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Abstract: The continuous development of fifth-generation (5G) networks is the main driving force
for the growth of Internet of Things (IoT) applications. It is expected that the 5G network will greatly
expand the applications of the IoT, thereby promoting the operation of cellular networks, the security
and network challenges of the IoT, and pushing the future of the Internet to the edge. Because the IoT
can make anything in anyplace be connected together at any time, it can provide ubiquitous services.
With the establishment and use of 5G wireless networks, the cellular IoT (CIoT) will be developed
and applied. In order to provide more reliable CIoT applications, a reliable network topology is very
important. Reaching a consensus is one of the most important issues in providing a highly reliable
CIoT design. Therefore, it is necessary to reach a consensus so that even if some components in the
system is abnormal, the application in the system can still execute correctly in CIoT. In this study,
a protocol of consensus is discussed in CIoT with dual abnormality mode that combines dormant
abnormality and malicious abnormality. The protocol proposed in this research not only allows all
normal components in CIoT to reach a consensus with the minimum times of data exchange, but
also allows the maximum number of dormant and malicious abnormal components in CIoT. In the
meantime, the protocol can make all normal components in CIoT satisfy the constraints of reaching
consensus: Termination, Agreement, and Integrity.

Keywords: Internet of Things; cellular internet of things; edge computing; cloud computing; fault-
tolerant; consensus problem

1. Introduction

In the past few years, many 5G technologies have been developed to provide new
infrastructure and design as well as the functions required by the future Internet of Things
(IoT) [1,2]. The 5G-based IoT can provide real-time, on-demand, online, and reconfigurable
use for applications. The IoT has been widely used in various fields, such as: Smart city,
smart environment, smart water, smart metering, industrial control, smart agriculture,
smart animal breeding, and smart health [3,4]. In addition, because 5G cellular technology
has high-speed transmission capabilities, it will be very suitable to apply to the IoT envi-
ronment. Therefore, cellular technology has a very important impact on the development
of related applications of the IoT [5,6].

Vukobratovic et al. proposed a feasible cellular IoT (CIoT) topology in 2019, which
can integrate edge computing and IoT into cellular networks to provide a highly flexible
CIoT platform [7]. The CIoT platform proposed by Vukobratovic et al. will be applied and
redefined as ECIoT (edge-computing-based CIoT) in this research. Because the advantages
of edge computing have been applied to ECIoT, the high-QoS (Quality of Service) IoT
applications will be provided [8]. In other words, with the feature of localized computing
functions provided by edge computing, ECIoT can provide higher-performance services
for IoT-related applications.
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In a distributed computing environment CIoT [9], processing elements (PEs) can
provide more resources and computing power through connection and cooperation with
each other, so that the efficiency or reliability of computing can be improved. However,
in many cases, there may be many abnormal PEs in the distributed computing environ-
ment, which makes the distributed computing environment unable to provide a highly
reliable services. In addition, many related application services require such a consensus,
so reaching a consensus in a distributed computing environment with abnormal PEs is one
of the core issues in providing high-reliability computing [9]. For users of the applications
of CIoT, the system must provide better performance and reliability [5]. Therefore, in order
to ensure the reliability of CIoT-related applications, a protocol must be proposed to allow
a set of normal PEs to reach a consensus value [10,11].

With the 5G network, the application of the IoT will greatly expand to promoting
the operation of cellular networks and pushing the future of the Internet to the edge [1].
Federated learning (FL) is a model of machine learning in distributed systems. In the
research of Savazzi et al. [12], the proposed FL algorithms leverage the cooperation of
devices that perform data operations inside the network by iterating local computations
and mutual interactions via consensus-based methods. The approach lays the groundwork
for integration of FL within 5G and beyond networks characterized by decentralized
connectivity and computing, with intelligence distributed over the edge devices. In the
study of Lin et al. [13], a practical collaboration infrastructure for 5G network slice broker
is designed, where the core challenge is the consensus protocol to guarantee the security
and performance of the overall system. By solving the consensus problem, many related
applications can be realized, such as the adaptive weighted replication [14,15], information
retrieval [16,17], and the flight control system [18,19]. In addition, the consensus problem
has also been studied and widely used in various fields such as blockchain and IoT [20,21].

In ECIoT, there are many interconnected PEs. Even if some PEs are abnormal, the
normal PEs need to reach a consensus to make the system still work correctly. In this
study, the consensus problem of dormant abnormal PEs and malicious abnormal PEs in
ECIoT is reconsidered. The main contribution of this research is to solve the consensus
problem of PEs in dual abnormality mode, in which both dormant abnormal PEs and
malicious abnormal PEs are existed simultaneously in the system. The protocol proposed
in this research, Optimal Consensus with Dual Abnormality Mode (OCDAM), can make
all normal PEs satisfy the constraints of reaching consensus: Termination, Agreement,
and Integrity. Besides, the protocol can make all normal components in ECIoT reach a
consensus with the minimum times of data exchange and tolerate the maximum number
of abnormal PEs. In other words, the reliability of the system will be maximized.

This study is divided into seven parts. In Section 1, the motivation and goals of this
research are given. In Section 2, the background of consensus problem and the comparisons
of consensus protocols in different network topologies will be reviewed and compared.
The topology of ECIoT is defined in Section 3. The detailed description of the proposed
OCDAM is explained in Section 4. In Section 5, an example to illustrate the operation of the
proposed OCDAM is given. The correctness and complexity of the proposed protocol will
be demonstrated in Section 6. Section 7 is the conclusion and future works of this research

2. Related Works

In this section, the background of consensus problem and the comparisons of previous
consensus protocols in different network topologies will be discussed explicitly.

2.1. The Background of Consensus Problem

The definition of a consensus problem is that when some PEs may be abnormal
in a distributed environment, all normal PEs must reach a consensus. That is, the goal
of consensus is to obtain a consensus value for normal PEs. The consensus problem is
defined as: Each PE chooses an initial value as a starting point and communicates with
other PEs by exchanging data. Based on most of the previous research [10,11,22–27] and
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books [28–30], the solution to the consensus problem is defined as a protocol that meets the
following constraints:

Termination: All normal PEs eventually decide on some value.
Agreement: Every normal PE decides on the same value.
Integrity: If the initial value of each normal PEi is vi, all normal PEs should agree on

the value vi.
In ECIoT, it is composed of many PEs, and some PEs may not always operate nor-

mally. If the PE can follow the protocol specification during the execution of the consensus
protocol, it means that the PE is normal. Otherwise, the PE is considered to be abnormal.
There are two symptoms of PE abnormality, namely, dormant abnormality and malicious
abnormality [24]. The dormant abnormalities of PE include crashes and omissions. When
the PE is permanently disconnected, it can be said that the PE has a crash abnormality.
When PE is temporarily unable to send or receive data on time or at all, an omission abnor-
mality will occur. However, if the protocol uses Manchester code [31] to properly encode
the exchanged data before transmission, the receiver PE can always identify the dormant
abnormality. The behavior of malicious abnormal PE is unpredictable and incredible.

