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Rhodotorula mucilaginosa (Rho) can secrete large amounts of extracellular polymeric
substances (EPS) to resist lead (Pb) toxicity. Phosphate is an effective material for the
remediation of Pb. This study explored the Pb remediation by the combination of Rho and
different types of phosphate in water. To do so, four phosphates, namely, ferric phosphate
(FePO4, Fe-P), aluminum phosphate (AlPO4, Al-P), calcium phosphate [Ca3(PO4)2, Ca-P],
and phosphogypsum (PG) were employed along with Rho. Compared with Rho
application, the addition of phosphate significantly promoted the secretion of EPS by
Rho (21–25 vs 16 mg). The formed EPS-Pb contributes to the Pb immobilization in the
combination of Rho and phosphate. After 6 days of incubation, Rho + phosphate
treatments immobilized over 98% of Pb cations, which is significantly higher than Rho
treatment (94%). Of all Rho + phosphate treatments, Ca-P and PG-amended Rho had
higher secretion of EPS, resulting in higher Pb removal. Nevertheless, PG had the highest
efficiency for Pb removal compared with other phosphates, which reached 99.9% after
6 days of incubation. Likewise, new Pb minerals, such as pyromorphite and lead sulfate,
only appeared in Rho + PG treatment. Altogether, this study concludes on the combined
application of Rho and phosphate as an efficient approach to promote Pb remediation,
particularly using PG waste.

Keywords: EPS, Pb remediation, phosphate, phosphogypsum, red yeast

INTRODUCTION

Worldwide, lead (Pb) contamination has been recognized as a growing concern, especially in water
bodies (Gadd, 1993; Zeng et al., 2017). The contamination of Pb in water mainly comes from waste
and wastewater discharged by industrial and mining enterprises such as lead storage batteries, metal
mining, and other anthropogenic activities (Hou et al., 2018; Shen et al., 2018; Tian et al., 2019).
Unlike organic pollutants, Pb is a stable and hardly biodegradable contaminant in the environment
(Radoicic & Raicevic, 2008; Rhee et al., 2012). High Pb toxicity in water would damage the aquatic
animals’ development. More importantly, Pb accumulates continuously in organisms and threatens
human health through food consumption (Cao et al., 2009; Hou et al., 2017; Shen et al., 2018). Hence,
the Pb pollutants in water should be highly valued.
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Phosphate is an effective material for the remediation of Pb in
water (Li et al., 2016). Phosphorus (P) released from phosphate
can react with Pb cation (Pb2+) to form the highly insoluble
pyromorphite (Pyro) [Pb5(PO4)3X] (X = F, OH, or Cl), which has
a very low solubility (Li et al., 2016). Geological apatite
[Ca10(PO4)6(F, OH, Cl)2], calcium phosphate (Ca-P,
Ca3(PO4)2), aluminum phosphate (Al-P, AlPO4), and ferric
phosphate (Fe-P, FePO4) are the most common phosphate
species in nature (Tian et al., 2021b). In addition, the by-
products of phosphogypsum (PG) in P chemical industry also
contain residual phosphate (Saadaoui et al., 2017). Despite their
high affinity for binding Pb, the use of these phosphate species is
limited due to their low solubility. To respond to this challenge,
microorganisms can be applied together with phosphate to
promote Pb remediation via the secretion of secondary
metabolites such as low-molecular weight organic acid
(LMWOA) and extracellular polymeric substances (EPS)
(Coutinho et al., 2012; Frisvad et al., 2018).

LMWOAs and EPS not only enhance P release from
phosphate to form insoluble Pb minerals, but they also react
with Pb (Li et al., 2019; Tian et al., 2019). For example, phosphate-
solubilizing fungi (PSF, e.g., Aspergillus niger) can secrete large
amounts of oxalic acid to dissolve apatite and promote the
transfer of Pb2+ to pyro and lead oxalate (Li et al., 2016).
However, both the types of phosphate and fungi would affect
the efficiency of Pb remediation (Shen et al., 2018; Tian et al.,
2019). On the one hand, Pb remediation is influenced by the
dissolving capacity of various phosphate species (Tian et al.,
2021b). On the other hand, fungal activity is affected by
different levels of Pb toxicity (Li et al., 2019; Tian et al., 2019;
Jiang et al., 2020). Hence, it is of major importance to select
suitable phosphates and fungi for water Pb remediation.

