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Due to various regulatory barriers, it is increasingly difficult to move pseudonymised routine health

Farr Institute, Swansea Univer- data across platforms and among jurisdictions. To tackle this challenge, we summarized five ap-
sity Medical School, Swansea, UK . . - . . . .
2Usher Institute of Population proaches con5|delred to support a scientific research project focused on the risk of the new non-vitamin
Health Sciences and Informatics, K Target Specific Oral Anticoagulants (TSOACs) and collaborated between the Farr institute in
University of Edinburgh, Edin- Wales and Scotland
burgh, UK ’

3Public Health & Intelligence,
NHS National Services Scotland, ApproaCh . . . .
Edinburgh, UK In Wales, routinely collected health records held in the Secure Anonymous Information Linkage

(SAIL) Databank were used to identify the study cohort. In Scotland, data was extracted from
national dataset resources administered by the eData Research & Innovation Service (eDRIS) and
stored in the Scottish National Data Safe Haven. We adopted a federated data and multiple analysts
approach, but arranged simultaneous accesses for Welsh and Scottish analysts to generate study co-
horts separately by implementing the same algorithm. Our study cohort across two countries was
boosted to 6,829 patients towards risk analysis. Source datasets and data types applied to generate
cohorts were reviewed and compared by analysts based on both sites to ensure the consistency and
harmonised output.

Discussion

This project used a fusion of two approaches among five considered. The approach we adopted is a
simple, yet efficient and cost-effective method to ensure consistency in analysis and coherence with
multiple governance systems. It has limitations and potentials of extending and scaling. It can also
be considered as an initialisation of a developing infrastructure to support a distributed team science
approach to research using Electronic Health Records (EHRs) across the UK and more widely.
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Introduction conditions or outcomes (9,10,11); ascertain complete patient
pathways, care and outcome; accurate data for longitudinal
studies; cross-jurisdictional comparisons and so on (12). How-

There is an increasing trend of conducting health research by ever, due to various regulatory barriers, it is increasingly dif-
using data linkage of electronic records. Data linkage tech- ficult to move pseudonymised routine data across platforms
niques boost deeper analyses on data merged from informa- and among jurisdictions. Challenges arising from using data
tion contained in separate datasets regarding same individuals from multiple jurisdictions, i.e. legal issues, organisation ca-
(1,2). Health data linkage frameworks are well-established in pacity, financial cost, separation of roles and data ownership
a number of countries/regions, i.e. in Australia (3), Scot- have been partially addressed in the US, Australia and other
land (4), England (5) and Wales (6,7,8). There is limited European countries (13,14,15,16). An infrastructure in Aus-
literature on the practicalities of using linked data from dif- tralia was proposed for cross-jurisdictional health data linkage
ferent centres, countries and resources for research. Many research across states to improve the quality of population re-
research projects require data from multiple jurisdictions to search data (17). It has been implemented in various scientific
obtain sufficient power to answer scientific questions. These studies (18,19). The current environment, in the US, is char-
projects can benefit from larger sample sizes for greater sta- acterized by budget and technical challenges, but investments

tistical power, especially for small number of exposures, rare
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in data infrastructure are arguably cost-effective (20).

