno-
sis of seizures is imprecise (Murray et al., 2008). EEG remains the
only reliable method for detecting all neonatal seizures. It is com-
mon practice to monitor neonates with amplitude integrated EEG
(aEEG) for long periods, particularly those undergoing therapeutic
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hypothermia, whereas continuous EEG (cEEG) is available in only
very few neonatal units. There is often a lack of trained neurophys-
iology experts available to review the EEG and identify seizures. To
meet this need, a novel automated seizure detection algorithm, the
Algorithm for Neonatal Seizure Recognition (ANSeR), has been
developed by our group (Temko et al., 2011; Mathieson et al.,
2016b).

Phenobarbital remains the primary first-line treatment for
neonatal seizures and exerts its primary inhibitory effect by pro-
longing and potentiating the action of GABA on the GABA, recep-
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tor, hyperpolarising neurons, although there is evidence that the
AMPA/kainate subtype of glutamate receptor may also be blocked
by phenobarbital (Nardou et al., 2011; Loscher and Rogawski,
2012). Studies have shown that its effectiveness is limited and sei-
zures are abolished in only 30-50% of cases (Painter et al., 1999;
Boylan et al., 2002, 2004). In neonates with severe encephalopathy,
seizures can often be intractable to phenobarbital, characterized by
significantly abnormal background EEG patterns and high seizure
burden. ‘Electroclinical dissociation’ is a term that has been vari-
ously used to describe clinical seizures without an EEG correlate
(Weiner et al., 1991) or conversely any electrical seizures without
a clinical correlate (Boylan et al., 2002). The term ‘electroclinical
uncoupling’ has been used to describe the loss of the clinical com-
ponent of an electroclinical seizure after anticonvulsant adminis-
tration, resulting in ongoing electrographic seizures (Scher et al.,
2003; Glykys et al., 2009), and is the term preferred here to
describe changes in seizures after phenobarbital. Phenobarbital
and other anticonvulsants are known to cause electroclinical
uncoupling. In many neonates, electroclinical seizures become
purely electrographic after treatment with phenobarbital or
phenytoin. In one study (Scher et al., 2003) it was found that 58%
of neonates who had electroclinical seizures before anticonvulsant
administration went on to have “electrographic only” seizures
after treatment. In another study incorporating data on seizure
burden (Boylan et al., 2002), ten neonates showed a significant
decrease in clinical seizures after medication but showed persist-
ing electrographic seizures with an increasing seizure burden in
some neonates. Quite often seizures appear to reduce in amplitude
(personal observations) after phenobarbital which has not been
reported in the scientific literature and may be a contributing fac-
tor to the electroclinical uncoupling of seizures in neonates.

In assessing the performance of seizure detection algorithms,
(e.g. ANSeR), engineers use general performance metrics such as
seizure detection and false detection rates or sensitivity and speci-
ficity based on epoched data. End users also wish to know specifi-
cally what type of seizures the algorithm detects best and in a
previous study (Mathieson et al., 2016a), a novel in-depth method-
ology, using 10 criteria to quantify seizures, was developed to
determine the ‘features’ of detected and non-detected seizures.
False detections were also categorized. The results facilitated tar-
geted improvements to the algorithm (Temko et al., 2013). End-
users also wish to know how a seizure detection algorithm will
perform under specific circumstances such as after administration
of anticonvulsants, as any drop in performance may delay further
seizure identification and affect appropriate titration of medica-
tion. This issue has not been discussed in previous performance
analysis of other seizure detection algorithms (Gotman et al.,
1997; Altenburg et al., 2003; Aarabi et al., 2006; Navakatikyan
et al., 2006; Deburchgraeve et al., 2008; Mitra et al., 2009).

The aims of this study were to examine specifically how pheno-
barbital affects the morphology of neonatal seizures using our ‘in-
depth’ analysis methodology, and whether the performance of our
own algorithm, ANSeR, is altered. Changes in seizure detection
rates due to anticonvulsants may affect how users set the variable
sensitivity thresholds available to the ANSeR end-user.