Red yeast, a widely available fungus in nature, has a high
growth rate and strong environmental resistance, especially in
wastewater environments (Kot et al., 2019a; Naveed et al., 2019).
Unlike PSF, red yeast mainly secretes large amounts of EPS,
rather than organic acids (Gientka et al., 2015). The EPS contains
a variety of organic components that, in turn, have a highly
branched chemical structure and functional groups, such as
hydroxyl and carboxyl groups (Kot et al., 2019b; Rahbar
Saadat et al., 2021). This spatial structure and complex
composition can ensure that red yeast adsorbs and chelates
with Cd2+ and Pb2+, which reduces the toxicity of heavy
metals (Li et al., 2019). For example, the red yeast
Rhodotorula mucilaginosa (Rho) can resist high Pb levels
(2,500 mg/L) and adsorb Pb cations to form EPS-Pb (Jiang
et al., 2020). Therefore, the combination of Rho and
phosphate would be a feasible and effective way in Pb
remediation.

In this study, we investigated the combined application of Rho
and four types of phosphates for Pb remediation. The water-
soluble P and Pb concentrations were analyzed by inductively
coupled plasma optical emission spectrum (ICP-OES). The
composition of precipitates was analyzed by X-ray diffraction
(XRD). The morphology of Rho and its mineral composition
were observed by using a scanning electron microscope–energy
dispersive spectrometer (SEM-EDS).

MATERIALS AND METHODS

Red Yeast Incubation
Red yeast Rhodotorula mucilaginosa (Rho) was isolated from
orchard rhizosphere soil (CGMCC No.16597, Nanjing
Agricultural University) (Li et al., 2019). Before the
experiment, Rho was inoculated to a potato dextrose broth
(PDB) medium (sterilized at 121°C for 20 min) and shaken for
48 h at 28°C, 180 rpm.

Phosphate Preparation
Four phosphates, such as ferric phosphate (FePO4, Fe-P),
aluminum phosphate (AlPO4, Al-P), calcium phosphate
[Ca3(PO4)2, Ca-P], and phosphogypsum (PG), were used for
the remediation of Pb by Rho. Fe-P, Al-P, and Ca-P were supplied
by Shanghai Macklin Biochemical Co. Ltd. PG was collected from
a phosphate fertilizer production plant in Anhui Province, China.
Before the experiment, all phosphate species were dried at 65°C
for 24 h.

Pb Remediation by Rho and Phosphate
The Pb contamination in water was prepared by Pb(NO3)2
powder (Xilong Scientific Ltd.). The initial Pb concentration in
the medium was adjusted to 1,000 mg/L. Five treatments were
performed in this experiment, that is, Rho, Rho + Fe-P, Rho + Al-
P, Rho + Ca-P, and Rho + PG. Before the incubation, the
0.08 g Pb(NO3)2 powder and 0.5 g phosphate were added to
150-ml Erlenmeyer flasks with 50 ml PDB medium (sterilized
at 121°C for 20 min) in a sterile environment. Then, 0.5 ml Rho
suspension was added to each treatment. After sealing with
parafilm (BS-QM-003, Biosharp), the flasks were incubated at
180 rpm, 28°C in a sterile condition. After incubating for 2, 4, and
6 days, the PDB medium was collected into 50-ml centrifugal
tubes and centrifuged for 6 min at 5,000 rpm. Then, the
supernatant liquid was filtered through a 0.45 μm
polyethersulfone (PES) membrane. The filtrates were tested for
pH value, P, and Pb content. The centrifugal precipitates were
collected and dried at 55°C for 24 h to determine the biomass,
XRD, and SEM characterization.

