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Acute kidney injury (AKI) most commonly appears in critically ill patients in hospitals. AKI is characterized as a quick
deterioration of kidney function and has recently been identified to be tightly interlinked with chronic kidney diseases. The
emerging major mediators of AKI include oxidative stress and endoplasmic reticulum (ER) stress. Carbon monoxide (CO)
attenuates oxidative stress and ER stress in various cells, while Fyn, a member of the Src kinase family, is activated by oxidative
stress and contributes to ER stress in skeletal muscle. Considering these, the objective of the current research was to determine
(i) the involvement of Fyn in ER stress-mediated AKI and (ii) the effect of CO-releasing molecule-2 (CORM2) on reactive
oxygen species- (ROS-) Fyn-ER stress-mediated AKI. Pretreatment with CORM2 (30mg/kg) efficiently inhibited LPS (30
mg/kg)-induced oxidative stress, inflammation, and cellular apoptosis during AKI in C57BL/6J mice. Also, CORM2 efficiently
suppressed the activation of Fyn and ER stress in AKI mice. Consistently, pretreatment with CORM2 inhibited oxidative stress,
Fyn activation, ER stress, inflammation, and apoptosis in LPS- or H2O2-stimulated proximal epithelial tubular cells. Fyn
inhibition using siRNA or an inhibitor (PP2) significantly attenuated ER stress responses in the cells. These data suggest that
CORM2 may become a potential treatment option against ROS-Fyn-ER stress-mediated AKI.

1. Introduction

Acute kidney injury (AKI) usually appears in hospital set-
tings. The incidence rate of AKI is increasing, and it is
accountable for nearly 2 million deaths per year worldwide
[1]. Collective evidence suggests that patients with a history
of AKI may develop chronic kidney diseases (CKD) [2, 3].
AKI often occurs in the setting of sepsis [4]. The pathophys-
iology of AKI is complex and includes inflammation, tubu-
lar injury, and vascular damage [5, 6]. Also, AKI can be
mediated by dysregulation of the immune system, cell death
or apoptosis, mitochondrial dysfunction, oxidative stress,
and endoplasmic reticulum (ER) stress [7, 8]. Importantly,
increased levels of reactive oxygen species (ROS) are linked
with ER stress [9, 10]. Although the pathophysiology of
AKI has been studied, many targeted clinical therapies have
failed [11]. Thus, urgent interventions are needed to treat
AKI patients in the intensive care unit [12].

ER stress comprises a cellular process that is prompted
by a variety of circumstances. ER stress is associated with
the activation of three main ER stress sensors including
inositol-requiring enzyme 1 (IRE1), activating transcription
factor 6 (ATF6), and RNA-dependent protein kinase-like
ER kinase (PERK). The activated IRE1 promotes X-box-
binding protein 1 (XBP1) cleavage to make spliced XBP1
(sXBP1) [13]. The activated XBP1 stimulates inflammatory
cytokine production [14]. Also, during ER stress, IRE1 pro-
motes JNK activation [15], which leads to cellular apoptosis.
Various studies have suggested that inhibition of ER stress
may fight against AKI [16–18].

Src family kinases (SFKs) belong to nonreceptor protein
tyrosine kinases. Yet, there are eight members of SFK includ-
ing Blk, c-Src, Fgr, Fyn, Hck, Lck, Lyn, and Yes. Some of
them (c-Src, Fyn, and Yes) express ubiquitously, and others
(Blk, Fgr, Hck, Lck, and Lyn) are primarily found in hemato-
poietic cells. Among all of these, Fyn, a 59 kDa protein, has
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been known to regulate various cellular functions including
cellular growth, survival, adhesion, motility, T-cell receptor
signaling, and cytoskeletal remodeling [19–21]. The Fyn
kinase has been considered a critical regulator of a variety
of pathological conditions, including progressive CKD [22,
23]. Fyn has been reported to promote ER stress as well as
subsequent activation of the IRE1α-JNK pathway, driving
cell death in skeletal muscle [24]. However, the involvement
of Fyn in ER stress-mediated AKI has not been studied.

Carbon monoxide (CO), an endogenous gas produced
from heme degradation by heme oxygenase, shows protective
functions in various pathological conditions [25–29]. CO
inhibits ROS-mediated oxidative stress in human airway
smooth muscle cells, human pulmonary alveolar epithelial
cells, lens epithelial cells, and embryonic cells [30–34]. Also,
CO/CO-releasing molecules (CORMs) suppress ER stress
in endothelial cells and islet cells [35, 36]. In the mouse kid-
ney, CO protects against obstruction-induced fibrosis [37].
Also, CO/CORMs can be advantageous for treating AKI
[38, 39]. Importantly, the findings of our recent study sug-
gested that CORM2 protects lipopolysaccharides- (LPS-)
induced AKI through inhibition of ER stress in mice [16].
Yet, the detailed molecular mechanism involved in the
protective effects of CO against ER stress-mediated AKI
remains elusive.