In 2014, a UK research collaboration, the Farr Institute of
Health Informatics Research, was established, comprising four
centres distributed across the UK (North of England, Wales,
London and Scotland) (21). Within the Farr Institute, we are
motivated to make a step further towards the development of
an infrastructure that allows for, and supports, cross-country
research within the UK and across the EU using Electronic
Health Records (EHRs). A recent scientific research project
collaborated between centres in Wales and Scotland focused
on the risk of the new non-vitamin K Target Specific Oral An-
ticoagulants (TSOAC) to a certain group of patients. This was
part of an EU project, led from the Farr Institute in Scotland
at Edinburgh and which the Farr Institute Wales at Swansea
agreed to join to develop and demonstrate cross-UK data in-
tegration and analysis. This project is also in the process of
including other European jurisdictions. Several recent ran-
domised controlled trials have provided strong evidence sup-
porting the safety and efficacy of TSOACs compared to the vi-
tamin K antagonist warfarin for patients with atrial fibrillation
(AF). TSOACs have a favourable risk—benefit profile, with sig-
nificant reductions in stroke, intracranial haemorrhage (ICH),
and mortality, and with similar major bleeding as for warfarin,
but increased gastrointestinal bleeding (22). However, the
cost-effectiveness of TSOACs is debated (23). TSOAC anti-
dotes for reversal of bleeding are not yet available, and the
safety and efficacy of TSOACs are unclear in patients who
were not included in the randomised controlled trials but who
clinicians feel may benefit. The safety issue of TSOACs in
people who have had an ICH is uncertain and requires investi-
gation. Due to the relative rarity of these circumstances, this
safety issue needs to be addressed with data from more than
one country.

We considered multiple approaches to achieve projects re-
quiring multi-site analysis, such as the TSOAC study, and sum-
marised their advantages and disadvantages, respectively. The
summarization is presented in Table 1.

In this paper, we report our approach in support of the
European scientific research project as a case study of cross
centre data-intensive research.

Approach

The first priority of the TSOAC study was to generate Welsh
and Scottish cohorts using the same algorithm and appropri-
ate source data from both sites respectively within a limited
period.

Data location and access

In Wales, routinely collected health records held in the Se-
cure Anonymous Information Linkage (SAIL) Databank were
used to identify the study cohort and follow up the patients
in this cohort. The SAIL Databank is a safe haven for bil-
lions of records on over 5 million living and deceased people
over the population of Wales, with a complete data linkage
and analysis toolset (see (2,6,7,24)). SAIL has a governance
procedure model with an extremely fast approval rate com-
pared to similar facilities. This has been achieved through
the development of the Information Governance Review Panel

(IGRP), which implements NHS ethics guidance on the use of
de-identified data for research. When an organisation agrees
to share data, they may choose to delegate due diligence on
governance and the use of their data to the IGRP. When a
researcher requires that data, approval is given directly by the
IGRP on behalf of the original data producers. Hence, re-
quests for multiple datasets can be handled quickly by a single
body with the delegated authority to make decisions. The
IGRP consists of representatives from the British Medical As-
sociation (BMA), National Research Ethics Service (NRES),
Public Health Wales NHS Trust, NHS Wales Informatics Ser-
vice (NWIS), and members of the public from the Consumer
Panel (1). An IGRP application with supportive information
was approved for the TSOAC project. This approval provided
analysts in Wales and Scotland access to de-identified data
from the Patient Episode Database for Wales (PEDW), Welsh
General Practice dataset (WLGP), and Annual District Death
Extract (ADDE) also known as Office of National Statistics
(ONS) mortality, held in the SAIL Databank.

Scotland does not have a single comprehensive national
data warehouse. Instead, data, under the responsibility of dif-
ferent data controllers, are held at both regional and national
levels and subsets (groups of variables) can be brought to-
gether when there are clear research questions that have pub-
lic benefit. The Public Benefit and Privacy Panel for Health
and Social Care (PBPP) is a governance structure of NHS
Scotland that was established with delegated authority from
NHS Scotland (NHSS) Chief Executive Officers and the Reg-
istrar General. The PBPP has a formal mandate to scrutinise
any request to use NHSS-controlled data and the NHS Central
Register data controlled by the Registrar General. The com-
mittee balances the benefits of undertaking research against
the potential risks to individuals’ privacy. The administrative
process that supports decision-making is layered to ensure that
decisions are made in a timely manner. A PBPP request, sup-
ported by evidence of prior Ethics Committee approval, was
successfully granted for this collaborative TSOAC study. Ana-
lysts based in Wales then gained access to the TSOAC project
in the Scottish National Data Safe Haven. Source data was
extracted from national dataset resources administered by the
eData Reseach & Innovation Service (eDRIS) (25).