However, in the ECIoT, the characteristics of the connected topology are very impor-
tant. Therefore, to solve the consensus problem on the ECIoT, the following assumptions
are made in this research:

1. Each PE in ECIoT can be uniquely identified.
2. According to the research of Fisher and Lynch [10], in a distributed computing system

with n PEs (n ≥ 4), at most one-third of the PEs can be abnormal, but the system will
not be interrupted.

3. The sending PE of the data can always be identified by the receiving PE.

According to the assumptions of this research, the proposed protocol OCDAM can
use the minimum times of data exchange and can tolerate the maximum number of
dormant and malicious abnormal PEs, so that all normal PEs can still reach consensus
underlying ECIoT.

2.2. The Comparisons of Consensus Protocols in Different Network Topologies

Because the solution of consensus problem is one of the most commonly used methods
in the field of providing reliable distributed systems, many protocols have previously been
proposed to solve the consensus problem for different application areas, such as multi-
agent systems, peer-to-peer networks [32,33]. In this study, we focus on the basic protocol
of reaching consensus underlying different network topologies. In previous results of this
area, the consensus problem was solved in many network models with various fallible
component assumptions, such as a BroadCasting Network (BCN) [23], a Fully Connected
Network (FCN) [10,11,22], a Generalize Connected Network (GCN) [24], a MultiCasting
Network (MCN) [25], a Cloud Computing environment (CC) [34], an Integrated Fog IoT
(IFIoT) [26], and an Edge-computing-based CIoT (ECIoT) [27].

In [23], the network topology is BCN, and the fallible component assumption in-
volves malicious abnormal PEs only. In [10,22], the network topology is FCN, and the
fallible component assumption involves only malicious abnormal PEs. In [11], the network
topology is FCN, and the fallible component assumption involves dormant and malicious
abnormal PEs. In [24], all PEs of the GCN network are grouping with the same number of
PEs, groups are fully connected with each other, and the fallible components are focused
on malicious abnormal PEs only. In the MCN [25], all PEs are grouping with different
number of PEs, the network topology may not be fully connected, and the symptoms of
the fallible components are not restricted to malicious abnormal. In [34], the framework is
a cloud computing environment, and the fallible components are malicious abnormal PEs
only. In [26], the consensus of an IoT platform that integrated fog and cloud computing
(IFIoT) was discussed, and the fallible components are dormant and malicious abnormal
PEs. Additionally, in [27], the topology is an edge-computing-based CIoT (ECIoT), and
the fallible components are malicious abnormal PEs only. Many graceful consensus proto-
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cols have been proposed according to the different network model assumptions. In this
research, the topology is an ECIoT, and the fallible component assumption of the proposed
protocol OCDAM involves dormant and malicious abnormal PEs. Consensus protocols
have been proposed to ensure the reliability and fault-tolerance capability. Table 1 shows a
comparison of various protocols over different network models, in which da represents a
dormant abnormality and ma represents a malicious abnormality.

Table 1. The comparison of previous various protocols over different network models.

Results
Topology BCN FCN GCN MCN CC IFIoT ECIoT

da ma da ma da ma da ma da ma da ma da ma

Babaoglu & Drummond [23] V
Fischer & Lynch [10] V

Lamport, Shostak & Pease [22] V
Meyer & Pradhan [11] V V
Wang, Chin & Yan [24] V

Wang, Yan & Cheng [25] V V
Beheshti & Safi-Esfahani [34] V
Wang, Tseng, Yan & Tsai [26] V V

Pan & Wang [27] V
OCDAM V V

As in previous related studies, many results in the consensus problem are restricted to
the assumption of malicious abnormal PEs [27] allowed. Based on this restriction, the fault
tolerance capability of distributed systems will be unreasonably reduced. In this study,
by allowing dormant and malicious abnormal PEs to simultaneously exist in ECIoT, the
consensus problem is reviewed to enlarge the fault tolerant capability. The fault tolerance
capability of our proposed protocol (Optimal Consensus with Dual Abnormality Mode,
OCDAM) is much better than that of Pan and Wang [27] whose protocol (CIoT Agreement
Protocol, CIoTAP) can only tolerate malicious abnormal PEs in ECIoT. Table 2 compares
the two protocols, where d is the number of dormant abnormal PEs, m is the number of
malicious abnormal PEs, and n is the number of PEs in the ECIoT. It can be seen from
Table 2 that if dormant anomalies and malicious anomalies can be treated separately, the
capability of fault tolerance will be enhanced.

Table 2. The comparison of the proposed protocol Optimal Consensus with Dual Abnormality Mode
(OCDAM) and CIoTAP in the edge-computing-based cellular Internet of Things (ECIoT).

n 6 7 8

OCDAM
m 0 1 2 0 1 2 3 0 1 2 3
d ≤5 ≤3 ≤1 ≤6 ≤4 ≤2 ≤0 ≤7 ≤5 ≤3 ≤1

CIoTAP [27]
m 0 1 2 0 1 2 3 0 1 2 3
d 0 0 0 0 0 0 0 0 0 0 0

3. The Network Structure

In the related applications of CIoT, millions of CIoT PEs can be connected to a single
base station (BS) for data collection [35]. In some time-sensitive applications, transmitting
the data sensed by CIoT PE directly through the Internet may not meet the time requirement.
Therefore, some calculations and data will reside on the cellular BS in the form of edge
computing devices (Edge PE) [7]. As a large number of different CIoT application services
must be provided, the demand for a variety of CIoT PEs will increase exponentially. In
order to meet the requirements of various CIoT application services, it is very important
that a reliable and durable connection communication should be provided. In addition,
the cellular networks can provide ubiquitous connectivity; it can reduce the possibility of
interruptions that may occur in traditional wireless networks.
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In recent years, CIoT with edge computing is one of the popular technologies in a
cellular system. With the increase in deployment density of CIoT PEs and the diversification
of related application services, high-reliability services in cellular networks have become
increasingly challenging. In this research, the high reliability of using edge computing
to deploy CIoT will be ensured. That is, the highly reliable CIoT platform ECIoT will be
discussed in this study. The structure of ECIoT used in this study is shown in Figure 1.

Figure 1. The structure of ECIoT.

In this study, ECIoT consists of three layers: Access-layer, Edge-layer, and Cloud-layer.
The Access-layer is composed of many CIoT PEs. For specific CIoT applications, CIoT PE
is used to sense and report the required sensing signal. Figure 2 shows the Access-layer
deployed using CIoT PEs. The CIoT PEs within the communication range of a specific BS
will connect to the specific BS and send the sensed data to the Edge-layer. Then, the data
needed to provide a specific application can be obtained by the Edge PEs in the Edge cloud.

Figure 2. The Access-layer of ECIoT.

The Edge-layer is formed by a set of Edge clouds, among which the Edge cloud is
composed of many Edge PEs. The data required for a specific application are processed by
Edge cloud. Some Cloud PEs form a Cloud-layer, and the services related to cloud users
are provided by these Cloud PEs. In ECIoT, various types of request data in real life will be
collected by a large number of CIoT PEs. By using these huge request data, a wide range of
CIoT application services can be implemented.