Since CO attenuates oxidative stress and ER stress, and
since Fyn contributes to ER stress, the aim of the current
research was to verify (i) the involvement of Fyn in ER
stress-mediated AKI and (ii) the effect of CORM2 on ROS-
Fyn-ER stress signaling in AKI.

2. Materials and Methods

2.1. Materials. Chemicals and reagents were purchased from
Sigma-Aldrich (St. Louis, MO, USA), unless otherwise stated.

2.2. Animals. Approval for animal studies was obtained from
the institutional animal care and use committee (IACUC No.
16-055) of Ewha Womans University. Six-week-old male
C57BL/6 mice (Japan SLC Inc., Hamamatsu, Japan) were
divided into six groups: control, CORM2, PP2, LPS, LPS
+CORM2, and LPS+PP2. Mice were pretreated with CORM2
(30mg/kg, intraperitoneal, i.p.) or PP2 (2mg/kg, i.p.) for 2 h
and then subjected to administration of 15mg/kg LPS (a sin-
gle i.p. injection) for 18 h [16]. An equal volume of dimethyl
sulfoxide (DMSO) and saline as the vehicle of CORM2/PP2
and LPS, respectively, were injected into the control mice.
All mice were sacrificed at 18h after injection of LPS via
anesthesia with 16.5% urethane (10ml/kg). After anesthesia,
blood was collected in a heparin-coated syringe. After perfu-
sion with phosphate-buffered saline (PBS), the left kidneys
were washed, weighed, and then kept for further studies.
The right kidneys were subjected to 2% paraformaldehyde-
lysine-periodate fixation at pH7.4 and then stored at room
temperature for further study.

2.3. Blood Parameters. Blood plasma was obtained after
centrifuging the blood samples at 900 g for 15min at 4°C.
The levels of plasma creatinine were measured using a

DetectX Serum Creatinine Detection Kit (Arbor Assays,
Ann Arbor, MI, USA). The plasma kidney injury molecule-
1 (KIM1, MKM100, R&D Systems) and cystatin C (R&D
Systems, Minneapolis, MN, USA) levels were determined
using enzyme-linked immunosorbent assay (ELISA) kits.
The thiobarbituric acid reaction was used to measure the
levels of plasma lipid hydroperoxide (LPO) as described [40].

2.4. Kidney LPO. The kidney LPO was measured according to
the protocols of the kit manufacturer (Cayman Chemical Co,
Ann Arbor, MI, USA).

2.5. Histology and Immunohistochemistry. The paraffin-
embedded kidney sections were then stained with a periodic
acid-Schiff (PAS) reagent. Immunohistochemistry for anti-
F4/80 (1 : 200; Santa Cruz Biotechnology, Inc., Santa Cruz,
CA, USA), anti-nitrotyrosine (1 : 200; Santa Cruz Biotechnol-
ogy), anti-NADPH oxidase 2 (NOX2, 1 : 500), and anti-
NADPH oxidase 4 (NOX4, 1 : 300) antibodies was per-
formed. A Zeiss microscope having an Axio cam HRC digital
camera and software (Carl Zeiss, Thornwood, NY, USA) was
utilized to take the images.

2.6. Immunofluorescence Staining. After deparaffinization
and rehydration, tissue sections were incubated with retrieval
solution and heated in a microwave to recover antigenicity.
Nonspecific binding was blocked with serum-free blocking
solution for 30min at room temperature. Kidney sections
were then incubated with anti-pFyn (1 : 100; Santa Cruz Bio-
technology) or anti-p-Src (1 : 100; Cell Signaling Technology,
Danvers, MA, USA) overnight at 4°C. Tissue sections were
incubated for 1 h with Alexa 488-conjugated goat anti-
mouse (1 : 1000; Invitrogen, Carlsbad, CA, USA) or Alexa
568-conjugated goat anti-rabbit (1 : 1000; Invitrogen) anti-
bodies. Cell nuclei were detected with 4′,6-diamidino-2-phe-
nylindole (1 : 1000; Thermo Fisher Scientific, Waltham, MA).
Images were captured by a Zeiss ApoTome Axiovert 200M
microscope (Carl Zeiss Microscopy GmbH, 07745, Jena,
Germany).

2.7. Direct Measurement of ROS. To determine the presence
of ROS, the frozen sections of the kidney were stained for
10min at 37°C with 5μM dihydroethidium (DHE, red fluo-
rescence at 561nm, Molecular Probes, Eugene, Oregon,
USA) and then stained with 4′,6-diamidino-2-phenylindole
(DAPI). A Zeiss ApoTome Axiovert 200M microscope (Carl
Zeiss, Germany) was used to take the images.