A parallel experiment was also performed to detect the Pb
removal capacity by different phosphates. The initial Pb
concentration was also adjusted to 1,000 mg/L. Five treatments
were performed in this experiment without Rho, that is, Pb, Fe-P
+ Pb, Al-P + Pb, Ca-P + Pb, and PG + Pb. After shaking for 6 days
at 180 rpm, 28°C, the liquid was filtered through a 0.45-μm
polyethersulfone (PES) membrane and prepared for the test of
P and Pb content. All treatments were performed with three
replicates.

Extraction of EPS
After incubation, the supernatant was collected and centrifuged
twice at 12,000 rpm at 4°C for 20 min. Then, a 3-fold volume of
anhydrous ethanol was mixed with the supernatant to rest for
48 h at 4°C to collect extracellular secretions. Last, the collected
crude extracts were transferred into 3,500 molecular dialysis bags
and dipped in pure water for 72 h. The pure water was changed
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FIGURE 1 | pH value (A) and dry biomass (B) in each treatment during the incubation time (2, 4, and 6 days). The error bars represent the standard deviations of
three replicates. The significant differences among the treatments were identified by Tukey’s honestly significant difference test (p < 0.05) via one-way ANOVA.

FIGURE 2 | P concentration (A,C) and Pb concentration (B,D) in each treatment during the incubation time (2, 4, and 6 days). The error bars represent the
standard deviations of three replicates. The significant differences among the treatments were identified by Tukey’s honestly significant difference test (p < 0.05) via one-
way ANOVA.
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twice every 24 h. The last extracts were transferred into a 2-ml
centrifuge tube and freeze-dried (Jiang et al., 2020).

Instrumentation
The pH value in each treatment was determined by a pH meter
(FE20, Mettler-Toledo, Int. Inc.). The soluble P and Pb
concentrations were analyzed via ICP-OES (PerkinElmer Avio
200). A calibration curve of P and Pb (1, 5, 10, 20, 50, and 100 mg/
L) was performed by the phosphorus and lead standard
((National Center of Analysis and Testing for Nonferrous
Metals and Electronic Materials, China), respectively. The R
square value of the external standard curves was 0.999.

The mineralogical characterization of the precipitates was
examined using a Rigaku D/Max-2500 X-ray diffractometer
(Cu-Kα; 36 kV; 20 mA; scanned from 5° to 60° at a speed of 4°

s−1). The XRD patterns were analyzed by MDI Jade 6.5 software
for phase identification.

The morphology of Rho and minerals was observed by SEM
(S4800 Hitachi), with an acceleration voltage of 3 kV. To enhance
image quality, the samples were coated with a layer of gold for
1 min in a Hitachi E-1010 Sputter.

RESULTS

Medium pH and dry Biomass in Rho
The initial pH value in the medium was 5.7. After 2 days of
incubation, the pH values of Rho and Rho + Fe-P treatments
decreased to 4.8 and 5.4, respectively (Figure 1A). In Rho
treatment, the pH value constantly decreased to 4.6 and 4.1 on
days 4 and 6, respectively (Figure 1A). In Rho + Fe-P treatment,

the pH value decreased to 4.5 on day 4 and increased to 4.7 on day
6 (Figure 1A). However, all of the pH values in Rho + Al-P, Rho +
Ca-P, and Rho + PG treatments showed an increasing trend
during the incubation time (Figure 1A). The pH value in Rho +
Al-P treatment was 4.9, 6.4, and 6.4 on days 2, 4, and 6,
respectively (Figure 1A). In Rho + Ca-P and Rho + PG

FIGURE 3 | Removal ratio of Pb in each treatment after 6 days of
incubation. The error bars represent the standard deviations of three
replicates. The significant differences among the treatments were identified by
Tukey’s honestly significant difference test (p < 0.05) via one-way
ANOVA.

FIGURE 4 | EPSweight in each treatment after 6 days of incubation. The
error bars represent the standard deviations of three replicates. The significant
differences among the treatments were identified by Tukey’s honestly
significant difference test (p < 0.05) via one-way ANOVA.

FIGURE 5 | XRD patterns of precipitation in each treatment after 6 days
of incubation.
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treatments, consistent increases occurred in pH values from 6.7 to
7.7 and 4.6 to 6.7 during the incubation time, respectively
(Figure 1A).