In this research, ECIoT was established based on edge computing. In order to reduce
the workload of the Cloud-layer, and to shorten the response time and save bandwidth,
the resources of computing and data storage are bridged closer to the required location.
Therefore, in Edge-layer, the required data of a specific application will be analyzed and
processed. In ECIoT, the computing and storage resources are provided by edge computing,
ECIoT can provide sufficient computing and data storage resources for connected PEs.
Therefore, ECIoT is a platform suitable for serving various CIoT applications.

4. The Optimal Consensus with Dual Abnormality Mode (OCDAM)

In order to solve the problem that ECIoT may not reach a consensus due to dormant
and malicious abnormal PEs existed, OCDAM is proposed by this research. Because the
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data received from normal PEs should be the same, based on the same data received,
each PE can easily achieve the same consensus value. Therefore, through the execution of
OCDAM, the interference of data transmitted from abnormal PEs to all normal PEs can be
eliminated. When PE performs data exchanges, all data will be encoded using Manchester
encoding [31], which can eliminate the influence of dormant abnormal PEs. Then, the
influence of malicious abnormal PEs can be eliminated by using special data structures
and voting functions. The detailed description of Manchester encoding is provided in
Appendix A.

Basically, the principle of OCDAM is to exchange data with each other PEs firstly, then
to remove the influence of abnormal PEs by taking the majority of data received from other
PEs. As if the lower bound of the number of data exchange is completed, all the influences
of abnormal PEs are proven to be removed and then the consensus can be reached. For
more details, CIoT PE is used to sense and transmit required sensing signals to the related
application services underlying the ECIoT. The sensing data are sent to the corresponding
Edge cloud in the Edge-layer by CIoT PEs. Edge PE located in the Edge cloud receives
the sensing data sent from CIoT PEs, and then the majority value of the received sensing
data is obtained. The majority value of the received data is used as the initial value (vi) of
the Edge PEi, which will be used to execute OCDAM. When the consensus value of each
Edge cloud is obtained, the value is expressed as the result of a specific service. Finally,
the consensus value is transmitted to the Cloud-layer by Edge PEs. In ECIoT, Cloud PE is
responsible for collecting the results of different specific services in the Cloud-layer, and
then the consensus values can be composed to provide an integrated service center for
various CIoT applications.

The characteristics of the connection topology will affect the resolution of consensus
problem. Therefore, in the past, all protocols on consensus problem were based on the
following assumptions [10,11,22–30]:

(1) The network discussed in the study is synchronous.
(2) All PEs of ECIoT (including CIoT PE, Edge PE, and Cloud PE) can be uniquely

identified.
(3) All transmitted data will be encoded using Manchester code [31] when PE performs

data exchange. Therefore, the dormant abnormal PE can be detected.
(4) The abnormal state of any PE cannot be known by other PEs.

By assumptions, it can be known that if the PE cannot be identified and is not unique,
the receiving PE cannot identify the sending PE for data exchange. It may not be possible
to eliminate the influence of abnormal PE, and thus the consensus cannot be reached.
Therefore, the assumptions must be satisfied, which is the limitation of the most research
on consensus problem.

Firstly, the times of data exchange required to execute OCDAM will be determined.
When the required times of data exchange is determined, the consensus protocol OCDAM
must perform two stages: Data Gathering Stage and Consensus Decision Stage. The task of
the Data Gathering Stage is to collect data from other PEs through ECIoT. In addition, all
data are encoded using Manchester code [31]; when PE is transmitting data, the influence
of dormant abnormal PEs can be eliminated in the Data Gathering Stage. Then, the data
received in the Data Gathering Stage are used by each normal PE to determine the common
consensus value in the Consensus Decision Stage.

Underlying the ECIoT environment, malicious and dormant abnormal PEs may simul-
taneously exist. In order for all normal PEs to reach a consensus value, the influences of
malicious and dormant abnormal PEs must be eliminated. As the data exchange is executed
by the PE, all exchanged data have been encoded using Manchester code [31]. Therefore,
PEs with dormant abnormal can be detected during the Data Gathering Stage. Then, the
influence of malicious abnormal PEs can be eliminated in the Consensus Decision Stage.
Therefore, the basic strategy of the proposed method to solve the consensus problem is to
remove the influence of the dormant abnormal PEs first, and then remove the influence of
the malicious abnormal PEs.
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In the research of Fischer and Lynch [10] and Wang et al. [26], b(n− 1)/3c + 1 has been
proved to be the necessary and sufficient times of data exchange to solve the consensus
problem, where n is the number of PEs in the basic network. Therefore, when OCDAM
is executed by the Edge PE, the required times of data exchange σ is b(nEj − 1)/3c + 1,
where nEj is the number of Edge PEs in the Edge cloud Ej at the Edge-layer and nEj > 3.
Moreover, when OCDAM is executed by Cloud PE, the required times of data exchange
σ is b(nC − 1)/3c + 1, where nC is the number of PEs in Cloud-layer and nC > 3. In other
words, if the abnormal components include dormant abnormal and malicious abnormal
PEs, OCDAM can make all normal PEs in ECIoT reach a consensus; at the same time, it
requires the minimum times of data exchange and can tolerate the maximum number of
abnormal components. The OCDAM is explained in the following.

The OCDAM proposed in this research includes two stages, in which the influence of
dormant abnormal PEs in CIoT will be eliminated in the Data Gathering Stage, and the
influence of malicious abnormal PEs in CIoT will be eliminated in the Consensus Decision
Stage. The elimination processes of the influence of dormant and malicious abnormal PE
in CIoT are shown in Figure 3 and discussed as follows.

Figure 3. The progression of the influence of dormant and malicious abnormal processing elements
(PEs) removed.

4.1. Removing the Influence of Dormant Abnormal PEs

During the Data Gathering Stage, the PE can identify the dormant abnormal PE after
receiving the data when the protocol uses the Manchester code [31] to properly encode the
transmitted data. Therefore, if the PE receives a data transmitted by dormant abnormal
PEs, “λ” is used by OCDAM to replace the data received from the dormant abnormal PE.

4.2. Mitigating the Influence of Malicious Abnormal PEs

Each PE need to collect enough data from other PEs to make a decision to obtain the
consensus value. These received data can be used to reduce the influence of malicious
abnormal PE. In the Data Gathering Stage, a hierarchical structure called a data gathering
graph (dg-graph) is used during data exchanges. The dg-graph is a hierarchical structure
that is used to store the received data, which is similar to the data structure proposed by
Pan and Wang [27]. The dg-graph is constructed by a set of nodes. The exchanged data are
stored in the node, and the node is marked with the name of the data sending PE. When
OCDAM is executed by Edge PEs and Cloud PEs in ECIoT, each normal PE will maintain a
dg-graph. This research assumes that each PE can correctly identify the PE sending the data.
Therefore, when Edge PEs and Cloud PEs execute the Data Gathering Stage of OCDAM,
the dg-graph will be established based on the information of the data senders. The detailed
description of dg-graph is provided in Appendix B.
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Since all data are encoded with Manchester code before data are exchanged, OCDAM
can eliminate the influence of dormant abnormal PEs. In the first time of Data Gathering
Stage, each PEi multicasts its initial value vi. When a normal PE receives the data, it stores
the received value, denoted as nd(i), in the level 1 of its dg-graph. Then each PE broadcasts
the data in the first level of its dg-graph to other PEs. However, the received data may still
be influenced by malicious abnormal PEs. Therefore, OCDAM requires b(n − 1)/3c + 1
data exchanges, where n is the total number of PEs in the basic network.