2. Methods
2.1. Patients and EEG recording

The EEGs of 18 term neonates who underwent continuous EEG
monitoring at the neonatal units at University College Hospital,
London and University College Hospital, Cork between November
2009 and February 2012 were extracted from our database of
recordings. Only neonates with EEG seizures both pre- and post-

phenobarbital administration were included. As the number of
post-phenobarbital seizures generally greatly exceeded the num-
ber of pre-phenobarbital seizures, for statistical purposes, pre-
and post-phenobarbital seizure numbers were matched by taking
the smaller number of seizures pre- or post-phenobarbital admin-
istration. For example, if a neonate had only 5 seizures before the
first dose of phenobarbital and 20 after, then only the first 5 sei-
zures pre-phenobarbital and the first 5 seizures post-
phenobarbital administration were analysed.

Neonates underwent video-EEG monitoring using the Nico-
letOne ICU monitor (Carefusion, Wisconsin, USA) for as long as
clinically required. A sampling frequency of 250 Hz or 256 Hz
was used with a filter bandwidth of 0.5-70 Hz and a 50 Hz notch
filter. Recording electrodes were applied using the 10:20 measur-
ing system adapted for neonates and included F4, F3, T4, (4, CZ,
C3, T3, 02 and O1 which were displayed in a bipolar montage.
ECG from shoulder electrodes and respiration from a motion sen-
sor on the abdomen were also recorded in the trace. This reduced
montage is our standard clinical setup and is used to balance the
requirement to detect the majority of seizures against the need
to minimise handling in sick neonates who are often unstable. A
study by Tekgul (Tekgul, 2005) demonstrated a sensitivity of
96.8% for a 9 electrode montage, similar to ours, to detect seizures
compared to the full 10/20 montage. While this montage may not
have detected the full field of seizures in this study, we did not
anticipate that this should affect the result unduly, as the same
montage was used to record both pre- and post-phenobarbital
seizures.

All babies had an MRI performed to clarify the underlying brain
pathology except in the occasional severe case where the patient
unfortunately died very early in the period of intensive care.

2.2. Ethics and consent

This study was approved by the East London and the City
Research Ethics Committee 09/H0703/97 and by the Clinical
Research Ethics Committees of the Cork Teaching Hospitals. Writ-
ten informed consent was obtained from one parent of each neo-
nate who participated in the study.

2.3. Seizure detection algorithm

A detailed description of ANSeR is described by Temko (Temko
et al., 2011). To summarize, in a preprocessing step, the original
EEG undergoes artefact removal (simple high frequency artefacts
are removed by applying a threshold to the signal energy), then
is downsampled to 32 Hz with an anti-aliasing filter at 12.8 Hz
and then segmented into 8 s epochs with a 50% overlap. Fifty five
‘features’ of the EEG are then extracted for each channel and from
each epoch which can be grouped into time domain characteristics
(eg. root mean squared amplitude, autoregressive error modelling,
variance), frequency domain characteristics (eg. total power, spec-
tral edge frequency, wavelets) and information theory (eg. Shan-
non entropy, Fisher characteristics). Extracted features from each
epoch are then fed into a support vector machine (SVM), a learning
algorithm that has been pretrained on a training EEG dataset
marked with seizure/non-seizure by an expert. The outputs of
the SVM are then converted using a sigmoid function into a prob-
ability of seizure between 0 and 1. This output is then smoothed by
a moving average filter and compared to a threshold. The compar-
ison of the SVM probability output with the threshold is then con-
verted to binary decisions for each channel, then for all channels. A
custom reader displays a single probability graph (the channel of
highest seizure probability) that turns from black to red when
the threshold is breeched and a seizure designated. The threshold
may be manually adjusted at increments of 0.1 such that the user
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can alter the sensitivity of the algorithm on a patient by patient
basis. If for example, a patient’s record contains large amounts of
artefact, the user may wish to desensitize the algorithm to prevent
excess false detections, however concomitant seizure detection
rates will also be affected. For detections, an annotation is recorded
of the onset time, duration and channel of highest seizure probabil-
ity and the annotation list can be exported as a text file for further
analysis. The algorithm was updated (beta version) following a
detailed analysis to incorporate modifications that reduce false
detections due to prolonged EEG artefact (Temko et al., 2013). This
updated version of the algorithm has recently been tested on a
large dataset of EEGs from 70 babies for the purposes of perfor-
mance validation on an unseen dataset (Mathieson et al., 2016b).