2.8. Cell Culture. Mouse proximal tubular epithelial
(mProx24) cells were cultured in Dulbecco’s modified Eagle’s
medium (DMEM) as described [41]. The cultured cells were
stimulated with LPS in a time-dependent manner (0, 3, 6, 12,
and 24h). Also, the cells were treated with CORM2 (0, 5, 10,
and 20μM), 10μM of PP2, 5mM N-acetylcysteine (NAC),
and 1mM 4-phenylbutyrate (4-PBA) for 2 h and then stimu-
lated with LPS (100 ng/ml) for 6 h or 18 h.

siRNAs were purchased from Bioneer corporation
(Daejeon, South Korea). The mProx24 cells (5 × 105/ml)
were cultured in six-well plates for 6 h and then transfected
with Src siRNA (100nM) or Fyn siRNA (100nM), using
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Lipofectamine 2000 according to the manufacturer’s instruc-
tions. After transfection, the cells were starved by replacing
the medium with DMEM containing 0.5% bovine serum
albumin. The cells were then treated with LPS (100 ng/ml)
for 6 h with or without pretreatment with CORM2 (20μM).

2.9. Terminal Transferase-dUTP-Nick-End Labeling
(TUNEL) Assays. Apoptosis was measured using the TUNEL
assay according to the manufacturer’s protocol (Roche Diag-
nostics, Mannheim, Germany). First, after deparaffinization
and rehydration, the kidney tissue was washed with PBS
and then incubated with TUNEL reaction mixture for 60
min at 37°C in a humidified chamber at dark conditions. Kid-
ney sections were subsequently washed with PBS and stained
with DAPI. Images were analyzed by the Zeiss ApoTome
Axiovert 200M microscope (Carl Zeiss, Germany).

In the case of mProx cells, the cultured cells in 6-well
plates were treated with the mentioned reagents and then
washed with 1x PBS (×2). After fixation and perme-
abilization, the cells were incubated with TUNEL reaction
mixture for 60min at 37°C followed by DAPI in a humidified
dark chamber. Cells were subsequently washed with 1x PBS
(×3) and analyzed using a Zeiss ApoTome Axiovert 200M
microscope (Carl Zeiss, Germany).

2.10. Intracellular ROS Analysis. Intracellular ROS was mea-
sured in mProx cells according to our previous study with
some modifications [42]. Briefly, the cells were washed with
PBS (×3) and incubated for 30min in the dark at 37°C PBS
containing 20μM DCF-DA (Abcam, Cambridge, MA).
Fluorescence of oxidized DCF was detected using a Zeiss
ApoTome Axiovert 200M microscope (Carl Zeiss, Ger-
many) at excitation wavelengths of 485nm. The mean rela-
tive fluorescence intensity was measured by the average of
five random values.

2.11. Real-Time RT-PCR Analysis. Real-time RT-PCR analy-
sis for the whole kidney and mProx24 cells was performed as
described previously [16]. Briefly, total RNA was isolated
using the TRIzol reagent (Life Technologies, Carlsbad, CA,
USA), and then, cDNA was synthesized. The mRNA expres-
sion of various genes was determined by real-time RT-PCR
using an ABI7300 system (Applied Biosystems, Carlsbad,
CA, USA). The primer sequences are shown in Table 1.

2.12. Western Blot Analysis. The protein expression was
determined using Western blot analysis as described [16].
Briefly, the kidney tissue and cell lysates were separated on
SDS-polyacrylamide gel electrophoresis followed by transfer
to polyvinylidene difluoride membranes. Then, the mem-
branes were incubated with various antibodies including
anti-p-eIF2α (1 : 5000, Cell Signaling Technology), anti-p-
IRE1α (1 : 4000, Santa Cruz Biotechnology), ATF6α (1 :
5000, Cell Signaling Technology), anti-pJNK (1 : 5000, Cell
Signaling Technology), anti-CHOP (1 : 1000, Santa Cruz Bio-
technology), anti-pSrc (1 : 1000; Cell Signaling Technology),
anti-pFyn (1 : 1000; Santa Cruz Biotechnology), and anti-β-
actin (1 : 1000) overnight at 4°C on a shaker. Then, the mem-
branes were incubated with respective secondary antibodies,
washed, and reacted with an enhanced chemiluminescent

sensitive plus reaction (BioFX Laboratories, Inc., Owings
Mills, MD, USA). The bands were quantified by using ImageJ
software and normalized by β-actin.

2.13. Statistical Analysis. All results were expressed as the
mean ± standard error ðSEÞ. The statistical differences among
the groups were evaluated by one-way ANOVA and subse-
quent Fisher’s post hoc analysis. Differences were considered
to be significant when p < 0:05.

3. Results

3.1. CORM2 Improves Kidney Function and Attenuates
Kidney Tubular Injury. We first showed that LPS signifi-
cantly decreased body weight in a time-dependent manner
(Supplementary Fig. 1A). Pretreatment with CORM2 signif-
icantly inhibited the LPS-induced decrease in body weight

Table 1: Primers used for real-time RT-PCR analysis.