After finishing b(n − 1)/3c + 1 times of data exchange in the Data Gathering Stage,
each PE will execute the Consensus Decision Stage. Subsequently, function VOTE(α) is
used to remove the influence of malicious abnormal PEs and a common value is obtained.
Since VOTE(α) is a common value, each normal PE can mitigate the influence of malicious
abnormal PEs and agree on the value, thus reaching consensus. The detailed definition of
the OCDAM is shown in Figure 4.

Figure 4. The proposed OCDAM.

The purpose of the consensus protocol is to enable each normal PE in the network to
reach a consensus. Therefore, in order to reach a consensus, each PE should exchange data
with all other PEs. Then, each normal PE collects enough data to determine the consensus
value, and the consensus value of each normal PE must be the same. Since the ECIoT
discussed in this study is a synchronous network, there is no need to consider the delay of
PE in our discussion [10,11,22–27]. Therefore, when the PE executes the proposed protocol
OCDAM, the PE can receive data from other PEs within a predictable time. If the PE does
not receive the data on time, the data must be affected by the abnormal PE.

In this research, the proposed method is used to solve the consensus problem that dor-
mant and malicious abnormalities may occur in PEs of ECIoT. Since ECIoT is a three-layer
topology, the proposed method will be processed in a three-layer hierarchical structure,
followed by Access-layer, Edge-layer, and Cloud-layer. According to the three-layer archi-
tecture of ECIoT, the execution steps of the proposed method are shown in Figure 5.
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Figure 5. The execution steps of the proposed method.

The method proposed in this research will be activated by CIoT PEs at the Access-layer,
and through the CIoT, PEs can obtain the perception data required by specific application
services. To execute OCDAM, three parameters are required, σ, vi, and n where σ is the
times required to perform the Data Gathering Stage, vi is the initial value of PEi, and n is
the number of PEs participating in the consensus. In order for all normal PEs to reach a
consensus, each PE must collect enough exchange data from all other PEs. Through data
exchange, normal PEs can collect enough exchange data for the subsequent Consensus
Decision Stage.

5. The Example of the Proposed Method

Before the protocol being proven, an example of ECIoT is taken to simulate the full
steps of the protocol. This simple experiment can show the protocol can make all normal
PEs decide on a common value eventually. Besides, every common value decided is one-to-
one corresponding to the initial value of each normal PE. The three constraints of reaching
consensus had been satisfied.

Taking the system established by ECIoT as an example to execute the proposed method
is presented in this section. Figure 6 is an example environment constructed by ECIoT. In
this example, there are six CIoT PEs in the communication range of a specific BS1 at the
Access-layer. One is a dormant abnormal PE, one is a malicious abnormal PE, and four are
normal PEs. In Edge cloud E1 of Edge-layer, there are six Edge PEs. Edge PE e11 is assumed
in dormant abnormal and e14 is assumed in malicious abnormal. Cloud PE c5 is a dormant
abnormal PE and c4 is a malicious abnormal PE in Cloud-layer. Furthermore, there are six
Cloud PEs in Cloud-layer.

Figure 6. The example environment constructed by ECIoT.

In the proposed method, the Manchester code [31] is used to encode the transmitted
data, so the data routed through the dormant abnormal PE can be detected. Therefore, the
data sent by the dormant abnormal PE can be detected, and the received data are replaced
with λ. At the same time, the behavior of malicious abnormal PE is unpredictable, arbitrary,
and undetectable.
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Follow the steps shown in Figure 5. First, each CIoT PE in the Access-layer senses the
monitoring status. For example, there are six CIoT PEs within the communication range of
a specific BS1, and these six CIoT PEs sense 1, 0, 1, 1, 1, and λ, respectively. Figure 7 is an
example of the communication range of a specific BS1. Then, the sensing monitoring data
are transferred from CIoT PEs to the Edge PE in the Edge cloud E1 of Edge-layer.

Figure 7. An example of the communication range of a specific BS1.

The sensing data sent by the CIoT PEs within the communication range of the specific
BS1 are received by the Edge PE in the Edge cloud E1. If Edge PE receives the sensing
data sent by six CIoT PEs as (1,0,1,1,1,λ), these data will be calculated by Edge PE with a
majority function (majority(1,0,1,1,1,λ) = 1). Then, the number of times required to perform
the Data Gathering Stage in OCDAM (σ = b(nMj − 1)/3c + 1 = b(6 − 1)/3c + 1 = 2) is
calculated. Next, the OCDAM is executed, the majority value (1) is used as the initial value
(vi) of PE in the Edge cloud E1, and OCDAM(σ, vi, nMj) = OCDAM (2, 1, 6) is executed. The
initial value of each Edge PE in the Edge cloud E1 at the Edge-layer is shown in Figure 8a.

Then, OCDAM is executed by each Edge PE in the Edge cloud E1. During the first
time of data exchange in the Data Gathering Stage, each Edge PE in the Edge cloud E1
sends the initial value to all other Edge PEs of the Edge cloud E1 and receives nM1 (=6) data
from other Edge PEs. The data are stored in level 1 of the corresponding dg-graph of each
Edge PE, as shown in Figure 8b. During the second data exchange, each Edge PE sends the
data of level 1 in its dg-graph to other Edge PEs in the Edge cloud E1 and stores the received
data at the level 2 of its dg-graph in the nM1 (=6) nodes. Figure 8c,d shows the dg-graphs
established by Edge PE e12 and e13 during the Data Gathering Stage, respectively.

Subsequently, in the Consensus Decision Stage, the function VOTE(α) is applied to the
level 1 of the dg-graph with each Edge PE to obtain the consensus value. Finally, a consensus
vector can be obtained from each Edge PE in the Edge cloud E1. Among them, each element
in the consensus vector represents the consensus value of each Edge PE in the in the
Edge cloud E1. To calculate the majority value of each element in the consensus vector,
the consensus value of the Edge cloud E1 is obtained. Figure 8e,f shows the consensus
values obtained by Edge PEs e12 and e13, respectively. Finally, the consensus value (=1) is
obtained by each Edge PE in the Edge cloud, and the consensus value is transmitted to the
Cloud-layer.