Cohort generation

Based on the accesses granted and existing governance sys-
tems of each safe haven, we initially considered approaches 2
and 3, described in Table 1. Then the challenge was how to
tackle the remaining disadvantages of both approaches, i.e.,
harmonization of analysis strategies between multiple analysts
and long learning curves. In our experience of multi-site repli-
cation of research, it can be time consuming, as descriptions of
the generation of variables are often incomplete and substan-
tial amount of iterations are required. To shorten this step, we
arranged for the Swansea and Edinburgh analysts to have si-
multaneous access to each other’s data (fusion of approaches 2
and 3), which allowed for real-time viewing, creation of analyt-
ical codes and live discussion on how to tackle these practical
challenges. The conveniences of how real-time communication
on multiple screens worked effectively shortened the learning
curves of both analysts.

To construct the study cohort, the first step was to iden-
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tify patients who had experienced a non-traumatic intracra-
nial haemorrhage categorised from hospital admissions infor-
mation between 30/08/2013 and 30/06/2015. In Wales, the
source dataset used was PEDW, and in Scotland, the Gener-
al/Acute Inpatient and Day Case (SMRO01) dataset. Analyses
of the data in both centres used International Classification
of Disease 10th version (ICD-10) diagnostic codes. Linkage
to community prescription data identified those patients who
were subsequently administered an anticoagulant during the
90 days after an index hospital discharge for non-traumatic
intracranial haemorrhage. The datasets used to identify anti-
coagulant prescriptions were WLGP dataset in Wales and the
Prescribing Information System (PIS) in Scotland. The named
anticoagulants studied were: TSOACs (rivaroxaban, dabiga-
tran and apixaban) and warfarin (included as reference). Sub-
sequent mortality was identified through linkage to national
mortality records, which provide date and underlying cause
of death within the follow-up period (Welsh ADDE dataset
and National Records of Scotland (NRS) death records). The
primary outcome was the first subsequent hospital admission
for a Serious Vascular Event (SVE), including ischemic stroke,
systemic embolism, intracranial haemorrhage, or extracranial
haemorrhage within 1 year (follow-up period) from the index
discharge date. All available individual-level data in Scotland
for the case study is held in the Scottish National Data Safe
Haven, with the remaining study data (Welsh) held in the SAIL
Databank. The cohort generation algorithm is summarised in
Figure 1.

The Welsh and Scottish cohorts consisted of 2,676 and
4,153 patients respectively, as can be viewed in Table 2.

By applying the same cohort generation algorithm across
two countries, our study cohort was boosted to 6,829 patients
towards risk analysis.

Learning outcomes

Tables 3 and 4 present the differences in variables and their
definitions between the two systems.

Adopting a fusion of approaches 2 and 3 enables real-
time viewing, editing and communication. Source datasets
and data types applied to generate Welsh and Scottish co-
horts were reviewed and compared by analysts based on both
Swansea and Edinburgh sites to ensure the consistency. Ele-
ments that needed to be handled differently in two safe havens
were investigated and solutions identified. Based on these in-
vestigation results, an R script (see Appendix 1) was generated
for this study to manipulate datasets in both the Welsh and
Scottish safe havens to be able to produce a harmonised out-
put suitable for combination to answer the required research
questions given access and resources.

Discussion

After considering the options, this project took the approach of
a fusion of approaches 2 and 3, as there were existing analysts
at two centres, with each analyst accessing each distributed
system simultaneously, harmonising variables, co-writing ana-
lytical scripts and combining the outputs. This was the quick-
est and easiest method to ensure that consistency was em-
bedded in our analysis while working within the existing gov-