Gene
(mouse)

Primer sequences

CAT
F 5′-CACACCTACACGCAGGCCGG-3′
R 5′-CTGCGCTCCGGAGTGGGAGA-3′

Edem1
F 5′-TGGGTTGGAAAGCAGAGTGGC-3′

R 5′-TCCATTCCTACATGGAGGTAGAAGGG-3′

Fyn
F 5′-CTTTGGGGGTGTGAACTCCT-3′
R 5′-TTCTGCCTGGATGGAGTCAA-3′

Hck
F 5′-AGGGGTTAGGACTGGGAACA-3′
R 5′-CCCCAGAGATTTTGGACCCC-3′

iNOS
F 5′-ATGTCCGAAGCAAACATCAC-3′
R 5′-TAATGTCCA GGAAGTAGG TG-3′

ICAM1
F 5′-TGCCTCGGGAATGGAAAG-3′

R 5′-ATGGTAGTCTCCCCATCGTCATA-3′

GRP78
F 5′-AGCCATTGGATCACAACCTC-3′
R 5′-AGAAGCGAGAGATCCATCCA-3′

Lck
F 5′-ACGATCTCGGGGATCATGG-3′

R 5′-GAGATCTTGCTGTCCAGTGGG-3′

Lyn
F 5′-AGCTCCAGAGGCCATCAACT-3′
R 5′-CACATCTGCGTTGGTTCTCC-3′

c-Src
F 5′-TCCACACCTCTCCGAAGCAA-3′
R 5′-CATGCTGATGGCCTGTGTCA-3′

NQO1
F 5′-TTCTCTGGCCGATTCAGAG-3′

R 5′-GGCTGCTTGGAGCAAAATAG-3′

Prx1
F 5′-TGGCCAACGAAGGGGTTAAA-3′
R 5′-GATGAGGCTGCAGTTGAGGT-3′

sXBP1
F 5′-GAGTCCGCAGCAGGTG-3′

R 5′-GTGTCAGAGTCCATGGGA-3′

TNFα
F 5′-CGTCAGCCGATTTGCTATCT-3′
R 5′-CGGACTCCGCAAAGTCTAAG-3′

18S
F 5′-CGAAAGCATTTGCCAAGAAT-3′
R 5′-AGTCGGCATCGTTTATGGTC-3′

F: forward; R: reverse.
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and the kidney to body weight (Supplementary Fig. 1B-C).
Then, we examined the effect of CORM2 on kidney function
and morphology changes during LPS-induced AKI. The
results of PAS staining (Figure 1(a)) showed tubular damage
in the LPS-induced AKI mice, which was ameliorated by

CORM2 or PP2. Also, CORM2 or PP2 treatment signifi-
cantly inhibited the LPS-induced plasma KIM1 levels in the
AKI mice (Figure 1(b)). CORM2 or PP2 significantly
decreased LPS-induced plasma cystatin C (Figure 1(c)) and
creatinine (Figure 1(d)) levels, suggesting that CORM2 may
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Figure 1: CORM2 reduces LPS-induced kidney dysfunction and injury in mice. Mice were pretreated with CORM2 (30mg/kg) or PP2 (2
mg/kg) for 2 h and then administrated with LPS (15mg/kg) for 18 h. (a) Paraffin-embedded kidney sections were stained with PAS
(magnification: 630x; scale bar: 20 μm). Blood plasma was used to determine (b) KIM1 (pg/ml), (c) cystatin C (ng/ml), and (d) creatinine
(mg/dl). (e) Apoptosis was measured in paraffin-embedded kidney sections using TUNEL assays (magnification: 400x; scale bar: 100μm).
Data are presented as means ± SE, control (n = 8), CORM2 (n = 8), PP2 (n = 8), LPS (n = 6-8), LPS+CORM2 (n = 6-8), and LPS+PP2
(n = 6-8); ∗p < 0:05 vs. control, †p < 0:05 vs. LPS.
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Figure 2: Continued.
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enhance kidney function in AKI mice. Cellular apoptosis was
detected using TUNEL assays. TUNEL-positive cells were
markedly increased in the LPS-induced AKI mice, and the
number was decreased by CORM2 or PP2 (Figure 1(e)).

3.2. CORM2 Attenuates LPS-Induced Kidney Oxidative Stress
and Inflammation. Oxidative stress is an important contrib-
utor to the pathogenesis of AKI [43]. First, we have con-
firmed the time-dependent effects of LPS on antioxidants.
Expression of NRF2 and NQO1 mRNA was effectively
decreased at 12 and 24 h after injection of LPS (Supplemen-
tary Fig. 3C). Plasma LPO was significantly increased in
LPS-induced AKI mice, which was effectively inhibited by
CORM2 or PP2 (Figure 2(a)). LPS-induced accumulation
of nitrotyrosine in the kidney was also considerably inhibited
by CORM2 or PP2 (Figure 2(b)).