Figure 8. Cont.
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Figure 8. (a) The initial value of each PE in Edge cloud E1 of Edge-layer. (b) The dg-graph of each PE in Edge cloud E1

during the first data exchange in the Data Gathering Stage. (c) The final dg-graph of e12 during the second data exchange in
the Data Gathering Stage. (d) The final dg-graph of e13 during the second data exchange in the Data Gathering Stage. (e) The
consensus value of e12 by Consensus Decision Stage. (f) The consensus value of e13 by Consensus Decision Stage.

When the Cloud PE in the Cloud-layer receives the consensus values sent by the Edge
PEs in the Edge cloud of Edge-layer, the received consensus values are calculated as a
majority value (majority (λ,1,1,1,0,1) = 1). The majority value is used as the initial value of
Cloud PE to execute OCDAM. Figure 9a shows the initial value of each Cloud PE in the
Cloud-layer. In this example, Cloud PE only needs to exchange data twice to execute the
Data Gathering Stage (σ = b(n − 1)/3c + 1+1 = b(6 − 1)/3c + 1 = 2, where nC is the number
of Cloud PE in the Cloud-layer). Then, OCDAM(σ, vi, nC) = OCDAM(2, 1, 6) is executed
by Cloud PE.

After that, OCDAM is executed by each Cloud PE in the Cloud-layer. In the first data
exchange of the Data Gathering Stage, the initial value of each Cloud PE is transmitted to all
other Cloud PEs, and nC (=6) data received from other nC Cloud PEs are stored in the level 1
of its corresponding dg-graph. The dg-graph of each Cloud PE in Cloud-layer at the first time
of Data Gathering Stage is shown in Figure 9b. In the second data exchange, each Cloud PE
sends the data stored in the level 1 of its dg-graph to other Cloud PEs in the Cloud-layer and
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stores the received data in the nC (=6) nodes of its dg-graph. Figure 9c,d show the dg-graphs
established by Cloud PE c2 and c3, respectively during Data Gathering Stage.

Subsequently, the function VOTE(α) is applied to level 1 of the dg-graph with each
Cloud PE to obtain the consensus value in the Consensus Decision Stage. Then, the
consensus vector (1,1,1,0,0,1) can be obtained by each Cloud PE in the Cloud-layer. The
consensus vectors of Cloud PE c2 and c3 are shown in Figure 9e,f, respectively. Finally,
through the provision of each Cloud PE in the Cloud-layer, the consensus of the CIoT
service constructed by ECIoT can be reached.

Figure 9. Cont.
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Figure 9. (a) The initial value of each Cloud PE of Cloud-layer. (b) The dg-graph of each Cloud PE in Cloud-layer during
the first data exchange in the Data Gathering Stage. (c) The final dg-graph of c2 during the second data exchange in the
Data Gathering Stage. (d) The final dg-graph of c3 during the second data exchange in the Data Gathering Stage. (e) The
consensus vector of c2 by Consensus Decision Stage. (f) The consensus vector of c3 by Consensus Decision Stage.
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6. The Correctness and Complexity of the Proposed Method

There are two main ways to solve a problem: Proofs and simulation/experiment.
The most complete method is to use mathematical logic to prove the correctness of the
solution proposed to solve the problem. When the problem is too sophisticated to derive a
mathematical proof, most researchers can use computer simulation to find out the possible
solutions or phenomenon [36]. Since the consensus problem is a theoretical problem, most
related studies in the past have proved the optimization of the consensus problem through
mathematical methods without any experiments [10,11,22–27,37]. In the paper, an example
with a simple experiment had been shown in Section 5. The pseudo code had been provided
in Appendix C for further simulation of the protocol by using any simulation tools. The
correctness and complexity of the protocol OCDAM will be proved following the method
of [10,11,22–27,37] in this section. First, the protocol proposed in this research can guarantee
the constraints: Termination, Agreement, and Integrity in Section 6.1. In addition, the
optimization of the proposed protocol will be verified by two points: (1) The times of data
exchange required to reach a consensus is minimal, and (2) the number of dormant and
malicious abnormal PEs that can be allowed is maximal.

The parameters used for the proof of the correctness and complexity of the proposed
protocol are listed in detail in Table 3.

Table 3. The parameters used in optimization proof.

Parameter Meaning

BSj the base station j at the Access-layer
nBj the total number of CIoT PEs within the communication range of BSj
fmBj the total number of allowable malicious abnormality PEs within the communication range of BSj
fdBj the total number of allowable dormant abnormality PEs within the communication range of BSj
fBj the total number of abnormal CIoT PEs allowed in the communication range of BSj and fBj = fmBj + fdBj
FA the total number of allowable dormant and malicious abnormal PEs in Access-layer
Ej Edge cloud j at the Edge-layer
nEj the total number of Edge PEs in Edge cloud Ej
fmEj the total number of allowed malicious abnormal Edge PEs in Edge cloud Ej
fdEj the total number of allowed dormant abnormal Edge PEs in Edge cloud Ej
fEj the total number of abnormal Edge PEs allowed in Edge cloud Ej and fEj = fmEj + fdEj
FE the total number of allowed dormant and malicious abnormal PEs in the Edge-layer
nC the total number of Cloud PEs in Cloud-layer
fmC the total number of allowed malicious abnormal Cloud PEs in Cloud-layer
fdC the total number of allowed dormant abnormal Cloud PEs in Cloud-layer
FC the total allowed number of dormant and malicious abnormal PEs in the Cloud-layer and FC = fmC + fdC
F the maximum number of dormant and malicious abnormal PEs allowed by executing OCDAM and F = FA + FE + FC

6.1. The Correctness Verification

To prove the correctness of the proposed protocol, a vertex α is called common if each
normal PE has the same value for α [10]. That is, if vertex α is common, then the value
stored in vertex α of each normal PE’s dg-graph is identical. When each normal PE has a
common initial value of PEi in the root of the dg-graph, if the root nd(i) of the dg-graph in a
normal PE is common and the initial value received from the PEi is stored in the root of the
dg-graph, then the consensus is reached because the root is common. Thus, the constraints
(Termination), (Agreement), and (Integrity) can be rewritten as:

Termination’: The value of Root i can be determined eventually, if the PEi is normal.
Agreement’: Root i is common.
Integrity’: VOTE(i) = vi for each normal PE, if the PEi is normal.
To prove that a vertex is common, the term common frontier is defined as follows:

When every root-to-leaf path of the dg-graph contains a common vertex, the collection of
the common vertices forms a common frontier. In other words, every normal PE has the
same data collected in the common frontier if a common frontier does exist in a normal
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PE’s dg-graph; subsequently, using the same majority voting function to compute the root
value of dg-graph, every normal PE can compute the same root value because the same
input (the same collected data in the common frontier) and the same computing function
will cause the same output (the root value).

Since the proposed method can solve the consensus problem, the correctness of the
proposed method should be examined by the following two terms.

(1) Correct vertex: Vertex αi of dg-graph is a correct vertex if PEi (the last PE name in the
name list of vertex αi) is normal. In other words, a correct vertex is a place to store the
value received from a normal PE.

