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Metabolic assessment of the action of targeted cancer
therapeutics using magnetic resonance spectroscopy
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Developing rational targeted cancer drugs requires the implementation of pharmacodynamic (PD), preferably non-invasive,
biomarkers to aid response assessment and patient follow-up. Magnetic resonance spectroscopy (MRS) allows the non-invasive study
of tumour metabolism. We describe the MRS-detectable PD biomarkers resulting from the action of targeted therapeutics, and
discuss their biological significance and future translation into clinical use.
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The increased understanding of the molecular mechanisms
underlying oncogenesis has led to contemporary drug discovery
programmes being aimed predominantly at signal transduction
pathways and molecules that drive cancer initiation and progres-
sion (Gibbs, 2000). The specificity of these agents against a
particular deregulated protein/pathway creates new possibilities
for tailoring treatment to a particular patient depending on the
molecular profile and characteristics of the tumour under
investigation (Workman and Kaye, 2002).

Many new agents aimed at blocking particular oncogenic targets are
now being used in the clinic, with some having already gained
regulatory approval for treatment of certain types of cancers. One
example is imatinib mesylate (Gleevec, formerly STI571), which was
the first mechanism-based drug targeting an oncogenic molecule to
gain FDA approval. Imatinib blocks many protein kinases, including
fusion proteins BCR-ABL and KIT, and has been approved for the
treatment of chronic myelogenous leukaemia and gastrointestinal
stromal tumours.

For the clinical development and evaluation of targeted
therapies, and because of the cytostatic mode of action of many
of these agents, the methods currently used for assessing tumour
response, such as volumetric measurements, may not be adequate.
Therefore novel functional pharmacodynamic (PD) biomarkers are
required for early stage hypothesis testing to report on target
inhibition, assess treatment efficacy and ultimately aid in patient
management (Workman et al, 2006; Banerji et al, 2008). Current
techniques for PD biomarker analysis in tumours involve taking
surgical biopsy samples for analysis by western blot or ELISA-
based assays. This approach has its limitations, as the results
obtained can depend on the sampling of heterogeneous disease
and sample collection and handling procedure, not to mention the
risk and discomfort that may be caused to the patient (Workman
et al, 2006). Patient acceptance usually limits biopsies to a subset
of patients who might also have accessible disease, and generally

precludes multiple sampling during treatment. Another approach
is to measure samples from the plasma, which provides a source
for many markers such as circulating tumour cells, proteins,
metabolites and so on. However, this technique suffers from low
sensitivity of detection, at least for proteins, and as with tumour
biopsies, measurements can be confounded by variability in
sample collection, handling and storage, and as a result, the quality
of data is often compromised (Hanash et al, 2008). The use of
normal tissue surrogates for therapeutic action (e.g., hair follicles)
has the disadvantage that it may not reflect the molecular
expression of the targeted pathway present in tumours.

Non-invasive imaging end points have a distinct advantage in this
regard, and are being developed for assessing PD markers of drug
activity (Workman et al, 2006). There are various non-invasive
imaging techniques that can report on tissue function and metabolism,
including positron emission tomography (PET), ultrasound, magnetic
resonance imaging (MRI) and magnetic resonance spectroscopy
(MRS), with each providing a different set of readouts (e.g.,
metabolism, proliferation, cellularity and so on). This review focuses
on MRS as a method for metabolic imaging of PD biomarkers.

PRINCIPLE AND APPLICATIONS OF MRS

Certain atomic nuclei, for example, 1H, 31P, 13C and 19F, possess a
magnetic property known as the ‘spin’. Metabolites containing these
nuclei are detected by means of the interaction of the radio-frequency
electromagnetic field with the spin of these nuclei in a strong magnetic
field. The separation of resonance frequencies from a chosen reference
frequency is termed as the ‘chemical shift’, and is expressed in terms
of the dimensionless unit parts per million (p.p.m.) (Gadian, 1995).
Metabolites can be identified by their characteristic chemical shift,
because of their different chemical structures.