ernance systems of each safe haven. Too much extra, non-
project related resources, activities and agreements needed to
be achieved to reach the same final outcomes with a cen-
tralised data (approach 1) as the governance, security, IT and
approvals structures in each safe haven would have required
wider approvals and changes to existing implementations. This
would have added considerable extra work in Scotland as it
already had an existing approved project at the start of the
process. To adopt a linked federated data and analysis ap-
proach (approach 4), each site has to trust the central site
with established security protocols and governance approval.
There is no example of implementing this approach in the UK
yet. Providing datasets are completely harmonised (not the
case) to ensure the consistency of the analysis, a distributed
query approach (approach 5) could have been undertaken and
would probably have been acceptable to the governance man-
agements under which the project was executed. The barrier
to this approach is the lack of a generic distributed query en-
gine as these types of technologies tend to be very bespoke
and focused on specific research projects and their objectives.
Many research projects require data and rapid harmon-
isation of methods from more than one country or region
to promote and enable research. Our view is that using re-
mote access to data from distributed researchers, data visu-
alisation and real-time co-written analytical scripts can sig-
nificantly improve the efficiency of replication studies. The
approach we adopted is a simple, yet very efficient and cost-
effective method to ensure consistency in analysis and coher-
ence with multiple governance systems. The algorithm devel-
oped from this study for manipulating and combining datasets
in both Welsh and Scottish safe havens is limited to the rel-
evant datasets and variables used for this study. However, it
is easily extended and scalable to all available data, providing
sufficient time and resources are made available. While this
project is in the process of including other European jurisdic-
tions to answer the specific scientific questions, our approach
can also be considered as an initialisation of a developing in-
frastructure to support a distributed team science approach to
research using EHRs across the UK and more widely.
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Table 1: Summarization of considered approaches for a 3-centre analysis

Approach

Advantages/Disadvantages

1. Centralised data and analysis.

Data moved from 3 centres — 1 analyst (centralised data model)

Data Export
4 % w
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$

Location 4

pEs

(@ ..

Location 1 Location 2 Location 3

All data submitted from each site to a central
site.

Advantages

e Analysis is easier because of being fully in
control of a single researcher having all the
data available.

Disadvantages

e Each site must “trust” the central site and
must seek governance approval from each
site and perhaps put in place a legal con-
tract.

e Restrictions about data sovereignty may
prevent this approach.

2. Federated data and single analyst.

Data at 3 centres — 1 analyst accessing each platform then combining results

»

(@

summary of
results/Analysis
4

v

N

€ Result

2

(Ce

(Je

Location 1 Location 2 Location 3

Same researcher accesses each system separately
and combines outputs.

Advantages
e Same researcher so same approach.
Disadvantages

e Access to separate systems and learning
curves.

e Separate access contracts and conditions
of use.

e If outputs need combined individual level
analysis, then not workable.

3. Federated data and multiple analysts.
Data at 3 centres — 3 separate analyses, combine results

summaryof | gcation 4
*

~ resultsfAnalysis

Location 1 Location 2 Location 3

All analysis done separately by host site with out-
puts collated.

Advantages

e Can be done quickly as each site knows
their own system.

Disadvantages

e Consistency can be hard to achieve so
more validation and process documenta-
tion required.

e If outputs need combined individual level
analysis, then not workable.

e Dependant on resources available at each
local site.
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Table 1. Cont. Summarization of considered approaches for a 3-centre analysis

Approach

Advantages/Disadvantages

4. Linked federated data and analysis.
Data at 3 centres — 1 analyst (remote real time access model)

2.

l Result
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Brokered remote
connection
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Location 3

The sites have established inter connections. From a site the
researcher can access all the required data.

Advantages

e Analysis is easier because of being fully in control of the
researcher having all the data available.

Disadvantages

e Each site must “trust” the central site and must seek
governance approval from each site and perhaps put in
place a legal contract.

e Restrictions about data sovereignty may prevent this ap-
proach.

5. Federated data and distributed analysis.
Data at 3 centres — 1 analyst directing federated queries

Summary of
results/Analysis

O A

X Q725D Nah,..
a0 sis
: LOJFO

Location 4

- »

'y

E\esu\". -

Result
M CDM

Location 2

(g

Location 3

Location 1

Using a distributed query system — issue same query to all
sites.