(2) True value: For a correct vertex ai in the dg-graph of a normal PE, nd(ai) is the true
value of vertex ai. In other words, the stored value for a correct vertex is called the
true value.

By the definition of a correct vertex, its stored data is received from the normal PE,
and a normal PE always transmits the same data to all PEs; therefore, the correct vertices of
such dg-graph are common. Thus, the root can be proven a common vertex [(Agreement’) is
true] due to the existence of a common frontier, regardless of the correctness of PEi. The
consensus on the root value can now be reached.

Next, the validity of (Integrity’) needs to be checked. When PEi is abnormal, (Integrity’)
is true due to the propositional logic [(PÜQ)] means (NOT(P) OR Q), hence (NOT(P) OR
Q) or (PÜQ) is true when P is false, where P implies “PEi is abnormal” and (PÜQ) implies
(Integrity’) [9]. Conversely, root i is a correct vertex by the definition of a correct vertex
if PEi is normal. If all the correct vertices’ true values can be computed by the proposed
method, then the true value of the root can also be computed because the root is a correct
vertex. By definition, the true value of the root is the initial value of PEi if the PEi is normal.
In short, each normal PE’s root value is the initial value of PEi if PEi is normal; therefore,
(Integrity’) is true when PEi is normal.

Meanwhile, the ECIoT network discussed in the study is synchronous, and the pro-
tocol OCDAM will stop all normal PEs to exchange data as if the upper bound of times
of data exchange is reached. Every normal PEi executes Consensus Decision Stage to
determine VOTE(i). The condition (Termination’) is satisfied [38]. Since (Agreement’),
(Integrity’) and (Termination’) are true no matter whether PEi is normal or abnormal, the
consensus is solved.

Lemma 1. The data sent by a dormant abnormal PEs can be detected by the normal receiving PEs.

Proof. If the protocol encodes the transmitting messages by the Manchester code, the
dormant abnormal PE can be detected by the receiving PE.

Theorem 1. A normal receiving PE can receive data from sending PEs without influence from any
abnormal PEs between the sending PE and receiving PE in same cluster i if nBj > b(nBj − 1)/2c +
fmBj + fdBj or nEj >b(nEj − 1)/3c + 2fmEj + fdEj or nC > b(nC − 1)/3c + 2fmC + fdC.

Proof. By Lemma 1, we can remove the influence of dormant abnormal PEs between any
paired sending PE and receiving PE in each time of data exchange, and we can rule out
the influence of malicious abnormal PEs between any pairs of PEs in each time of data
exchange if nBj > b(nBj − 1)/2c + fmBj + fdBj or nEj > b(nEj − 1)/3c + 2fmEj + fdEj or nC > b(nC
− 1)/3c + 2fmC + fdC. This is because the normal sending PE sends nBj (or nEj or nC) copies
of data to normal receiving PEs. In the worst case, a normal receiving PE receives nBj −
fmBj + fdBj (or nEj − fmEj + fdEj or nC − 2fmC + fdC) data transmitted by the normal sending
PE because information from dormant abnormal PEs can be detected. Therefore, a normal
receiving PE can determine the normal data by taking the majority value.

Lemma 2. A normal receiving PE can detect the dormant abnormal sending PE.
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Proof. If the number of λ is greater than or equal to (ni − 1) − b(ni − 1)/3c where ni is the
number of PEs in cluster i, then the sending PE has a dormant abnormality. This is because
there are at most b(ni − 1)/3cmalicious abnormal PEs in the network, hence there are at
most b(ni − 1)/3c non-λ data.

Theorem 2. A normal PE can detect all dormant abnormal PEs in the ECIoT.

Proof. In the protocol OCDAM, there are b(n − 1)/3c + 1 times of data exchanges in
cluster i, where n ≥ 4. Thus, there are at least two times of data exchanges during the Data
Gathering Stage. Each normal PE can receive the data from the cluster i during the first
time of Data Gathering Stage and receive other PEs’ data during the second time of Data
Gathering Stage. Therefore, each PE of cluster i can receive all other PEs’ data in the same
cluster after two times of data exchanges. According to Lemma 2, each normal PE can
detect all dormant abnormal PEs within the cluster.

Lemma 3. All proper vertices of dg-graph are common.

Proof. There are no repeatable vertices remain in dg-graph. At the level b(n − 1)/3c + 1 or
above, the correct vertex α has at least 2b(n − 1)/3c + 1 children in which at least b(n −
1)/3c + 1 children are correct. The true value of these b(n − 1)/3c + 1 correct vertices is in
common, and the majority value of vertex α is common. The correct vertex α is common in
the dg-graph, if the level of α is less than b(n − 1)/3c + 1. As a result, all correct vertices of
the dg-graph are common.

Lemma 4. A common frontier exists in the dg-graph of the normal PE.

Proof. There are b(n − 1)/3c + 1 vertices along each root-to-leaf path of the dg-graph in
which the root is labeled by the name of PEi, and the others are labeled by a sequence of
PE names. Since at most b(n − 1)/3c PEs can be failed, there are at least one vertex that
is correct along each root-to-leaf path of the dg-graph. By Lemma 3, the correct vertex is
common, and the common frontier exists in each normal PE’s dg-graph.

Lemma 5. Let α be a vertex, α is common if there is a common border in the subtree rooted at α.

Proof. If the height of α is 0 and the common border of α exists, then α is common. If
the height of α is δ and the children of α are all consensus, by induction, the vertex α is
common for the children of height at δ−1.

Corollary 1. The root is common if a common border exists in the dg-graph.

Theorem 3. The root of a normal PE’s dg-graph is common.

Proof. By Lemmas 3–5, and Corollary 1, the theorem is proven.

Theorem 4. The proposed method solves the consensus problem in ECIoT.

Proof. To prove the theorem, it must be shown that the proposed method meets (Termina-
tion’), (Agreement’) and (Integrity’).

(Termination’): According to Theorems 1 and 2, each normal PEi can receive data
from the sending PE without being affected by any abnormal PE after performing the Data
Gathering Stage of OCDAM within b(n − 1)/3c + 1 times of data exchanges, where n ≥ 4.
Then, each normal PEi executes the Consensus Decision Stage of OCDAM to determine
VOTE(i). Therefore, no more data transits and a value VOTE(i) can be decided on, the
condition (Termination’) is satisfied.
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(Agreement’): By Theorem 3, the root of a normal PE’s dg-graph is common; hence,
(Agreement’) is satisfied.

(Integrity’): If PEi is normal, then it broadcasts the same initial data vi to all PEs. The
data of proper vertices for all normal PEs’ dg-graph is vi. Thus, each proper vertex of the
dg-graph is common (by Lemma 1), and its data are vi. Since the PEi is normal, the root
of the dg-graph is also a proper vertex by Lemma 5. By Theorem 3, this root is common.
The computed value VOTE(i) = vi is stored in the root for all normal PEs. Thus, (Integrity’)
is satisfied.