2.4. Seizure analysis

All EEGs were reviewed by a clinical physiologist (SM) and EEG
seizures were annotated as the ‘gold standard’ at the start and end
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of seizures to give exportable text files listing seizure onset and
duration times. Seizures annotated by SM were verified by a con-
sultant neurophysiologist (RMP) by reviewing the EEG at the time
of the annotation by SM. Each seizure was then analysed by SM
using the criteria outlined in Table 1 and features for pre- and
post-phenobarbital seizures were compared statistically. The 10
features analysed were drawn from a previous in depth analysis
of seizure factors affecting automated seizure detection by ANSeR
(Mathieson et al., 2016a), and were chosen for the previous study
specifically with the feature extraction criteria and general func-
tioning of the algorithm in mind but were also deemed relevant
as a general methodology for quantifying seizures for the present
study to assess the effects of phenobarbital on seizures. The 10 fea-
tures can be grouped into 3 broad categories: ‘seizure signature’
(1-5), ‘short-term temporal context or evolution’ of seizures (6-
8) and ‘seizure spatial context’ (9-10). In the ‘seizure signature’
group, seizure amplitude was measured at the midpoint of the sei-
zure as a common reference point for measuring peak seizure

Table 1
Seizure features analysed.
Variable group Variable Measurement Measurement  Method/category Purpose/comment
type: quantitative/  unit
visual analysis
Seizure signature Seizure amplitude at  Quantitative uv2 Measure peak to trough using To quantify the maximum seizure
peak of seizure graticule on highest amplitude amplitude
discharge at midpoint of seizure
Seizure signature Rhythmicity score Visual Number 1 = Significant dysrhythmia Visual score of how rhythmicity/
2 = Minimal dysrhythmia frequency appears to change from
3 = Highly rhythmic second to second over the seizure
Seizure signature Background EEG Visual Number 1 = Normal/mildly abnormal, To highlight context in which seizure are
score at time of continuous EEG detected/not detected
seizure 2 = Moderate abnormality. [BI<10s
3 = Severe abnormality, IBI 10-60 s
4 = Inactive, background < 10 pv,
IBI > 60S
See below
Seizure signature Seizure morphology  Visual Category 1 = Rhythmic discharges of delta To categorize dominant morphology of
at onset (RDD) seizure discharge at onset
2 = Rhythmic discharges of theta
(RDT)
3 = Rhythmic discharges of alpha
(RDA)
4 = Spikes (S) or sharp waves (SH)
5 = Sharp wave and slow wave (SH
+ W) complexes or spike and wave
complexes (SP + W)
‘See below
Seizure signature Seizure morphology  Visual Category As above To categorize dominant morphology of
at peak of seizure seizure discharge at peak (middle) of
seizure
Short-term Seizure duration Quantitative Seconds Duration derived from SM To quantify seizure duration
temporal annotations of start/end of seizure.
context or
evolution
Short-term Frequency variability = Quantitative SD (Hertz) Using frequency graticule calculate To derive an estimate of the degree of
temporal (over whole seizure) discharge frequency at: frequency variability over the span of the
context or A = Start frequency (first 5s) seizure.
evolution B = Peak frequency (mid seizure)
C = Final frequency (last 5s)
Frequency variability = Standard
deviation A:C
Short-term Seizure morphology  Quantitative Binary Y/N Comparison of seizure morphology at To assess change/variability of seizure
temporal change from onset to start and peak morphology within seizure
context or peak
evolution
Spatial context Number of EEG Visual Number Count of number of EEG channels To estimate the size of the seizure field at
channels involved at showing seizure discharges the start of the seizure
onset of seizure
Spatial context Number of EEG Visual Number Count of number of EEG channels To estimate the size of the seizure field at

channels involved at
peak of seizure

showing seizure discharges

the peak of the seizure

“ From Pressler et al. (2001).
" Adapted from Patrizi et al. (2003).
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Table 2

Aetiology, number of seizures analysed and anticonvulsants for patients included in
the study. Pb: phenobarbital; na: not administered; HIE: hypoxic ischaemic
encephalopathy.