To precisely measure ROS in kidney tissues, DHE stain-
ing was accomplished. LPS effectively enhanced ROS levels,
which were significantly reduced by CORM2 or PP2
(Figure 2(c)). The expression levels of NOX2 and NOX4

as measured by immunostaining were significantly
increased in LPS-induced AKI mice. Interestingly, these
changes were significantly hindered by CORM2 or PP2
(Figure 2(d)). Also, the NOX2 and NOX4 mRNA levels
were significantly decreased by CORM2 in AKI mice (Sup-
plementary Fig. 3E-F). Together, these data suggest that
CORM2 decreases oxidative stress as much as PP2 does in
LPS-induced AKI.

Since inflammation is critically involved in AKI, we deter-
mined whether CORM2 or PP2 has an anti-inflammatory
effect on LPS-induced AKI. First, we confirmed the time-
dependent effects of LPS on proinflammatory genes. As
expected, proinflammatory genes were significantly increased
at various time points by both agents in the mice (Supplemen-
tary Fig. 3A). LPS effectively increased the staining of F4/80, a
marker of macrophage infiltration, which was significantly
reduced by treatment of CORM2 or PP2 in the kidneys
(Figure 2(e)). Likely, CORM2 significantly reduced LPS-
induced mRNAs of proinflammatory cytokines including
TNFα, iNOS, and ICAM1 in the kidneys (Figure 2(f)–2(h)).
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Figure 2: CORM2 reduces kidney oxidative stress and inflammation in LPS-induced AKI mice. (a) Blood plasma was used to determine
LPO (μM). (b) Anti-nitrotyrosine antibody (1 : 200) was used to stain the paraffin sections of the kidney, and accumulation of
nitrotyrosine is shown in the cytosol (brown color). (c) DHE (5 μM for 10min) was used to stain the frozen sections of the kidney,
and the red color indicates ROS accumulation. Magnification: 100x; scale bar: 50 μm. (d, e) Paraffin sections of the kidney were
incubated with (d) anti-NOX2 (1 : 500) and anti-NOX4 (1 : 400) and (e) anti-F4/80 (1 : 200) antibodies. Magnification of all images
from paraffin sections: 100x; scale bar: 100μm. (f-h) Real-time RT-PCR was used to measure the mRNA levels of TNFα, iNOS, and
ICAM1 in the kidney. Data are presented as means ± SE, control (n = 8), CORM2 (n = 8), PP2 (n = 8), LPS (n = 6-8), LPS+CORM2
(n = 7-8), and LPS+PP2 (n = 6-8); ∗p < 0:05 vs. control, †p < 0:05 vs. LPS.
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3.3. CORM2 Inhibits LPS-Induced Kidney ER Stress. ER stress
has been reported as a hallmark of AKI [17, 18]. Thus, we
have investigated the effect of CORM2 on ER stress. LPS
treatment significantly increased the mRNA levels of ER
stress markers including sXBP1, Edem1, and GRP78 in the
kidney of AKI mice (Figure 3(a)). These were all considerably
reduced by CORM2 or PP2 (Figure 3(a)). Consistently, the
protein expression levels of peIF2α, pIRE1α, ATF6α, pJNK,
and CHOP were significantly increased in AKI mice
(Figures 3(b)–3(g)). As expected, these changes were signifi-
cantly suppressed by CORM2 or PP2 (Figures 3(b)–3(g)).

3.4. CORM2 Inhibits LPS-Induced SFK Activation. As shown
in Figure 4(a), the mRNA levels of SFKs such as Fyn and c-
Src were significantly increased by LPS while CORM2 effec-
tively inhibited these effects. The protein expression levels
of pFyn, Fyn, pSrc, and Src were markedly increased by
LPS treatment (Figures 4(b) and 4(c)) and were decreased
by pretreatment with CORM2 in AKI mice (Figures 4(b)
and 4(c)). In addition, immunostaining of pSrc and pFyn
was markedly detectable in the kidney of LPS-induced AKI
mice (Figure 4(d)), and their expression levels were decreased
by CORM2 treatment (Figure 4(d)). These data show that
CORM2 inhibits not only pFyn and p-c-Src but also total
Fyn and c-Src in the kidney of LPS-induced AKI mice.

3.5. CORM2 Reduces LPS-Induced ER Stress through
Inhibition of Fyn. CO attenuates ER stress [35, 36], while
Fyn contributes to ER stress [24]. Since the importance of
tubular epithelial cells in AKI pathophysiology is established
[44], the mProx cells have been utilized to validate the pro-
tective mechanisms involved in CORM2. We have, first, con-
firmed the cytotoxic effects of LPS on mProx cells using MTT
assays. There was no significant cytotoxic effect up to 1μg/ml
LPS (Supplementary Fig. 2A). Also, there were no significant
cytotoxic effects of CORM2 at different concentrations in
LPS-treated cells (Supplementary Fig. 2B). Based on these

observations, we have chosen the doses of CORM2 (20μM)
and LPS (100 nM) for the studies with mProx cells.