6.2. The Complexity Verification

The complexity of the proposed method will be verified by two factors: (1) The times
of data exchange required, and (2) the total number of abnormal PEs allowed. Theorems 5
and 6 have proved that the proposed method solves the consensus problem by using the
minimum times of data exchange and allowing the maximum number of abnormal PEs,
respectively. Therefore, the optimality of the proposed method will be obtained.

Theorem 5. The times of data exchange required to reach consensus with the proposed method is
the minimum.

Proof. In order to obtain the total times of data exchange required by the method proposed
in this research, the proof will calculate the times of data exchange required for each layer
of ECIoT separately.

(1) Access-layer: In the Access-layer, each CIoT PE sends the sensed data to the Edge-
layer during the Data Gathering Stage. Therefore, only one data exchange is required.

(2) Edge-layer: When OCDAM is executed, data exchange is only required during the
Data Gathering Stage. According to the research results of [10,11,26], in a distributed
system composed of n PEs, b(n − 1)/3c + 1 is the minimum times of data exchange
required to collect enough data to reach a consensus. Because the Edge PEs may be
in a dormant or malicious abnormal state in the Edge-layer of ECIoT, each Edge PE
in the Edge-layer must exchange data with other Edge PEs to collect enough data
to eliminate the influence of abnormal PEs. Therefore, the minimum times of data
exchange proposed in [10,11,26] can be applied to the Edge-layer. In other words,
in the Edge-layer, there are nEj Edge PEs in the Edge cloud Ej of Edge-layer, and
OCDAM needs to exchange b(nEj − 1)/3c + 1 times of data. In the E-cloud Edge-layer,
the Edge PE in each Edge cloud executes OCDAM in parallel; hence, the times of data
exchange required for each Edge PE to perform OCDAM in all Edge Clouds depends
on the number of Edge PEs in the Edge cloud.

(3) Cloud-layer: The times of data exchange required to discuss in Cloud-layer is similar
to that of Edge-layer discussions. The results of [10,11,26] can still be applied to
the Cloud-layer. In the Cloud-layer, there are nC Cloud PEs, so the Cloud PE needs
b(nC − 1)/3c + 1 times to exchange data when executing the Data Gathering Stage
of OCDAM. In other words, when nC Cloud PE exists in the Cloud-layer, OCDAM
will be executed by nC Cloud PE. At this time, each Cloud PE needs to perform
b(nC − 1)/3c + 1 data exchanges before reaching a consensus.

According to the description, the proposed method requires the minimum times of
data exchange when the consensus is reached.

Theorem 6. The total number of abnormal PEs allowed by OCDAM is the maximum.

Proof. In this proof, the total number of abnormal PEs allowed by OCDAM will be dis-
cussed separately through the three layers of ECIoT.

(1) Access-layer: Since the number of abnormal CIoT PEs within the communication
range of each specific BS in the Access-layer cannot exceed half, otherwise no consen-
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sus can be reached. According to the research result of Babaoglu and Drummond [23],
nBj > b(nBj − 1)/2c + fmBj + fdBj can be used to describe the number of CIoT PEs
required in the communication range of a specific BSj at the Access-layer. Then, FA is
defined as the total number of dormant and malicious abnormal PEs allowed in the
Access-layer, FA = ∑B

j=1 fBj and fBj = fmBj + fdBj, where B is the total number of BSs in
the Access-layer. In addition, nBj > b(nBj − 1)/2c + fmBj + fdBj is used to describe the
number of CIoT PEs required in the coverage of a specific BSj at the Access-layer.

(2) Edge-layer: According to the research results of Wang et al. [26], in a distributed
computing system with n PEs, the condition for reaching a consensus problem is n >
b(n − 1)/3c + 2fm + fd. Since ECIoT is a distributed computing system, the research
results of Wang et al. [26] can be directly applied to the Edge-layer. Therefore, in Edge
cloud Ej at the Edge-layer, the result that can be obtained is nEj >b(nEj − 1)/3c + 2fmEj

+ fdE. Then, FE = ∑E
j=1 fEj and fEj = fmEj + fdEj, where E is the total number of Edge

clouds in the Edge-layer. Furthermore, nEj > b(nEj − 1)/3c + 2fmEj + fdEj is used to
describe the number of Edge PEs in the Edge cloud Ej at the Edge-layer.

(3) Cloud-layer: The same as calculating the number of abnormal Edge PEs allowed in
Edge-layer, the results of Wang et al. [26] can also be directly applied to the Cloud-
layer. In a Cloud-layer composed of nC Cloud PEs, nC > b(nC − 1)/3c + 2fmC + fdC can
be obtained. Then, FC = fmC + fdC is the total number of abnormal PEs allowed in the
Cloud-layer, nC > b(nC − 1)/3c + 2fmC + fdC is used to describe the number of Cloud
PEs required in the Cloud-layer.

By adding the allowable number of abnormal PEs in the three layers of ECIoT, F = FA
+ FE + FC = ∑B

j=1 fBj + ∑E
j=1 fEj + FC, then the maximum number of abnormal PEs allowed

by the proposed method can be obtained. In other words, F is the maximum number of
abnormal PEs allowed by executing the proposed method in ECIoT to reach consensus.

Through the proofs in this section, the method proposed in this study can guarantee
the three constraints for solving the consensus problem, including Termination, Agree-
ment, and Integrity. The proposed method can be done with the minimum times of data
exchange and can tolerate the maximum number of dormant and malicious abnormal PEs,
so that normal PEs can reach a consensus. Therefore, the correctness and complexity of the
proposed method is proved.

7. Conclusions and Future Works

In this section, the conclusion of our research and the future works will be discussed.

7.1. Conclusion of Our Research

The IoT is the most viable technology to achieve connected life. Pervasive connectivity
can be achieved through intelligent, automatic, and perceptual physical objects that can
think and act intelligently without human intervention. Through the use of the IoT, it is
expected that the cost of personnel and organizations can be reduced, and a variety of novel
applications can be provided at the same time [2]. Wireless communication is one of the
most successful technologies in recent years. Through wireless communication, the com-
plexity associated with the IoT can be managed. It provides many potentially destructive
elements for traditional people-oriented broadband networks [39]. In addition, the cellular
network is expected to increase capacity, reduce end-to-end delay, improve reliability, and
increase coverage, and may even meet the most demanding IoT requirements [40].

The architecture of edge computing is the latest enhancement of network processing
capabilities, in which computing/storage capabilities are placed near the end user [35].
Therefore, the cellular network that provides CIoT services and provides the functions of
edge computing is very suitable for the widespread applications of IoT in the future. In
order to provide highly reliable services to these applications, a highly reliable CIoT envi-
ronment is required to support these large-scale applications. Consequently, the consensus
problem can achieve this goal.
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The consensus problem is one of the important issues discussed to improve the
reliability of distributed systems. Among them, the topology of the network is one of the
important factors that affect the resolution of consensus problems. In this study, ECIoT is a
CIoT platform integrated with edge computing to improve the high-quality services of CIoT.
In this research, the proposed method is used to solve the consensus problem that PEs may
be dormant or malicious abnormal in ECIoT. Since the consensus problem is a theoretical
problem, many related studies in the past have proved its optimization through mathematic
methods without conducting any experiments [10,11,22–27,38]. Therefore, detailed proofs
have been shown in this study to verify the optimization of the proposed method.