Patient Aetiology Seizure number 1st dose Pb  2nd dose Pb
number studied pre/post Pb  (mg/kg) (mg/kg)
1 HIE grade 2 717 20 na
2 HIE grade 2 3/3 20 na
3 HIE grade 2 6/6 20 na
4 HIE grade 3 8/8 20 na
5 HIE grade 3 25/25 20 na
6 Meningitis 3/3 20 na
7 HIE grade 3 66/66 20 10
8 Contusion 171 20 na
post forceps
9 Stroke 2/[2 20 na
10 Stroke 11/11 20 na
11 HIE grade 3 4/4 20 na
12 Focal lesion 11 20 na
13 HIE grade 2 5/5 20 na
14 HIE grade 3 11 20 na
15 HIE grade 3 68/68 20 10
16 Stroke 6/6 20 na
17 HIE grade 3 6/6 20 na
18 Stroke 39/39 20 10
Total 262/262

amplitude which provides a measure of the ‘strength’ of the seizure
and/or degree of neuronal recruitment. The rhythmicity score was
scored from visual assessment of the apparent degree of rhythmic-
ity of the seizure from second to second, to determine whether
phenobarbital changes the rhythmicity of seizures over short
timespans. The background EEG score provides a measure of the
effect of phenobarbital on the baseline EEG at the time of the sei-
zures. The seizure morphology at seizure onset and peak tells us
whether the dominant frequency and shape of the seizure wave-
form at those timepoints change with phenobarbital. In the ‘short
term temporal context or evolution’ group, seizure morphology
change from onset to peak tells us whether seizure morphology
within seizures evolves and whether phenobarbital affects this,
while frequency variability (over the whole seizure) gives an indi-
cation of the amount of change or evolution of frequencies within
the seizure, given that many neonatal seizures tend to slow in fre-
quency, particularly towards the end (personal observation). A
measure of seizure duration was taken to determine whether phe-
nobarbital affects seizure length. In the ‘spatial context’ group, the
number of EEG channels involved in the seizure at start and peak
gives an indication of the approximate size of the seizure field at
the start and peak and whether phenobarbital affects these fields.
Criteria for assessing seizure discharge morphology at onset and
peak were adapted from Patrizi et al. (Patrizi et al., 2003), and cri-
teria for scoring the background EEG activity at the time of the sei-
zure were taken from Pressler (Pressler et al., 2001).

All EEGs were then analysed by ANSeR at a sensitivity threshold
of 0.3 and seizure annotations were exported as text files. In a pre-
vious validation study (Mathieson et al.,, 2016b), ANSeR perfor-
mance was assessed across the full range of sensitivity
thresholds on a cohort of 70 babies. In this study we considered
a threshold range from 0.5 to 0.3 to be within a clinically accept-
able range, giving seizure detection rates of 52.6-75.0% and false
detection rates of 0.04-0.36 FD/h respectively. This range was pro-
posed on the basis of a perceived expectation that a minimum of
50% seizure detection would be required by users in a clinical set-
ting and that a false detection rate of greater than 0.5/h might be
considered excessive. Given a variable threshold a given user
may of course decide to set a higher sensitivity threshold if they
prefer to detect more seizures at a cost of more false alarms, or
vice-verse. The clinical suitability of this range is then, opinion

based. The highest sensitivity threshold of 0.3 within this range
was chosen for this study to highlight the highest seizure detection
rate realistically achievable.