The most common MRS methodologies used to study tumour
metabolism are briefly described below (for further details see
Chung et al, 2006):

� In vivo MRS – It can be used to measure the metabolite content
of tumours in living animals or patients, repeatedly and
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non-invasively. Subjects are placed in the bore of the magnet
with the tumour positioned in the centre of a surface coil.
Localised spectra are acquired and analysed to determine
precise chemical shifts and peak integrals. The in vivo results
are often expressed as ratios of one metabolite to another.

� High-resolution magic-angle spinning spectroscopy (HR-MAS)
– It can be used to examine intact cells or small tissue samples
(e.g., tumour biopsies). It is invasive but only requires minimal
sample preparation. It provides better spectral resolution than
in vivo MRS and the metabolite levels are often expressed as
ratios.

� In vitro MRS – It provides a far superior spectral resolution to
either HR-MAS or in vivo MRS but is invasive and more time
consuming in sample preparation than HR-MAS. Cell or tumour
samples are first extracted by perchloric acid or methanol/
chloroform dual-phase methods, in which water-soluble meta-
bolites and/or lipid metabolites can be obtained. A reference
compound with a known concentration is added to the extracts
for metabolite quantitation and chemical shift calibration. The
metabolite levels are expressed as concentrations.

Magnetic resonance spectroscopy offers a non-invasive means
to monitor cell and whole-tissue biochemistry, as it can detect
several metabolites in one single measurement and without earlier
specification or selection. Magnetic resonance spectroscopy
measurements generally include MRI scans that guide localisation
of MRS signals to a particular region. They can also provide a wide
range of anatomical and functional information as part of the same
investigation.

1H-MRS has the highest sensitivity and can detect many
metabolites including lipids, creatine/phosphocreatine (PCr),
glycolytic intermediates such as glucose, glutamine/glutamate
and lactate, in addition to choline-containing compounds
such as phosphocholine (PC) and glycerophosphocholine (GPC).
31P-MRS, on the other hand, has particular value for studies
concerned with tissue bioenergetics, pH and membrane turnover,
as it can detect the presence of bioenergetic metabolites such as
nucleotide triphosphates (NTPs), PCr and inorganic phosphate
(Pi), in addition to membrane phospholipid metabolites including
phosphomonoesters (PMEs), which comprise PC and phos-
phoethanolamine (PE), and phosphodiesters (PDEs), which
comprise GPC and glycerophosphoethanolamine (GPE). 13C-MRS
is used to monitor the uptake and metabolism of 13C-enriched

metabolites and serves as a tool for monitoring the fate of the label,
as it is incorporated into other metabolic intermediates such as
glutamine and lactate in the case of 13C-labelled glucose.

High levels of PMEs, PDEs and total choline (tCho) are observed
in tumours by in vivo 31P- and 1H-MRS, which are characteristic
metabolic features of cancer (Negendank, 1992; Leach et al, 1998).
These changes are often reversed on successful treatment with
chemo- or radiotherapy and are now being explored as biomarkers
for tumour diagnosis, staging and clinical response monitoring
(Payne and Leach, 2006; Shah et al, 2006). High glucose consump-
tion, as well as lactate production, is another characteristic of
cancer cells (also known as the Warburg effect) that forms the basis
for metabolic imaging by [18F]fluoro-2-deoxy-D-glucose-PET.
Several studies have shown the potential of 1H- and 13C-MRS for
monitoring glucose metabolism in pre-clinical models of cancer
(Aboagye et al, 1998; Rivenzon-Segal et al, 2002). However, the
clinical measurement of this process in humans by MRS requires
further development, which means that, so far, the reported clinical
use of MRS has focused primarily on investigating phospholipid
metabolism.

Several studies have investigated MRS as an imaging tool for
detecting PD biomarkers of the action of novel therapies targeted at
aberrant signal transduction pathways. Because only a handful of
these agents have so far gained FDA approval, and the fact that most
are still in pre-clinical development or early-phase clinical testing,
most of the MRS studies performed to date have been concerned
with pre-clinical cancer models, including cells and tumour
xenografts. However, the technology has been demonstrated in a
range of diagnostic and response assessment clinical studies (Howe
et al, 2003; Meisamy et al, 2004; Vilanova et al, 2009).