Time-dependent treatment with LPS increased the
mRNA expression levels of SFK (such as Fyn and c-Src) at
3 and 6h (Figure 5(a)), and also, the mRNAs of ER stress-
responsive genes (such as sXBP1, Edem, and GRP78) were
significantly increased at 6, 12, and 24h (Figure 5(c)) in
mProx cells. Also, time-dependent treatment with LPS
significantly increased the mRNAs of proinflammatory genes
such a TNFα, MCP1, iNOS, and ICAM1 (Supplementary Fig.
3B) and decreased antioxidant enzymes including NRF2 and
NQO1 (Supplementary Fig. 3D) in mProx cells. Pretreat-
ment with CORM2 at different doses (0, 5, 10, and 20μM)
attenuated LPS-induced upregulation of the mRNAs of c-
Src and Fyn (Figure 5(b)). LPS increased pFyn and Fyn pro-
tein expression at different times (Figure 5(g)). Furthermore,
pretreatment with CORM2 at different doses (0, 5, 10, and 20
μM) attenuated LPS-induced upregulation of the protein
expression of Fyn, pIRE1α, and pJNK (Figure 5(h)).

Pretreatment with CORM2 or PP2 for 2 h attenuated
LPS-induced upregulation of the mRNA expression of
sXBP1, Edem, GRP78 (Figure 5(d)), and CHOP (Supple-
mentary Fig. 4A) as well as the expression levels of Fyn,
pIRE1α, and pJNK proteins (Figure 5(i)) in mProx cells. As
expected, pretreatment with iCORM2 did not inhibit LPS-
induced ER stress (Supplementary Fig. 4B-C), supporting
the effect of CO on ER stress. LPS significantly increased
the mRNA expression levels of Fyn and c-Src in the respec-
tive control siRNA groups, and this effect was significantly
decreased by CORM2 (Figures 5(e) and 5(f)). However,
LPS failed to increase Fyn and c-Src expression under Fyn
siRNA (Figure 5(e)) and c-Src siRNA (Figure 5(f)), respec-
tively, indicating the specificity of transfection in the mProx
cells. Importantly, LPS significantly increased the mRNA
expression levels of sXBP1, Edem, and GRP78 in the respec-
tive control siRNAs, effects that were significantly suppressed
by CORM2 (Figures 5(e) and 5(f)). Interestingly, LPS failed
to increase the mRNA expression levels of sXBP1, Edem,
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Figure 3: CORM2 inhibits kidney ER stress in LPS-induced AKI mice. (a) The mRNA levels of sXBP1, ER-degradation-enhancing alpha-
mannosidase-like protein-1 (Edem1), and 78 kDa glucose-regulated protein (GRP78) were assessed in the kidney using real-time RT-PCR.
(b) Western blotting was employed to determine the protein expression of peIF2α, pIRE1α, ATF6α, pJNK, and CHOP in the kidney, and
(c–g) ImageJ software was used to determine the band intensities. Data are presented as means ± SE, control (n = 8), LPS (n = 7-8), LPS
+CORM2 (n = 8), and LPS+PP2 (n = 8); ∗p < 0:05 vs. control and †p < 0:05 vs. LPS.
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and GRP78 under Fyn siRNA (Figure 5(e)), but not c-Src
siRNA (Figure 5(f)). In addition, LPS failed to increase the
protein expression of ER stress response proteins such as
pIRE1α and pJNK under Fyn siRNA (Figure 5(j)), indicating
the potential role of Fyn in the ER stress response in AKI.
To verify the influence of CORM2 on ER stress-mediated
cell death, we performed TUNEL assays. LPS significantly

increased the number of TUNEL-positive mProx cells, an
effect that was effectively inhibited by CORM2, NAC, 4-
PBA, and PP2 (Figure 5(k)).