Advantages
e Same analysis performed in each site.

e No data moving so could be good for cross country re-
strictions.

Disadvantages
e Common data model required.
e Data needs to be harmonised.

e More complex from an IT and governance perspective.

Table 2: Study cohorts

Welsh cohort

Male 1,347
Female 1,329
Total 2,676

Scottish cohort  Total
1,938 3,285
2,215 3,544
4,153 6,829
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Hospital admission
records in secondary
care data

(Datasets used: PEDW
in Wales; SMRO1 in
Scotland)

Patients with
non-traumatic

intracranial
haemorrhage related
hospital admission
within the study
period

Figure 1: Cohort generation algorithm

Primary care
data/community
prescription data

(Datasets used: WLGP in
Wales; PIS in Scotland)

Patients with TSOAC
prescription (TSOAC:
rivaroxaban,
dabigatran or
apixaban) 90 days
after discharge

Patients with
warfarin prescription
90 days after
discharge

Patients with neither
TSOAC or warfarin
prescribtion 90 days
after discharge

Hospital admission
records in secondary
care data and national
death records within 1
year follow-up

(Datesets used: PEDW &

ADDE in Wales; SMR0O1 &
NRS in Scotland)

Patients died of serious
vascular event

Patients admitted to
hospital due to serious
vascular disease

None of the above
two events

Patients died of serious
vascular event

Patients admitted to
hospital due to serious
vascular disease

None of the above
two events

Patients died of serious
vascular event

Patients admitted to
hospital due to serious
vascular disease

None of the above two
events
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Table 3: Variables comparison between Welsh and Scottish data

Welsh cohort
Variable name

Scottish cohort

Source data  Variable name

Source data

Patient identity & ALF_E PEDW UPI_NUMBER SMRO1
linkage field

Admission date ADMIS DT PEDW ADMISSION DATE SMRO01
Admission methods ~ ADMIS _MTHD CD PEDW ADMISSION _TYPE SMRO1
Discharge types DISCH_MTHD_CD PEDW DISCHARGE _TYPE SMRO1
Drugs prescription EVENT _CD WLGP BNFltemcode PIS
Date of prescription EVENT DT WLGP PRES DATE PIS
Date of birth WOB ADDE DATE_OF BIRTH NRS
Gender GNDR_CD ADDE SEX NRS
Deprivation quintile ~ WIMD2011 5TH PEDW SIMD _QUINTILE SMRO1
Primary cause of DEATHCAUSE DIAG UNDERLYING CD ADDE CAUSE_OF DEATH_ CODE NRS
death

Date of death DOD ADDE DATE OF DEATH NRS

Table 4: Different data definitions in Wales and Scotland

Welsh data Scottish data
Gender 0 N/A Not known (i.e. indeterminate sex, includes intersex)
1 Male Male
2 Female Female
8 Not specified N/A
9 N/A Not specified (includes not stated by patient, or not
recorded)
Date Date format YYYY-MM-DD DDMMYY

Drug

Drug information

EVENT _CD: READ codes, e.g. bs74.

British National Formulary Drug Codes (BNF). e.g.

BNF item code 0601011A0BBADAC
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Appendix 1