In this paper, we review the current applications of MRS to
identify metabolic PD biomarkers within the tumour that follow the
action of molecularly targeted cancer therapeutics, with reference to
some specific examples. We also discuss the biological significance
of these biomarkers in terms of drug-induced anti-neoplastic
activity and how they can be translated to patient studies.

MRS-DETECTABLE PD BIOMARKERS OF TARGETED
CANCER THERAPIES

Table 1 summarises some of the MRS studies monitoring response
to different classes of targeted therapies. The changes in

Table 1 Summary of MRS studies used to assess response to different classes of molecular-targeted therapies in pre-clinical tumour models

Therapy Molecular target
Metabolite changes
in cells Metabolite changes in vivo/ex vivo References

MN58b ChoK kPC kPME, ktCho, kPC Al-Saffar et al (2006)
17-AAG HSP90 mPC, mGPC mPME, mPC, mPE, kNTP Chung et al (2003)
LAQ824 HDAC m PC mPME, mPC, mPE, mcholine, kGPC, kGPE, kPCr,

kNTP, mPi kGlucose
Chung et al (2008)

SAHA HDAC mtCho, m PC — Sankaranarayanapillai et al (2006); Chung
et al (2008)

Phenylbutyrate HDAC mGPC, mtCho — Milkevitch et al (2005)
PX-478 HIF-1a ktCho, kPC, kPE, kGPC, kGPE Jordan et al (2005)
LY294002 &
wortmannin

PI3K kPC, mGPC,kNTP — Beloueche-Babari et al (2006)

U0126 MEK1 kPC — Beloueche-Babari et al (2005)
Orlistat FASN kPC, kNTP, kPCr Ross et al (2008)
FK866 Nicotinamide

phosphoribosyltransferase
— kPC, mGPC, kPCr, kNTP, kNAD, mG6P, mF1,6BP,

mG3P
Muruganandham et al (2005)

Indomethacin COX-1/COX-2 kPC, mGPC — Glunde et al (2006)
Imatinib BCR-ABL kPC, kLactate,

kglucose, mNTP
— Gottschalk et al (2004); Kominsky et al

(2009)

Abbreviations: F1,6BP¼ fructose 1,6-bisphosphate; GPC¼ glycerophosphocholine; GPE¼ glycerophosphoethanolamine; G3P¼ glycerol 3-phosphate; G6P¼ glucose-
6-phosphate; NAD¼ nicotinamide adenine dinucleotide; NTP¼ nucleotide triphosphate; PCr¼ phosphocreatine; PC¼ phosphocholine; Pi¼ inorganic phosphate;
PME¼ phosphomonoester.
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bioenergetics, glucose and phospholipid metabolism occurring in
cancer cells and tumours after treatment are listed.

Magnetic resonance spectroscopy can be used non-invasively to
study the mechanism of drug action and to determine whether
target modulation can be monitored. An example of this type of
application is a study on a choline kinase (ChoK) inhibitor, MN58b
(Al-Saffar et al, 2006). ChoK is a cytosolic enzyme that catalyses
the phosphorylation of choline to form PC, an intermediate in cell
membrane synthesis (Podo, 1999).

Treatment with a ChoK inhibitor should result in a reduction of
PC synthesis and this hypothesis was tested in colon (HT29) and
breast (MDA-MB-231) cancer cells and tumours treated with
MN58b. Decreased PC and tCho levels were found in both cell lines
after MN58b treatment and correlated with inhibition of ChoK
activity and cell proliferation. In vivo, MN58b treatment induced
tumour growth inhibition, which was associated with significant
decreases in PMEs (31P MRS) and tCho (1H MRS). Ex vivo 31P-and
1H-MRS analyses of MN58b-treated tumour extracts showed a
significant reduction in PC when compared with controls,
confirming that the decreases in PMEs and tCho observed in vivo
were because of a decrease in PC (Al-Saffar et al, 2006). In
agreement with these findings, inhibition of ChoK using RNA
interference in human breast cancer cells was also associated with
an MRS-detectable decrease in PC (Glunde et al, 2005). These
studies highlight the role of PC, tCho and PMEs as potential non-
invasive biomarkers for ChoK inhibition.