3.6. CORM2 Decreases LPS-Induced Fyn Activation through
Inhibition of ROS. Fyn is induced by ROS through activation
of NADPH oxidase [45], while CO is known to inhibit ROS
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Figure 4: CORM2 inhibits SFK activation in LPS-induced AKI mice. (a) The mRNA levels of SFKs including Fyn, c-Src, Lyn, Yes, and Lck
were determined in the kidney using real-time RT-PCR. (b, c) Western blotting analysis of phosphorylated or total Src and Fyn kinase in the
kidney was performed. ImageJ software was used to detect the band intensities, and the levels of the proteins were normalized to β-actin. (d)
Paraffin sections of the kidney were incubated with phospho-Fyn (red) and phospho-Src (green) antibodies and 4′,6-diamidino-2-
phenylindole (DAPI; blue). Magnification: 100x; scale bar: 50μm. Data in the graph are presented as means ± SE, control (n = 8), CORM2
(n = 8), LPS (n = 7-8), and LPS+CORM2 (n = 7-8); ∗p < 0:05 vs. control, †p < 0:05 vs. LPS.
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Figure 5: CORM2 inhibits ER stress through suppression of Fyn in LPS-treated mProx cells. (a, c) Cells were stimulated with LPS (100 ng/ml)
in a time-dependent manner (0, 3, 6, 12, and 24 h). (a) SFK such as Fyn, c-Src, Lyn, Yes, and Lck mRNA levels were measured in the cells. (b,
h) Cells were pretreated with CORM2 in a concentration-dependent manner (0, 5, 10, and 20 μM) for 2 h and then incubated with LPS (100
ng/ml) for 6 h or 18 h. (b) The mRNA levels of Fyn and c-Src were measured at 6 h. (c) mRNAs of sXBP1, Edem, and GRP78 were measured.
(d, i) Cells were pretreated with CORM2 (20 μM) or PP2 (10 μM) for 2 h and then stimulated with LPS (100 ng/ml) for 6 h or 24 h. (d) mRNAs
of sXBP1, Edem, and GRP78 were measured. (e, f, j) Cells were transfected with control siRNA and Fyn or c-Src siRNA. Then, they were
pretreated with or without CORM2 and incubated with LPS (100 ng/ml) for 6 h or 18 h. (e) Fyn siRNA (LPS, 6 h): mRNAs of Fyn, sXBP1,
Edem, and GRP78 were measured. (f) c-Src siRNA (LPS, 6 h): mRNAs of c-Src, Fyn, sXBP1, Edem, and GRP78 were measured. (g) Cells
were treated with LPS (100 ng/ml) in a time-dependent manner (0, 3, 6, 12, and 24 h), and protein expression of pFyn and Fyn was
measured. (h) Protein expression of Fyn, pIRE1α, and pJNK at 18 h. (i) Protein expression of Fyn, pIRE1α, and pJNK at 18 h. (j) Fyn
siRNA (LPS, 18 h): protein expression of Fyn, pIRE1α, and pJNK. (k) Cells were pretreated with CORM2 (20 μM) or NAC (5mM) or 4-
PBA (1mM) or PP2 (10 μM) for 2 h and then incubated with LPS (100 ng/ml) 18 h followed by TUNEL assays. Magnification: 200x; scale
bar: 50μm. All mRNAs were analyzed using real-time RT-PCR, and the proteins were measured using Western blotting analysis. ImageJ
software was utilized to detect the band intensities, and the levels of the proteins were normalized to β-actin. Representative protein bands
are shown. Data are presented as the mean ± SE, n = 4; ∗p < 0:05 vs. control, †p < 0:05 vs. LPS.
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by conformational changes of NADPH oxidase [30–32]. In
addition, CO inhibits H2O2-induced oxidative stress [33].
CORM2 or PP2 significantly reduced LPS-induced plasma
LPO (Figure 2(a)), nitrotyrosine accumulation (Figure 2(b)),
ROS levels (Figure 2(c)), and NOX2 and NOX4 expression
(Figure 2(d)) in AKI mice. This evidence and our results
suggest that CORM2 may suppress Fyn through inhibition
of ROS.

We have checked the cytotoxic effect of H2O2 on mProx
cells using MTT assays. There was no significant cytotoxic
effect of H2O2 up to 200μM on mProx cells at the 6 and 24

h time points (Supplementary Fig. 5A-B). H2O2 at 400μM
showed a cytotoxic effect at 24 h but not at 6 h. Also, H2O2
significantly increased the mRNA expression levels of Fyn,
c-Src, Edem, and GRP78 in mProx cells in a time- and
dose-dependent manner (Supplementary Fig. 5C-D). Based
on these results, we decided on the time and dose for H2O2
treatment of the cells.

To confirm the role of ROS on Fyn, we pretreated the
mProx cells with CORM2 at different doses (0, 5, 10, and
20μM). Various doses of CORM2 significantly reduced the
H2O2-induced mRNA expression levels of Fyn, Edem, and
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Figure 6: CORM2 inhibits Fyn activation through suppression of ROS in H2O2-treated mProx cells. (a, b) Cells were pretreated with CORM2
in a concentration-dependent manner (0, 5, 10, and 20 μM) for 2 h and then stimulated with H2O2 (200 μM) for 6 h or 18 h. (a) mRNAs of
Fyn, Edem, and GRP78 were measured at 6 h. (b) Proteins of Fyn, pIRE1α, and pJNK were measured at 18 h. (c) The cells were pretreated with
20μM CORM2 for 2 h and then stimulated with 200μM H2O2 for 1 h. Then, cells were incubated with DCF-DA for 30min for measuring
ROS within the cells. Fold changes of fluorescence intensity were measured from five random values from 3 independent experiments.
(d–f) Cells were pretreated with CORM2 (20 μM), NAC (5mM), 4-PBA (1mM), or PP2 (10 μM) for 2 h and then stimulated with H2O2
(200 μM) for 6 h or 18 h. (d) mRNAs of Fyn, Edem, and GRP78 were measured at 6 h. (e) mRNAs of CAT, NQO1, and PRX1 were
measured at 6 h. (f) TUNEL assay at 18 h. Magnification: 200x; scale bar: 50 μm. All mRNAs were measured using real-time RT-PCR, and
the proteins were measured using Western blotting analysis. Representative protein bands are shown. Data are presented as the mean ± SE
, n = 4; ∗p < 0:05 vs. control, †p < 0:05 vs. H2O2.
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GRP78 (Figure 6(a)) and the protein expression levels of
Fyn, pIRE1α, and pJNK (Figure 6(b)). Also, H2O2-induced
pFyn expression was inhibited by CORM2 at 1 h (Supple-
mentary Fig. 5E). Interestingly, CORM2 effectively inhibited
H2O2-induced ROS production in the cells (Figure 6(c)).
Pretreatment with CORM2, 4-phenylbutyric acid (4-PBA,
an ER stress inhibitor), or N-acetylcysteine (NAC, an anti-
oxidant) significantly decreased the H2O2-induced upregula-
tion of the mRNA expression levels of Fyn, Edem, and
GRP78 (Figure 6(d)). Also, pretreatment with CORM2, 4-
PBA, or NAC significantly decreased the H2O2-induced
upregulation of the mRNA expression of catalase (CAT),
NQO1, and PRX1 (Figure 6(e)). Consistently, H2O2 signifi-
cantly increased the number of TUNEL-positive mProx
cells, and this was effectively inhibited by CORM2, NAC,
4-PBA, and PP2 (Figure 6(f)).