library(RODBC) ;
##EXTRACT PATIENTS ADMITTED TO HOSPITAL WITH ICH IN WALES
##ALF_STS_CD IN (°1’,°4°,°39°) COVER ALF_Es WITH GOOD MATCHING
##SCORES
ICHWales<- sqlQuery(sql,"SELECT ALF_E, PERSON_SPELL_ADMIS_DT,
PERSON_SPELL_DISCH_DT, PERSON_SPELL_NUM_E FROM (
SELECT B.ALF_E, A.PERSON_SPELL_ADMIS_DT,
A .PERSON_SPELL_DISCH_DT, A.PERSON_SPELL_NUM_E,
ROW_NUMBER () OVER (PARTITION BY B.ALF_E ORDER BY
A .PERSON_SPELL_ADMIS_DT) AS SEQ FROM (
(SELECT MIN(ADMIS_DT) AS PERSON_SPELL_ADMIS_DT,
MAX (DISCH_DT) AS PERSON_SPELL_DISCH_DT,
PERSON_SPELL_NUM_E
FROM
(
SELECT DISTINCT ALF_E, ADMIS_DT, DISCH_DT,
PERSON_SPELL_NUM_E
FROM PEDW
WHERE EPI_NUM=1
AND (DIAG_CD_123=160’
OR DIAG_CD_123="1I61’
OR DIAG_CD_123=’162")
AND
ALF_STS_CD IN (°1°,°4°,°39°)
AND ALF_E IS NOT NULL
AND ADMIS_DT<=’YYYY-MM-DD’
)
GROUP BY PERSON_SPELL_NUM_E )A
LEFT JOIN (
SELECT DISTINCT ALF_E, PERSON_SPELL_NUM_E FROM
PEDW
WHERE EPI_NUM=1
AND (DIAG_CD_123=°160°
OR DIAG_CD_123=’161"
OR DIAG_CD_123="162)
AND
ALF_STS_CD IN (’1°,°4?,°39°)
AND ALF_E IS NOT NULL
AND ADMIS_DT<=’YYYY-MM-DD’
) B
ON A.PERSON_SPELL_NUM_E=B.PERSON_SPELL_NUM_E
)
)
WHERE SEQ=1");

##LOOK FOR DEATH RECORDS FOR ANY OF THE PATIENTS WITH ICH RELATED

##HOSPITAL ADMISSION IN WALES

##THIS TABLE INCLUDES INDIVIDUAL INFORMATION OF PRIMARY AND

##SECODARY CAUSES OF DEATH

DeathWales<- sqlQuery(sql,"SELECT * FROM ADDE WHERE ALF_E IN
(SELECT ALF_E FROM ICHpatients)");

10
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##L0OOK FOR ADMISSION RECORDS FOR ANY OF ICH PATIENTS RE-ADMITTED TO
##HOSPITAL WITH SERIOUS VASCULAR DISEASE
ReadmissionWales <- sqlQuery(sql,"SELECT * FROM(
SELECT A.*, ROW_NUMBER () OVER
(PARTITION BY
A.ALF_E ORDER BY A.ADMIS_DT) AS SEQ FROM(
SELECT * FROM PEDW
WHERE EPI_NUM=1
AND (substr(DIAG_CD_1234, 1, 3) IN
(SELECT ICD10
FROM RelaventICDcodes)
OR DIAG_CD_1234 IN (SELECT ICD10 FROM
RelaventICDcodes))
) A
INNER JOIN ICHPATIENTSLIST B
ON A.ALF_E=B.ALF_E
AND B.PERSON_SPELL_DISCH_DT < A.ADMIS_DT
)
WHERE SEQ=1");

##ANY OF THESE PATIENTS HAVE BEEN PRISCRIDED TSOACS OR WARFARIN
##0NLY APIXABAN IS ILLUSTRATED HERE, SAME ALGOTHRIM CAN BE APPLIED TO
##0THER DRUG PRESCRIBTIONS
APIXABANWales<- sqlQuery(sql,"SELECT A.ALF_E, A.PRAC_CD_E,
A.LOCAL_NUM_C
, A.EVENT_CD, A.EVENT_DT, A.EVENT_YR,
A.SOURCE_EXTRACT, B.CD_DESCRIPTION
FROM
(SELECT * FROM WLGP
WHERE EVENT_DT>=’YYYY-MM-DD’
YA
INNER JOIN READCODESFORAPIXABANPRESCRIBTION B
ON A.EVENT_CD=B.READ_CD");

##MERGE TO PRODUCE WELSH STUDY COHORT

##AGAIM ONLY APIXABAN IS ILLUSTRATED HERE

ICHDeathWales <- merge(ICHWales, DeathWales, by="ALF_E");