Another example is the study that was performed using histone
deacetylase (HDAC) inhibitors LAQ824 and SAHA. In vivo and in
vitro 1H and 31P MRS were used to study HT29 cancer cells and
tumours following treatment with LAQ824. Significant increases in
PC were seen in HT29 cells after LAQ824 (Figure 1A) and SAHA
treatment (Chung et al, 2008). A rise in PC was also observed in
PC3 prostate cancer cells after treatment with an analogue of
SAHA (Sankaranarayanapillai et al, 2006).

In vivo, a significant increase in PME/total phosphorus signal
(TotP) was found in LAQ824-treated HT29 xenografts, which
correlated with tumour response. A dramatic fall in tumour
bioenergetics was also observed, where decreases in intracellular
pH, b-NTP/TotP and b-NTP/Pi, and an increase in Pi/TotP, were
found (Figure 1B). Glucose levels were also significantly reduced in
drug-treated tumours compared with the vehicle group, whereas
lactate levels did not differ significantly.

These changes occurred in parallel with inhibition of tumour
growth, histone-3 hyper-acetylation and decreased microvessel
density. The increases in PC and PMEs were likely to be associated
with HDAC inhibition, whereas the compromised bioenergetics
and the fall in glucose content were attributed to the anti-
angiogenic effects seen with LAQ824 ex vivo (Chung et al, 2008).
This study showed the value of MRS in identifying and assessing
the dual mode of action of LAQ824 in tumours and suggested that
the rise in PC and PMEs may be useful as PD markers for tumour
response after treatment with LAQ824 or other HDAC inhibitors.

THE MEANING AND SIGNIFICANCE OF MRS PD
BIOMARKERS

As summarised in Table 1, MRS shows many metabolic effects
caused by different molecular-targeted agents, some of which
could be developed as biomarkers of response in early stage
clinical evaluation. These are mainly alterations in phospholipid
metabolism (PME, PDE, PC and tCho) and/or glycolysis (lactate)
and cellular bioenergetics (NTP, PCr).

Although these metabolic signatures are often different for
different classes of agents, they are on the whole consistent with
the molecular events triggered after challenge with a particular
targeted therapeutic, for example, inhibition of ChoK or activation
of phospholipases.

Furthermore, and for a given agent, the effects observed in cell and
xenograft models are largely similar, confirming the fact that they are
related to the drug’s mechanism of action. In the case of the HDAC
inhibitor LAQ824, however, decreases in GPC and GPE and cellular
energetics were exclusively recorded in tumours, in contrast to the
increase in PC, which was observed in cells and tumours alike. This
differential effect was attributed to the anti-angiogenic properties of
the drug, leading to a reduction in the perfusion and induction of
necrotic death in tumours but not in cells.

The metabolic effects induced by the various agents are
discussed in more detail in the next two sections.

Choline phospholipid metabolism

A consistent decrease in PC, PME and tCho levels was observed
after inhibition of many molecular targets, including phosphoi-
nositide-3 kinase (PI3K), hypoxia-inducible factor 1a (HIF-1a),
fatty acid synthase (FASN) and BCR-ABL. In contrast, inhibition of
heat shock protein 90 (HSP90) or HDAC was associated with an
elevation in PC and PME levels.

Phosphocholine is a precursor and a breakdown product of
phosphatidylcholine (PtdCho), the major phospholipid component
of cell membranes. Phosphocholine can be produced by phos-
phorylation of choline through ChoK, or from PtdCho hydrolysis
directly through PtdCho-specific phospholipase C (PLC) or
indirectly through PLD (Podo, 1999). Aberrant choline metabolism
has been shown in cancer cells in culture and is also seen in
tumour tissue using both ex vivo and in vivo MRS. Elevated
choline levels may be indicative of membrane turnover (Podo,
1999), increased malignant potential (Aboagye and Bhujwalla,
1999) or activation of oncogenic signalling (Ronen et al, 2001).