Due to the difference in network topology, the implementation of the consensus will
be affected, and all the protocols related to the consensus in the past are not suitable for
use under the topology of ECIoT. Therefore, in order to improve the reliability of ECIoT,
the OCDAM protocol is proposed in this study to solve the consensus problem in ECIoT.
The state in which the consensus problem has been resolved under different network
topologies is shown in Table 1. From Table 1, Meyer and Pradhan [11] focused on FCN,
Wang et al. [25] focused on MCN, Wang et al. [26] focused on IFIoT, and OCDAM focused
on ECIoT is proposed in this study to discuss the case of the dual abnormality mode, while
other related studies only discussed malicious anomalies.

The protocol CIoTAP proposed by Pan and Wang [27] can only tolerate malicious
abnormal PEs in an ECIoT and the maximum number of abnormal PEs allowed is ∑B

j=1 fmBj

+ ∑E
j=1 fmEj + fmC. In this research, the proposed protocol OCDAM can tolerate both

dormant and malicious abnormal PEs existing simultaneously in ECIoT and the maximum
number of abnormal PEs allowed is ∑B

j=1 fmBj + fdBj + ∑E
j=1 fmEj + fdEj + fmC + fd. Therefore,

the fault tolerance capability of our proposed protocol is much better than Pan et al. [27].
Furthermore, Pan et al. [27] lacked the proof of the correctness of their protocol. Conversely,
the correctness and the optimality of OCDAM had been both proved in the paper. Based
on the proof of this research in Section 6, the proposed consensus protocol OCDAM can
indeed use the minimum times of data exchange to ensure that all normal PEs in ECIoT
can reach a consensus. Meanwhile, OCDAM can allow the maximum number of dormant
and malicious abnormal PEs existed in ECIoT. To sum up, the protocol OCDAM is optimal
to make all normal PEs reach Termination, Agreement, and Integrity underlying ECIoT.

On the other hand, a simple instance is shown by using OCDAM in ECIoT, and a
highly reliable IoT application can be built. Because ECIoT is a distributed computing
system built by integrating edge computing, ECIoT can be widely used in the design and
practice of various distributed computing systems to provide the relevant CIoT services
required by users.

7.2. Future Works

The fallible component is restricted to abnormal PEs in the paper. It is not enough
to realize a highly reliable ECIoT. In the more generalized ECIoT, not only PEs may be
fallible in the network, but also transmission media may be fallible [30,41,42]. Therefore,
in future research, when the abnormal PEs and transmission media both exist in ECIoT
simultaneously, the proposed protocol will be extended to solve the generalized consensus
problem.

In addition, in order to maintain the reliability of ECIoT, another related problem
called the Fault Diagnosis Protocol (FDA) [43–46] will be discussed in the future. If a
protocol can be proposed to help each PE detect and locate abnormal components in ECIoT,
then the reliability of ECIoT can be maintained to provide a stable application service
environment for CIoT.



Sensors 2021, 21, 671 21 of 25

Author Contributions: Conceptualization, S.-H.P. and S.-C.W.; methodology, S.-H.P. and S.-C.W.;
formal analysis, S.-C.W.; writing—original draft preparation, S.-H.P.; writing—review and editing,
S.-H.P. and S.-C.W.; project administration, S.-C.W. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Acknowledgments: This work was supported in part by the Ministry of Science and Technology
MOST 107-2221-E-324-005-MY3.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A Manchester Encoding

Manchester coding is a synchronous clock coding technique used by the OSI physical
layer [31]. In this technology, the transmitted binary data will not be sent in the order of
logic 1 and 0. Table A1 is the encoding rules of Manchester code. Among them, logic 0 is
represented by 0 to 1 in the bit center (upward conversion in the bit center), and logic 1 is
represented by 1 to 0 (down conversion in the bit center) [31].

Table A1. The rules of Manchester encoding.

Original Data Value Sent

Logic 0 0 to 1 (upward conversion in the bit center)

Logic 1 1 to 0 (down conversion in the bit center)

The dormant abnormalities of PE include crashes and omissions. When the PE is
permanently disconnected, it can be said that the PE has a crash exception. In the event of
a crash, the PE will not send any signal to the receiving PE. When the PE cannot send or
receive signals in time or at all, an omission exception will occur. Therefore, if the protocol
encodes the transmitted data through the Manchester code before transmission, the normal
PE can detect the crash failure and the omission failure caused by the abnormal PE.

Appendix B dg-graph

For the first time of the Data Gathering Stage in OCDAM, each PEi transmits its initial
data to other PEs. When a normal PE receives the data sent by PEi, the received data
(denoted as nd(i)) will be stored in level 1 of its dg-graph. The second time, each PE sends
the data in level 1 of its dg-graph to all other PEs. If PE1 sends data nd(i) to PE2, PE2 stores
the received data (denoted as nd(i1)) in node i1 of its dg-graph. Similarly, if PE2 sends data
nd(i1) to PE1, the received data are named nd(i12) and stored in node i12 of PE1

′s dg-graph.
The data nd(i12...n) stored in the nodes i12...n of the dg-graph indicates that the data just
received are sent through PEi, PE1, ..., PEn; and PEn is the latest PE that transmits the data.
When data are transmitted through PE multiple times, the name of PE will be repeated
accordingly. In order to avoid the repeated influence of abnormal PE in the dg-graph, nodes
with duplicate PE names will be deleted. The PE name list contains the names of PEs
through which the stored data are transmitted. An example of the dg-graph is shown in
Figure A1.
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Figure A1. Example of dg-graph.

Appendix C The Pseudo Code of OCDAM

In order to facilitate the simulation experiment, the pseudo code of the proposed
OCDAM is shown in Figure A2. The functions involved in OCDAM are listed as follows:

send(i, <vi, >, n): PEi sends the initial value vi encoded using Manchester code to all n
PEs in the same cluster.

rvst(i, n, <vi, >, dg-graph(root)): PEi receives and stores the n <vi, > sent from n PEs of
same cluster in the corresponding root of its dg-graph. If the received data are transmitted
by a dormant abnormal PE, then the received data are replaced with λ and stored

send(i, <val, r − 1 > , n): PEi sends the values at level r−1 in its dg-graph encoded using
Manchester code to other n PEs in same cluster.

rvst(i, n, <val, r − 1 > , dg-graph(r)): PEi receives and stores the n <val, r − 1> sent from
n PEs of same cluster in the corresponding vertices at level r of its dg-graph. If the received
data are transmitted by a dormant abnormal PE, then the received data are replaced with λ

and stored
vote_value(dg-graph): compute the function value at the root of the dg-graph.
tree_maj(α): take the majority value of dg-graph.
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Figure A2. The pseudo code of OCDAM.
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