2.5. Statistical method

For each neonate and separately for the two time periods (pre
and post-phenobarbital administration), a summary measure
across seizures was calculated for each of the parameters of inter-
est. The median was used as the summary measure for peak ampli-
tude, seizure duration, number of EEG channels involved in seizure
onset and at the peak of the seizure and frequency variability. The
maximum value was the summary measure used for rhythmicity
score and background EEG. Rhythmicity score and background
EEG were qualitative variables with only 3 and 4 categories each,
respectively. Hence, the highest category observed (maximum)
for each baby was a suitable summary measure for these variables.
The other variables were quantitative variables, taking on a range
of possible values, and hence the median was a suitable summary
measure for these variables. For the seizure detection rate, dis-
charge morphology and discharge morphology change, the propor-
tion was used as the summary measure. Differences between the
two time periods (pre- and post-phenobarbital administration)
were investigated using the Wilcoxon Signed Rank test. All statis-
tical analyses were performed using IBM SPSS Statistics, version
20.0. All tests were two-sided and a p-value < 0.05 was considered
to be statistically significant.

3. Results
3.1. Patients

Details of included patients are given in Table 2. All patients
received a loading dose of phenobarbital (20 mg/kg) and 3 patients
received a second dose of phenobarbital.

3.2. Comparison of pre- and post-phenobarbital seizure features and
automated detection

In total 524 seizures (262 pre-phenobarbital seizures and 262
post-phenobarbital seizures) were identified and annotated on
the original EEG by SM for feature analysis. Verification of these
seizures by RMP showed 100% agreement.

The results of the comparison of seizure features between pre-
and post-phenobarbital seizures are shown in Table 3. Post-
phenobarbital seizures were of statistically lower peak amplitude
than pre-phenobarbital seizures [median (interquartile range)
pre-Pb: 123 pV (62.5-225) vs post-Pb: 53.5 uV (46.13-89.25)],
with a drop of 56.5%, and involved fewer EEG channels at the peak
of seizure [median (interquartile range) pre-Pb: 4 channels (3-8)
vs post-Pb: 3 channels (1.4-4)]. Values for individual babies for
median peak seizure amplitude and median number of EEG chan-
nels involved at peak of seizure pre- and post phenobarbital are
given in Table 4.

Fig. 1a shows a comparison of the pre-and post-phenobarbital
median seizure amplitudes for all 18 neonates including the group
median (thick black line), while Fig. 1b shows the change in ampli-
tude for each baby after phenobarbital; seizures were reduced in
amplitude after phenobarbital in 14 of 18 babies. Babies with high
amplitude seizures pre-phenobarbital showed the greatest reduc-
tion in seizure amplitude.

Fig. 2a shows the median number of EEG channels involved in
pre and post-phenobarbital seizures (at the peak of seizure) for
all neonates with group median (black line) and Fig. 2b shows
the change in number of EEG channels involved in the seizure for
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Table 3
Results of comparison of seizure features pre- and post-phenobarbital.
Features Summary measure Pre-Pb seizures. [Median (IQR)] Post-Pb seizures. [Median (IQR)] p value
Peak amplitude (uV) Median 123 (62.5-225) 53.5 (46.13-89.25) 0.001
Seizure duration (s) Median 103 (69.13-185.25) 135 (62.63-235) 0.420
Number of EEG channels involved in seizure onset (n) Median 4 (2.38-4.25) 3(1-4) 0.068
Number of EEG channels involved at peak of seizure (n) Median 4 (3-8) 3(1.38-4) 0.018
Frequency variability (over whole seizure) Hz Median 0.25 (0.07-1.64) 0.24 (0.06-1.85) 0.868
Rhythmicity score (1-3) Maximum 3(2-3) 3(2-3) 0.317
Background EEG (1-4) Maximum 1.5(1-4) 1.5 (1-3.25) 0.317
Seizure detection rate Proportion 0.77 (0.23-0.93) 0.73 (0.33-0.89) 0.730
Changed morphology Proportion 0.45 (0.11-0.88) 31 (0.0-0.67) 0.310

" From Wilcoxon Signed Rank test. N.B. Comparisons of discharge morphology (RDD, RDT, RDA, SP/SH, SP + W/SH + W) at start and peak of seizure are omitted, p > 0.05 for

all comparison.

each baby. A reduction in the number of channels involved was
seen in 10 of 18 babies.

Fig. 3 shows typical examples of pre- and post-phenobarbital
seizures for patient 5 showing a drop in seizure amplitude and a
reduced number of EEG channels involved post-phenobarbital
treatment.