As discussed in Beloueche-Babari et al (2006) and in the
references therein, signal transduction effectors such as RAS-RAF-
MEK-ERK1/2, PI3K/Akt and RalGDS are known to modulate many
of the enzymes involved in choline metabolism, including ChoK,
phospholipases A, C and D, as well as cytidine triphosphate
phosphocholine cytidylyltransferase. Figure 2 shows the choline
metabolic pathway and how it is regulated at different points by
oncogenic signalling. Hence, modulation of signalling pathways by
targeted therapies is expected to affect choline metabolism, leading
to changes that may be detectable by MRS.

In line with this, RAS activation in NIH3T3 fibroblasts correlated
with an increase in PC levels, which was reversed on treatment with
novel RAS signalling inhibitors (Ronen et al, 2001). Furthermore,
enhanced lipid synthesis after Akt activation was reported and
postulated to result from the acceleration of the de novo membrane
synthesis required to produce increased cell volume (Porstmann et al,
2008). This effect was reversed by the inhibition of PI3K/Akt using
LY294002 and wortmannin, both of which resulted in a decrease in the
PC content detected by MRS (Beloueche-Babari et al, 2006). More
recently, inhibition of phosphoinositide-specific PLCg1, an enzyme
involved in cell invasion and motility, with inducible shRNA, was
associated with a fall in PC that was concomitant with reduced cell
adhesion and migration. Interestingly, the effect on PC was not
observed in cells with a stable knockdown of PLCg1, in which
adhesion defects had been by-passed, suggesting that the change in PC
is likely to reflect the phenotypic consequences induced by PLCg1
inhibition (Beloueche-Babari et al, 2009).

Various studies have focused on ChoK expression/activity as a
major regulator of cellular PC, and its link to tumourigenesis
(Ramirez de Molina et al, 2004; Glunde et al, 2005). Hence, the role
of ChoK in the MRS-detectable changes in PC after treatment with
targeted drugs was investigated. The decrease in PC levels after
inhibition of FASN with Orlistat has been attributed to the
inhibition of its synthesis as a result of a reduction in ChoK
activity (Ross et al, 2008). As both FASN (Yang et al, 2002) and
ChoK (Ramı́rez de Molina et al, 2002) are regulated by MEK-
ERK1/2 and PI3K, ChoK could be involved in PC reduction
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following inhibition of these pathways. Furthermore, regulation of
ChoK expression by hypoxia through HIF-1a has been reported
(Glunde et al, 2008). This could be the mechanism underlying the
MRS-detected decrease in choline-containing metabolites follow-
ing inhibition of HIF-1a by genetic (Griffiths et al, 2002) or
pharmacological (PX-478) approaches (Jordan et al, 2005).

On the basis of the above, the increase in PC after inhibition of
HSP90 or HDAC, agents that were shown to cause anti-tumour effects,
is unusual. However, given the number of downstream pathways
simultaneously regulated by these targets, the overall metabolic effect is
likely to reflect (1) the cellular consequences induced in a particular
tumour model (e.g., growth arrest, differentiation, apoptosis); and (2)
the balance of interplay between the multiple molecular processes
being modulated. Consequently, treatment with these broad-spectrum
inhibitors may not necessarily mirror the changes associated with the
collective downregulation of downstream signalling pathways using
single agents.

As shown in Table 1, a decrease in GPC and GPE was observed
by ex vivo 31P-MRS after inhibition with LAQ824 and PX-478. In
contrast, an increase in GPC was detected on exposure to 17-AAG,
LY294002 and phenylbutyrate in cell culture, as well as ex vivo
following treatment with FK866.

Glycerophosphocholine and GPE are released from membrane
phospholipids by phospholipase A2 (PLA2) and lysophospholipase.
In the case of phenylbutyrate, the rise in GPC levels was asso-
ciated with mobile lipid accumulation and postulated to occur
as a result of PLA2 activation (Milkevitch et al, 2005). The
indomethacin-induced increase in cellular GPC was also attributed

to enhanced membrane turnover through phospholipses (Glunde
et al, 2006).

Whether 17-AAG and/or LY294002 have similar effects resulting
in increased levels of GPC or whether it is a consequence of
secondary effects or signalling cascades leading to changes in
enzyme activity is still to be investigated.