The dry biomass in Rho treatment was 0.3, 0.3, and 0.6 g on
days 2, 4, and 6 (Figure 1B). In Rho + Fe-P treatment, the dry
biomass increased from 0.6 g on day 2 to 0.7 and 0.9 g on days 4
and 6, respectively (Figure 1B). There was no discernible
change in the dry biomass of Rho + Al-P during the
incubation time, that is, 0.8 g (Figure 1B). In Rho + Ca-P
and Rho + PG treatments, the dry biomass increased from
0.8 and 0.6 g to 0.9 and 0.7 g after 6 days of incubation,
respectively (Figure 1B).

P and Pb Concentration in the Medium
The P contents in Rho and Rho + Fe-P treatments were lower,
ranging from 0.4 to 0.5 mg/L and 0.5–3.5 mg/L, respectively,
during the entire incubation time (Figure 2A). In Rho + Al-P
and Rho + PG treatments, the P content was 24.6 and 3.9 mg/L on
day 2, respectively (Figure 2A). After incubating for 4 and 6 days,
the P concentration increased to 29.2 and 39.1 mg/L, and 6.2 and
6.8 mg/L in these two treatments, respectively (Figure 2A). Rho +
Ca-P had the highest P content compared with other treatments,
that is, 29.7, 45.4, and 52.8 mg/L on days 2, 4, and 6, respectively
(Figure 2A).

The initial Pb concentration in the PDB medium was
1,000 mg/L. The Pb contents in Rho treatment were 53.5, 52.4,
and 53.3 mg/L after 2, 4, and 6 days of incubation, respectively
(Figure 2B). In Rho + Fe-P and Rho + Al-P treatments, the Pb
content decreased from 22.8 to 29.3 and 13.3 to 13.6 mg/L after

6 days of incubation, respectively (Figure 2B). In Rho + Ca-P
treatment, the Pb concentration decreased from 11.3 to 2.5 and
2.3 mg/L after 4 and 6 days of incubation, respectively
(Figure 2B). Rho + PG had the lowest Pb content in each
treatment, that is, 1.2 mg/L after 6 days of incubation
(Figure 2B).

Results of our parallel experiment indicated that the P
content in Pb, Fe-P + Pb, Al-P + Pb, Ca-P + Pb, and PG +
Pb treatments reached 0.02, 3.01, 93.6, 62.2, and 13.7 mg/L after
6 days of incubation (Figure 2C). In Pb treatment, the Pb
concentration had the highest value of 917.6 mg/L compared
with other treatments (Figure 2D). Meanwhile, the Pb
concentration in Fe-P + Pb, Al-P + Pb, Ca-P + Pb, and PG
+ Pb treatments significantly decreased to 647.1, 117.4, 93.6,
and 550.1 mg/L after 6 days of incubation, respectively
(Figure 2D).

Pb Removal Ratio and EPS Secreted by Rho
The Pb removal ratios in Rho and Pb treatment were 94.7 and
8.2% after 6 days of incubation, respectively (Figure 3A,B).
Compared with Rho, Rho + Fe-P, Rho + Al-P, Rho + Ca-P, and
Rho + PG treatments had significantly higher Pb removal
ratios of 98.7, 98.6, 99.8, and 99.9%, respectively, on day 6
(Figure 3A). Although phosphate species increased the Pb
removal ratio, it was still lower than Rho treatment, that is,
35.3, 88.3, 90.6, and 44.9%, in Fe-P + Pb, Al-P + Pb, Ca-P + Pb,
and PG + Pb treatments, respectively (Figure 3B). The EPS
weight in Rho treatment was 16.5 mg after 6 days of
incubation (Figure 4). In Rho + Fe-P, Rho + Al-P, Rho +

FIGURE 6 | SEM image data in Rho (A), Rho + Fe-P (B), Rho + Al-P (C), Rho + Ca-P (D), and Rho + PG (E) treatments after 6 days of incubation. The EDS results
(F) in each treatment after 6 days of incubation. The Rho and EPS-Pb can be observed in each treatment. Fe-P: ferric phosphate (FePO4); Al-P: aluminum phosphate (Al-
P, AlPO4); Ca-P: tricalcium phosphate (Ca3(PO4)2).
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Ca-P, and Rho + PG treatments, the EPS content significantly
increased to 22.2, 20.9, 25.4, and 24.6 mg, respectively
(Figure 4).