ICHDeathReadmWales<- merge(ICHDeathWales, ReadmissionWales,
by="ALF_E");

ICHDeathReadmAPIWales<- merge (ICHDeathReadmWales, APIXABANWales,
by="ALF_E");
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##EVENT WAS DEFINED AS DEATH OR READMISSION DUE TO SERIOUS VASCULAR
##EVENTS
##ALL TSOACS AND WARFRIN HAVE BEEN GROUPED TO ONE COLUMN CALLED
##DRUG WITH FLAGS
TSOACWales <- ICHDeathReadmAPIDABRIVWARWales#WELSH COHORT MEATATABLE
[,c("ALF_E"
, "AGE"
, "AGE_GROUP"
, "GENDER"
,"WIMD2011_BTH"
."ADMIS_MTHD_CD"
,"ENTRY_DT" # ADMISSION DATE
,"DOD" #DATE OF DEATH
,’ ’DEATH_PRI_OUTCOME’ *#FLAG WHETHER DEATH WAS DUE TO
#SERIOUS VASCULAR EVENTS
, "READMIS_PRI"#FLAG WHETHER READMISSION WAS DUE TO
#SERIOUS VASCULAR EVENTS
, "EVENT_DT"
,"EXPOSURE" #FLAG WHETHER TSOAC OR WARFARIN
# PRESCRIBTION HAD BEEN GIVEN
, "EXPOSURE_DT"#DATE OF TSOAC OR WARFARIN
#PRESCRIBTION
,"DRUG" #TSOAC, WARFARIN OR NEITHER
)1;

##CHANGE COLUMN NAMES

colnames (TSOACWales) <- c(
"IDENTIFIER"
,"AGE"
, "AGE_GROUP"
, "GENDER"
,"DEPRIVATION"
."ADMISSION_METHOD"
, "ENTRY_DATE"
, "DEATH_DATE"
,"DEATH_PRIMARY_OUTCOME"
,"READMISSION_PRIMARY_QUTCOME"
, "EVENT_DATE"
, "EXPOSURE"
, "EXPOSURE_DATE"
, "DRUG"
)

ICHScotland <- sqlQuery(sql,"SELECT TO.UPI, TO.ID_ISD, TO.INDEX_DATE,
TO.INDEX_CIS,
T1.ADMISSION_DATE, T1.ADMISSION_REASON,
T1.ADMISSION_TYPE,
T1.AGE_IN_YEARS, T1.DISCHARGE_TYPE,
T1.DISCHARGE_DATE,
T1.DR_POSTCODE, MANAGEMENT_OF_PATIENT,
T1.CIS_MARKER,
T1.MAIN_CONDITION, T1.0THER_CONDITION_1,
T1.0THER_CONDITION_2, T1.0THER_CONDITION_3,
T1.0THER_CONDITION_4, T1.0THER_CONDITION_5,
T1.MAIN_OPERATION, T1.0THER_OPERATION_1,
T1.0THER_OPERATION_2, T1.0THER_OPERATION_3,
T1.SEX,
T1.UPI_NUMBER FROM { UPIfile TO LEFT OUTER
JOIN SMRO1 T1
ON TO.UPI = T1.UPI_NUMBER}
")
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DeathScotland<- sqlQuery(sql,"SELECT TO.UPI, TO.ID_ISD,
TO.INDEX_DATE, T1.AGE,
T1.CAUSE_OF_DEATH_CODE_O,
T1.CAUSE_OF_DEATH_CODE_1,

T1.CAUSE_OF _DEATH_CODE_2,
T1.CAUSE_OF_DEATH_CODE_3,
T1.CAUSE_OF_DEATH_CODE_4,
T1.CAUSE_OF_DEATH_CODE_5,
T1.CAUSE_OF_DEATH_CODE_6,
T1.CAUSE_OF _DEATH_CODE_7,
T1.CAUSE_OF_DEATH_CODE_S8,
T1.CAUSE_OF_DEATH_CODE_9,
T1.DATE_OF_DEATH, T1.SEX, T1.UPI_NUMBER
FROM { UPIfile