Conversely, decreases in GPC and GPE were observed ex vivo in
LAQ824- and PX-478-treated tumours. However, given that both
agents show anti-angiogenic effects, these changes may be
associated with reduced membrane turnover following necrotic
cell death (Jordan et al, 2005; Chung et al, 2008).

Glucose metabolism and cellular bioenergetics
31P MRS-detectable NTP is mainly derived from ATP, which,
together with PCr, is the major donor of free energy in the cell. PCr
exerts it effect as a reservoir for the generation of ATP. The
phosphate on PCr is donated to ADP to form ATP, to maintain
cellular ATP levels, and Pi accumulates in the cell as a result of PCr
breakdown. In addition, as cancer cells exhibit increased aerobic
glycolysis resulting in an increased rate of glucose uptake and
lactate production, 1H MRS-detectable lactate may in some cases
be used as a tool to evaluate the glycolytic state of cells.

Targeting specific oncogene-driven signalling pathways can
result in bioenergetic changes and in alterations in the glycolyic
phenotype of cancer cells as shown in Table 1.

Activation of pathways downstream of growth factor receptors
e.g. RAS, Akt, HDAC and HSP90, is associated with enhanced

In vivo 31P MRS of tumour xenograftsIn vivo 31P-MRS of tumour xenograftsIn vitro 31P MRS of cell extractsIn vitro 31P-MRS of cell extracts
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Figure 1 31P-MR spectra showing the effect of the HDAC inhibitor LAQ824 on tumour cell metabolism in vitro (A) and in vivo (B).
Metabolites: PC, phosphocholine; GPC, glycerophosphocholine; GPE, glycerophosphoethanolamine; Pi, inorganic phosphate; PMEs, phosphomonoesters;
PDEs, phosphodiesters; PCr, phosphocreatine; NTPs, nucleotide triphosphates.
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glycolysis partly through stabilisation of HIF1-a (as reviewed in
Gatenby and Gillies, 2007). In response to RAS inhibition, HIF-1a
levels decrease and glycolysis is inhibited (Blum et al, 2005). As
expected, inhibition of HIF-1a with PX-478 led to a trend of
decreased glucose uptake and lactate production in HT-29 tumour
xenografts (Jordan et al, 2005). Furthermore, inhibition of HSP90
with 17-AAG in HT-29 xenografts resulted in a moderate drop in
NTPs (Chung et al, 2003), and blockade of HDAC in the same
model with LAQ824 resulted in dramatic decreases in PCr, NTP
and glucose levels and increased Pi. However, the effects reported,
at least in the case of LAQ824, were likely to result from the
induced anti-angiogenic effects and the accompanying increase in
tumour necrosis (Chung et al, 2008).

Both the RAS-RAF-MEK-ERK1/2 and PI3K/Akt pathways are
activated downstream of the chronic myeloid leukaemia BCR-ABL
fusion protein. Inhibition of the BCR-ABL oncoprotein with
imatinib in BCR-ABL-positive leukaemia cells resulted in
decreased glucose uptake, lactate production and improved
cellular energetics (Gottschalk et al, 2004), which were not
recorded in their imatinib-resistant counterpart (Kominsky et al,
2009). These effects were coupled with translocation of the glucose
transporter GLUT-1 from the plasma membrane to the cytoplasm
in sensitive but not resistant lines, indicating an inhibition of

glucose uptake following treatment with imatinib (Kominsky et al,
2009). As aberrant BCR promotes the expression of the pro-
glycolytic protein C-MYC (Mahon et al, 2003), decreased glycolysis
in response to imatinib treatment could be mediated through C-
MYC suppression. Inhibition of FASN with Orlistat resulted in a
decrease in NTP and PCr levels (Ross et al, 2008). FASN can be
activated by PI3K and RAF-MEK-ERK1/2 signalling, which
suggests that the effects on bioenergetics resulting from Orlistat
treatment could be mediated through alterations in either PI3K or
MEK-ERK1/2 signalling. However, inhibition with the prototype
MEK inhibitor U0126 or the PI3K inhibitor LY294002 did not
result in consistent changes in cellular bioenergetics (Beloueche-
Babari et al, 2005, 2006), which may implicate other pathways in
the effects observed with Orlistat.