No significant differences between groups were found in sei-
zure duration, rhythmicity, frequency variability (over the whole
seizure), background EEG grade, seizure waveform morphology
at the start or peak of the seizure or seizure waveform morphology
change from start to peak of seizure.

Fig. 4 shows seizure detection rates for all neonates pre and
post-phenobarbital administration. The seizure detection rates
(sensitivity threshold 0.3) were not significantly different with a
median detection rate of 77% for pre-phenobarbital seizures and
73% detection rate for post-phenobarbital seizures.

3.3. Electroclinical uncoupling

Information regarding electroclinical uncoupling is summarised
in Table 4. Information was only available for 15 of 18 babies as 3
babies (12, 13, 16) had no video available for analysis. Of these 15,
9 babies (1,4, 5,6, 7, 8, 11, 14, 15) had electrographic seizures both
before and after phenobarbital and therefore had no electroclinical
uncoupling. One baby (17) had a mixture of electroclinical and
electrographic seizures both before and after phenobarbital so

Table 4

again, had no clear evidence of electroclinical uncoupling. This
baby did not have a reduction in median seizure amplitude (pre-
Pb 47.5 pV vs post-Pb 50 pV), or a reduction in the median number
of EEG channels involved at the peak of seizure (pre-Pb 3.0 chan-
nels vs post-Pb 4 channels). Five babies (2, 3, 9, 10, 18) had electro-
clinical seizures before phenobarbital and electrographic only
seizures after phenobarbital and therefore experienced electroclin-
ical uncoupling after phenobarbital. Baby 2 had three low ampli-
tude focal seizures before phenobarbital with subtle changes in
blood pressure and heart rate, and further focal, low amplitude sei-
zures without physiological changes after phenobarbital. There
was both a drop in median seizure amplitude between pre- and
post-phenobarbital seizures (pre-Pb 40 pV vs post-Pb 20 pV) and
also a marked drop in the median number of channels involved
at seizure peak (pre-Pb 4 channels vs post-Pb 1 channel). Babies
9, 10 and 18 all had unilateral stroke (middle cerebral artery) with
clonic seizures prior to phenobarbital. None of these babies expe-
rienced large reductions in the number of EEG channels involved
in seizure peak (baby 9 pre-Pb 3.8 channels vs post-Pb 3 channels,
baby 10 pre-Pb 4 channels vs post-Pb 4 channels, baby 18 pre-Pb 4
channels vs post-Pb 4 channels), however all had large reductions
in median peak seizure amplitude after phenobarbital (baby 9 pre-
Pb 321 pV vs post-Pb 47.5 pV, baby 10 pre-Pb 195 uV vs post-Pb
88 1V, baby 18 pre-Pb 123 pV vs post-Pb 70 uV). Baby 3 had HIE
with bilateral watershed infarcts with clonic seizures prior to phe-
nobarbital. This baby had both a large reduction in median seizure

Evidence of electroclinical uncoupling, seizure amplitudes and number of EEG channels involved at peak of seizure before and after phenobarbital for individual babies. NVD no

video data, EG electrographic, EC electroclinical.

Study  Aetiology Seizure  Seizure  Electroclinical ~Median peak Median peak Median number of EEG Median number of EEG
ID type type uncoupling? seizure seizure channels involved in channels involved in
pre-Pb post-Pb amplitude pre-Pb amplitude post- seizure peak pre-Pb seizure peak post-Pb
(V) Pb (nV)
12 Focal lesion NVD NVD Unknown 91 49 4 1
13 HIE grade 2 NVD NVD Unknown 123 138 2 2
16 Stroke NVD NVD Unknown 93.5 55.5 5 4
1 HIE grade 2 EG EG NO 485 63 8 1
4 HIE grade 3 EG EG NO 146 149 8 8
5 HIE grade 3 EG EG NO 180 42 8 6
6 Meningitis EG EG NO 165 93 8 8
7 HIE grade 3 EG EG NO 67.5 36.5 5 4
8 Contusion post EG EG NO 61 68 1 2
forceps
11 HIE grade 3 EG EG NO 63 51.5 2 1.5
14 HIE grade 3 EG EG NO 315 190 8 2
15 HIE grade 3 EG EG NO 53.5 37 3 3
17 HIE grade 3 EC/EG  EC/[EG  NO 475 50 3 4
2 HIE grade 2 EC EG YES 40 20 4 1
3 HIE grade 2 EC EG YES 339 49 8 1
9 Stroke EC EG YES 321 47.5 3.8 3
10 Stroke EC EG YES 195 88 4 4
18 Stroke EC EG YES 123 70 4 4
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Fig. 1. (a) Comparison of median peak seizure amplitudes for pre- and post-Pb
seizures in all neonates. Black line represents group median. (b) Change in median
peak seizure amplitude for each baby after Pb.