TO LEFT OUTER JOIN

NRS T1 ON TO.UPI = T1.UPI_NUMBER }
ORDER BY TO.UPI ASC’");

DrugScotland<- sqlQuery(sql," SELECT PatUPIC
PatPostcodeC A21
PatCareHomeResidencyFlag Al
PrescDate A19
DispDate A19
PIBNFItemDescription A23
PIItemStrengthUOM A14
PIDailyDose F1.0
PIDailyDoseUOM F1.0
PIApprovedName A15
PIDailyDoseConversion F3.1
PaidQuantity F3.0
NumberofPaidItems F1.0.

FROM PIS

WHERE DATE #DATE HAS TO BE
#WITHIN 90 DAYS

#AFTER DISCHARE IN THIS STUDY
AND UPI #PATIENTS WITH ICD

# ADMISSION

)3

##MERGE TOGETHER TO OBATIN SCOTTISH SOTUDY COHORT
TSOACScotland <- ICHDeathReadmAPIDABRIVWARScotland #SCOTTISH COHORT

[,c(

"UPI_NUMBER"

,"AGE_IN_YEARS"

, "AGE_GROUP"

, "SEX"

,"SIMD"

,"ADMISSION_TYPE"

,"ENTRY_DATE"

, "DEATH_DATE"

,"CAUSE_OF_DEATH_CODE"

,"ADMISSION_DATE"

, "EVENT_DATE"

, "EXPOSURE"

, "EXPOSURE_DATE"

, "DRUG"

)15
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colnames (TSOACScotland) <- c(
"IDENTIFIER"
,"AGE"
,"AGE_GROUP"
, "GENDER"
,"DEPRIVATION"
, "ADMISSION_METHOD"
,"ENTRY_DATE"
, "DEATH_DATE"
,"DEATH_PRIMARY_QUTCOME"
,"READMISSION_PRIMARY_QOUTCOME"
, "EVENT_DATE"
, "EXPOSURE"
, "EXPOSURE_DATE"
, "DRUG"
);

##IF TWO COHORTS CAN BE COMBINED, A FEW ADJUSTMENTS ARE NEEDED BEFORE

##UPDATE GENDER CODE. IN SCOTLAND FROM O AND 9 TO 8

TSOACScot1land$GENDER [TSOACScotland$GENDER==0 | TSOACScotland$GENDER==9]
<- 8;

##UPDATE DATE IN SCOTLAND FROM DD/MM/YY TO DD-MM-YYYY
TSOACScotland$ENTRY_DATE <- as.Date(TSOACScotland$ENTRY_DATE, format=
110/ 30/_.0 n
yAYA VAR

TSOACScotland$DEATH_DATE <- as.Date(TSOACScotland$DEATH_DATE, format
= "%d%m%y") ;

TSOACScotland$EVENT_DATE <- as.Date(TSOACScotland$EVENT_DATE, format
— no, 0, 0 n .
= "%d%mAy") ;

TSOACScotland$EXPOSURE_DATE
format = "%d%miy") ;

N
I

as.Date (TSOACScotland$EXPOSURE_DATE,

##ADD A FLAG INDICATE WHERE THE PATIENT CAME FROM
TSOACScotland$LOCATION <- S
TSOACWales$LOCATION <- W

##UNION WALESH AND SCOTTISH DATASETS
TSOAC <- rbind(TSOACWales,TSOACScotland);

##GIVE STUDY_ID

TSOAC$STUDY_ID <- seq.int (nrow(TSOAC));

##DROP THE COLUMN IDENTIFIER WHICH INCLUDES ALF_E AND UPI_NUMBER
drop <- c("IDENTIFIER")

TSOAC[ , !(names(TSOAC) %in% drop)]