XRD and SEM-EDS Analysis
The XRD patterns showed the mineralogical characteristics of
precipitates in each treatment after 6 days of incubation
(Figure 5). The peak of cerussite/hydrocerussite (21o) can be
observed in each treatment (Figure 5). In addition, the strong
peak of cerussite (29.2o) was also clearly observed in the Rho
treatment (Figure 5). The strong peaks of Fe-P (17.0, 22.3, 23.9,
31.1°) and Al-P (20 and 25o) appeared in Rho + Fe-P and Rho +
Al-P treatments, respectively (Figure 5). In Rho + Ca-P
treatment, the peaks at 25.8, 28.3, 29.5, 31.0, and 32.2o stand
for the mineral of Ca-P (Figure 5). However, the formed mineral
was more complex in Rho + PG treatment. Except for cerussite/
hydrocerussite, both the peaks of fluorapatite (25.9o) and Ca-P
(32.2o) were observed in Rho + PG treatment (Figure 5). In
addition, the dominant gypsum peaks (11.5, 20.8, 29.0, and 33.3o)
were also identified in Rho + PG treatment (Figure 5). More
importantly, only the newly formed Pb minerals of pyromorphite
(30.7, 31.7o) and lead sulfate (24.7o) were detected in this
treatment (Figure 5).

The SEM-EDS images of the morphologies of Rho and
different phosphate species are shown in Figure 6. As can be
seen, EPS-Pb was formed in all treatments through the
combination of extracellular polymeric substances (EPS) and
Pb cations (Figure 6).

DISCUSSION

The fungus has a huge potential in the remediation of Pb
contaminations in water, especially via the combination of
phosphate (Ayangbenro & Babalola, 2017; Liang & Gadd,
2017). Our findings highlight the great potential of Rho for
the remediation of Pb-contaminated water by the combination
of phosphate. Co-application of Rho and various phosphates
(Fe, Al, Ca-P, and PG) can remove >98% Pb cations, and the
highest rate (99.9%) of Pb removal occurred in Rho + PG
treatment (Figure 3). These results emphasize the superiority
of Rho compared with other fungi (e.g., PSF) in terms of Pb
remediation. In the case of PSF–Penicillium oxalicum (P.
oxalicum), the Pb remediation by P. oxalicum was
significantly limited by the high Pb toxicity (Tian et al.,
2018b). Although P. oxalicum can resist ~1,000 mg/L Pb
level, the organic acid secretion ability was significantly
limited, especially for oxalic acid (Tian et al., 2019). Under
1,500 mg/L Pb stresses, P. oxalicum had the lowest fungal
biomass and almost lost its secretion ability of oxalic acid
(Tian et al., 2019). In contrast, Rho has a higher Pb tolerance
than P. oxalicum. Rho can still be highly active under 2000 mg/
L Pb stress due to the high secretion of EPS and functional
structure of vesicles (Jiang et al., 2020). More importantly, the
higher Pb level even stimulates the Rho activity (Jiang et al.,
2020). Hence, Rho would be more effective in Pb remediation
with phosphate.

Previous works confirmed the efficacy of combined
application of phosphate and fungi to enhance Pb remediation
(Ma et al., 1995; Tian et al., 2018a; Traina & Laperche, 1999).
Herein, phosphate-released P can react with Pb to form insoluble
pyromorphite (Li et al., 2016). An acidic environment (lower than
4.5) can significantly promote the release of P from phosphate,
especially for Ca-P (Tian et al., 2021b). In this study, the pH value
in Rho was consistently higher than 4.5 during the incubation
time, that is, pH 5–7 (Figure 1A). Hence, the highest P content
released by Rho reached ~55 mg/L but was much lower than PSF
(~307 mg/L) (Li et al., 2016). Although PSF has a higher P release
ratio than Rho, the Pb removal ratio between these two fungi is
similar (98%) (Figure 3). Hence, the Pb remediation in Rho +
phosphate treatment is not limited by the lower content of P, but
via the EPS pathway. The addition of phosphate can support the
production of EPS by Rho in Pb remediation, rather than the
released P.