amplitude after phenobarbital (pre-Pb 339 uV vs post-Pb 49 nv)
and a large reduction in the number of channels involved at seizure
peak (pre-Pb 8 channels vs post-Pb 1 channel).

4. Discussion

This study has shown that phenobarbital reduces both the
amplitude and propagation of seizures. Electroclinical uncoupling
of seizures is an important phenomenon as seizures may go unde-
tected and untreated in centres without EEG monitoring. A model
for electroclinical uncoupling was proposed by Glykys et al.
(Glykys et al., 2009), based on observations in rat pups of a differ-
ential expression of the NKCC1 and KCC2 chloride transporters
between cortical and subcortical regions, potentially rendering
GABA excitatory in cortical regions and inhibitory at subcortical
levels. In this scenario, cortical seizures as detected by EEG would
be unaffected or even exacerbated by phenobarbital while the inhi-
bition at the subcortical level would block their clinical expression.
The findings in our study, that cortical seizures are reduced in
amplitude and propagation, does not support the cortical aspect
of the model proposed by Glykys, nor do studies showing that phe-
nobarbital is effective in abolishing neonatal seizures in 30-50% of
cases (Painter et al., 1999; Boylan et al., 2002, 2004). It is still
possible however that an increased efficacy of phenobarbital in
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Fig. 2. (a) Comparison of median number of EEG channels involved at peak of
seizure pre- and post-Pb for all neonates. Black line represents group median. (b)
Change in median number of EEG channels involved in seizure (peak) after Pb for
each baby.

subcortical regions relative to the cortex, as proposed by Glykys,
may contribute to electroclinical uncoupling.

While one study (Boylan et al., 2002) reported an increase in
seizure burden in some cases after phenobarbital administration,
it is clear that seizures have a natural history, increasing, peaking
and tailing off in frequency (Lynch et al., 2012) such that an
increase in seizure burden after phenobarbital may simply be a
consequence of this process rather than due to the anticonvulsant.
This is supported by the study by Painter (Painter et al., 1999) in
which phenobarbital was found to be ineffective in neonates in
the phase of increasing seizure burden.

When considering the causes of electroclinical uncoupling, it is
also possible that in subclinical seizures there is A) simply less
involvement of the motor strip as previously suggested by Boylan
et al. (Boylan et al., 2013), the area from where the most overt clin-
ical expression of seizures originates, and/or B) if one assumes that
the amplitude of a seizure in a given area roughly equates to the
number of neuronal units recruited, then it may be that there is
a threshold of neuronal numbers in the cortex that must be brea-
ched in order to drive subcortical circuits and in turn motor man-
ifestations of seizures. Subclinical seizures may simply not reach
this threshold due to a partial dampening of seizure activity by
phenobarbital.

While this study has not addressed the specific question of the
relative involvement of the cortical motor area in clinical vs
subclinical seizures, the finding that overall, post-phenobarbital
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Fig. 3. Examples of pre- and post-Pb seizures for patient 5. (a) Pre-Pb seizure and
(b) post-Pb seizure.
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Fig. 4. Distribution of detection rates for all neonates pre- and post-phenobarbital.
Black lines indicate median values.

seizures tend to propagate less than pre-phenobarbital seizures
does at least suggest that this possibility is worth investigating. A
study of the relative involvement of the motor area in pre and post
phenobarbital seizures would be optimised using a more compre-
hensive set of electrodes rather than the reduced set used here in
which electrode coverage away from the motor area was quite
sparse. The finding that seizures in these babies dropped 56.5%
as a group in their median amplitude after phenobarbital adminis-
tration also supports the second possibility.