TRANSLATING MRS STUDIES FROM THE
LABORATORY TO THE CLINIC: PROGRESS
AND PROMISE

Changes in glucose and choline metabolism have been described in
patients after treatment with various therapies including targeted
agents (e.g., imatinib) using PET technology (Heymach et al, 2004;
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Pantaleo et al, 2008). PET is a very sensitive method for imaging
tumour metabolism. However, and unlike MRS, it requires the
administration of radiolabelled substances and cannot discriminate
between exogenous and endogenous compounds, or between parent
and breakdown products (Payne et al, 2006). Hence, the value of
MRS as a complimentary tool for metabolic imaging is emphasised.

The clinical use of MRS is well documented, with 1H MRS being
most widely used because of its high sensitivity, although methods
using other nuclei (31P, 19F and 13C) have also been applied
(Seddon et al, 2003; Arias-Mendoza et al, 2006). Increased levels of
choline-containing metabolites have been observed in vivo by
1H-MRS in many cancers including those of the brain, prostate and
breast (Leach et al, 1998; Howe et al, 2003; Vilanova et al, 2009).
The same technique has also shown that patient treatment with
chemotherapy or radiation was associated with a decline in these
signals (Leach et al, 1998; Meisamy et al, 2004).

As indicated above, the MRS studies with targeted cancer
therapeutics reported to date have primarily focused on pre-
clinical models because very few agents have been approved for
use in the clinic. However, this is changing, with more studies
being planned as an increasing number of targeted drugs are
entering the clinic.

One example of such research is the clinical study that was
performed at our Institution using 31P-MRS to assess the metabolic
PD markers for the action of the HSP90 inhibitor 17-AAG during a
phase I trial. The study aimed to correlate molecular markers of
HSP90 inhibition (determined from tumour biopsy) with in vivo
PD changes in tumour phospholipid metabolites. Owing to the
nature of the trial (phase I) and the small size of the patient
population that was analysed, no firm conclusions could be drawn
regarding potential metabolic biomarkers of drug action. However,
the study showed the feasibility of the approach in assessing
biomarkers of response in future trials (Beloueche-Babari et al,
2003). A multicentre comparative study investigating metabolism
in non-Hodgkin’s lymphomas has demonstrated the potential
to implement 1H-decoupled 31P-MRS at a number of centres
(Arias-Mendoza et al, 2006). This approach permits the separa-
tion of PC and PE peaks within the PME signal, and GPC and
GPE peaks within the PDE signal in the in vivo 31P spectrum,
thus allowing changes within individual peaks to be monitored.
It remains to be seen whether this methodology could be useful
for detecting metabolic biomarkers associated with response to
treatment with targeted therapeutics.

These and earlier clinical studies using 31P-MRS have high-
lighted the requirement for lesions to be relatively close to a
surface coil for an adequate signal-to-noise ratio to be attained. As
this may not always be possible, 1H-MRS, which is now well
established clinically, also provides an alternative means for
evaluating tumour metabolism.

Advances in instrumentation and in the magnetic field strength
available on clinical scanners, together with the new fast metabolic
imaging techniques using nuclear hyperpolarisation, are helping
to increase the sensitivity of MRS and facilitate its clinical
implementation. Developing quality assurance protocols and
standardising data acquisition methodologies are important
aspects that will help evaluate and integrate findings from multiple
centres, thereby reducing effort and keeping duplication to a
minimum (Leach et al, 1994; Evelhoch et al, 2005). Continuing
progress in this area signifies that the technology could in the near
future be available to assess whether the metabolic signatures
detectable in pre-clinical models could eventually be translated
into robust imaging biomarkers for clinical use.

CONCLUSIONS

Magnetic resonance spectroscopy is showing promise as a non-
invasive imaging tool for detecting metabolic biomarkers that are
associated with the action of novel targeted therapeutics in pre-
clinical models of cancer, and which are consistent with the
observed molecular and cellular effects induced by the drugs.
Technological advances and strategies for improved data acquisi-
tion protocols are helping the clinical implementation of MRS,
which will be required for assessing whether the metabolic PD
biomarkers observed could be translated into robust radiological
tools for use in patient studies with targeted therapies.
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