The mechanisms between Rho and PSF are different due to the
secretion of secondary metabolites. The organic acids, such as
oxalic acid secreted by PSF, not only promote the release of P but
also directly bind Pb to form insoluble lead oxalate (Strasser et al.,
1994; Gadd et al., 2014; Tian et al., 2021a). The secretion of oxalic
acid usually dominates the Pb immobilization process via the
formation of new Pb minerals, such as pyro and lead oxalate (Li
et al., 2016; Tian et al., 2018b). However, no new Pb minerals
appeared in Rho + phosphate treatment except for PG. The
secretion of large amounts of EPS is the main mechanism of Pb
immobilization of Rho and phosphate (Fe, Al, Ca-P) treatments.
Our SEM-EDS results also confirmed the large amounts of EPS-
Pb formed in each treatment (Figure 5).

EPS has strong adsorption and binding capacity for Pb
cations due to the complex molecular composition (Duda-
Chodak et al., 2012). The high Pb level can stimulate EPS
secretion by Rho to increase toxicity tolerance (Jiang et al.,
2020). The formed EPS-Pb can reduce the Pb toxicity and
promote the normal proliferation of Rho. However, the
secretion of EPS by Rho was influenced by different factors
(Gadd, 1990; Naveed et al., 2019). Our results indicated that Ca-
P and PG had significantly higher contents of EPS than Fe-P and
Al-P (Figure 4). In addition, the dissolution of phosphate can
also release Ca, Fe, and Al cations (Li et al., 2017). These cations
could also affect the Pb remediation via the EPS production, cell
aggregation, and cell surface charges (Sheng et al., 2010).
Although the addition of phosphate can promote the
secretion of EPS by Rho in Pb remediation, only Rho + Ca-P
and Rho + PG have the lowest Pb content (Figure 2B).
Compared with divalent cations (e.g., Ca2+), the trivalent
cations (e.g., Fe3+ and Al3+) are more competitive for heavy
metal cations in binding with EPS (Yan et al., 2017). In addition,
the Ca2+ on the EPS surface is more easily displaced by other
greater affinity cations (e.g., Cd2+, Pb2+, and Cu2+) (Naveed
et al., 2019). Therefore, the calcium-bound phosphate (Ca-P
and PG) is more suitable for the remediation of Pb by Rho.

In this study, PG had the highest efficacy for Pb remediation
by Rho. Except for EPS-Pb, the formed pyro only occurred in Rho
+ PG treatment (Figure 5). Since PG is a by-product of the
dissolution of geological apatite by strong chemical acid, it
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contains large amounts of water-soluble P (Vinnichenko &
Riazanov, 2020). Soluble P can react with lead cations before
the combination of EPS and Pb, hence contributing to the
formation of pyro. In addition, PG also contained large
amounts of sulfate in the form of gypsum (Saadaoui et al.,
2017). This sulfate can also react with Pb to form insoluble
lead sulfate, which contributes to the remediation of Pb in
water (Li et al., 2018). Hence, PG is more effective than Fe-P,
Al-P, and Ca-P in Pb remediation by Rho. Both the formation of
lead minerals and EPS-Pb by PG and Rho contribute to Pb
immobilization. Therefore, a feasible approach for PG
recyclability can happen through its combination with Rho for
Pb remediation.

CONCLUSION

This study concludes on the co-application of Rho and
phosphate to significantly promote the Pb remediation in
water. The secretion of EPS by Rho dominated the Pb
removal via the formation of EPS-Pb, particularly in
combination with Ca-P and PG. In addition, PG revealed the
highest removal rate of Pb through the formation of pyro and
lead sulfate. Altogether, our findings suggest that the combined
application of PG and Rho is an economical and efficient
approach for Pb remediation.
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