The evidence from the babies in this study regarding electro-
clinical uncoupling supports these suggestions with the 1 patient
who experienced some electroclinical seizures both before and
after phenobarbital showing no reduction in seizure amplitude or
propagation after phenobarbital, while the 5 patients with electro-
clinical seizures before phenobarbital and electroclinical uncou-
pling after phenobarbital, all experience a drop in either the
propagation of the seizure or the peak amplitude of seizure, or
both. It is interesting to note that the 3 stroke babies (all with mid-
dle cerebral artery infarctions) that experienced electroclinical
uncoupling after phenobarbital, did not have a marked reduction
in the number of channels involved at the peak of seizure, there-
fore there was presumably still involvement of the motor cortex
in their seizures. They did however, experience marked reduction
in seizure amplitude. This limited information does lend some
weight to the suggestion that seizure amplitude is the dominant
factor in electroclinical uncoupling.

Another important consequence of a reduction in seizure ampli-
tude and propagation after phenobarbital is that seizures are likely
to become harder to detect on visual examination of the electro-
graphic evidence. This is true of the EEG evidence where post-
phenobarbital seizures may stand out less from the background
EEG, but is likely to be more of a problem when only aEEG moni-
toring is available. Studies by Rennie et al. (Rennie et al., 2004)
and others (Shellhaas et al., 2007; Mastrangelo et al., 2013) have
shown that many seizures detected on EEG are missed when
reviewing the aEEG alone and that ‘missed’ seizures are often
short, involve a small number of EEG channels and of low ampli-
tude, often registering minimal deflection on the aEEG trace. These
findings highlight that EEG should be used for seizure monitoring
where available and that great care should be used when review-
ing EEG after anti-seizure medication.

Eleven of the 18 babies in this study had HIE and underwent
therapeutic hypothermia which is now a routine treatment. Cool-
ing has been shown to reduce the seizure burden in this group
(Low et al., 2012), perhaps due to the prolonged half-life of pheno-
barbital in cooled patients (Roka et al., 2008; Filippi et al., 2011),
and/or augmenting the neuroprotective effects of hypothermia,
as has been shown in a rodent model (Barks et al., 2010). Despite
the positive effects of cooling, seizures remain a problem in HIE.

The main purpose of this study was to examine the effect of
phenobarbital on the morphology of seizures and on the perfor-
mance of our seizure detection algorithm. In a previous study
(Mathieson et al., 2016a) to investigate the features of seizures
affecting ANSeR detection, using the same methodology for seizure
analysis but multivariate analysis, it was found that an increase in
4 features; seizure duration, amplitude, rhythmicity and number of
EEG channels involved in seizure peak (propagation), were inde-
pendently associated with an increased likelihood of seizure detec-
tion by ANSeR. In the present study phenobarbital did not affect
seizure duration or seizure rhythmicity but did reduce seizure
amplitude and propagation. However this reduction was not
enough to significantly reduce ANSeR performance. It is possible
that the reduction in seizure amplitude and propagation seen in
our previous paper was greater due to additional treatments such
as phenytoin and midazolam.

These results suggest that the performance of ANSeR is robust
to the effects of phenobarbital on neonatal seizures and users
should not need to adjust the sensitivity threshold after phenobar-
bital administration. One limitation of this study is that only the
effects of phenobarbital only were tested while the effect of other
second-line anti-seizure medications including phenytoin, midazo-
lam and others, were not. As suggested above, it may be that these
second line medications do affect automated seizure detection and
is an area for further study, however teasing out the effects of
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particular drugs on seizures with patients on multiple anti-seizure
medications is problematic.

5. Conclusion

The main purpose of this study was to examine the effect of
phenobarbital on the morphology of neonatal seizures, and on
the performance of our automated seizure detection system. We
have shown that phenobarbital reduces the amplitude and propa-
gation of seizures but ANSeR performance is unaffected by these
changes.
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