4. Discussion

The current data demonstrate that the treatment of CORM2
exerts a protective effect against LPS-induced AKI by reduc-
ing ROS-Fyn-mediated ER stress.

Since the LPS model mimics various aspects of sepsis in
humans [46], we have used LPS-induced AKI as an AKI
mouse model instead of some other models [38, 47–51].
The protective effects of CORM2 on LPS-induced AKI are
coherent with earlier findings [38, 47–51]. CO/CORMs pro-
tect against AKI by inhibiting inflammation, oxidative injury,
and cellular apoptosis [38, 47–51]. Considering the protec-
tive effects of CORM2 on AKI, we further dissected the
mechanisms, focusing on Fyn-ER stress.

CO reduces ER stress in diverse cell types [35, 36]. Con-
sidering that ER stress is associated with kidney tubular
epithelial cell apoptosis and injury [7] and that LPS mediates
ER stress leading to AKI [43], we have measured peIF2α,
pIRE1α, ATF6α, pJNK, and CHOP expression in kidney tis-
sues. Under our experimental conditions, LPS-induced
expression of peIF2α, pIRE1α, ATF6α, pJNK, and CHOP
was efficiently hindered by CORM2, suggesting a protective
effect of CORM2 on ER stress-associated AKI.

Although Fyn is known to be an important regulator in
cancer biology [52], recent studies have indicated the
involvement of SFKs, including Fyn, in the pathogenesis of
progressive CKD [22, 23]. Genetic or pharmacological inhi-
bition of Fyn attenuates kidney fibrosis by inhibition of
phospho-STAT3 in UUOmice [23]. Fyn overexpression acti-
vates mammalian target of rapamycin complex 1 (mTORC1)
through inhibition of the LKB1-AMPK pathway, leading to
skeletal muscle atrophy [53]. Fyn promotes ER stress and
consecutive activation of the IRE1α-JNK pathway, driving
cell death in skeletal muscle [24]. Fyn activates mTORC1
[53] and IRE1α-JNK [24] pathways. While mTOR is associ-
ated with ER stress in kidney tubular cells [55], Fyn has been
suggested as a potential therapeutic target in AKI [54]. Thus,
it is suggested that suppression of Fyn may attenuate AKI
through inhibition of ER stress. Accordingly, the present
study showed that pharmacologic or genetic inhibition of
Fyn suppressed ER stress responses in the kidney of LPS-
treated AKI mice as well as in mProx cells.

ROS is associated with ER stress [9, 10]. The inhibition of
ROS by NAC effectively attenuated ER stress responses in
IRI-induced AKI in mice [56]. NADPH oxidase (NOX)
enzyme complexes are endogenous sources of ROS such as
O2

- and H2O2. Inhibition of NOX1 leads to attenuation of
elevated ROS levels in in vitro models of atopic dermatitis
(AD) and psoriasis (PSO) in keratinocytes [57]. CO is known
to inhibit ROS by conformational changes in NOX [30–32].
CO-releasing molecules such as CORM2 and CORM-401
effectively inhibit H2O2-induced ROS production in the
murine intestinal epithelial MODE-K cells [58]. Consistent
with this, CORM2 significantly reduced H2O2-induced ROS
production in mProx cells under our experimental condi-
tions. Yet, CORM3 had no direct inhibitory effects on the
H2O2 concentration in a test tube [33]. Since generation of
ROS is linked with ER stress, CO may perform a vital role
in the reduction in ROS-mediated ER stress during AKI. In
the current study, CORM2 treatment not only efficiently
reduced oxidative stress but also significantly enhanced anti-
oxidant gene levels in LPS-treated AKI mice. Under oxidative
stress conditions, ROS increases SKFs, including Fyn expres-
sion [45]. ROS (such as H2O2) directly oxidizes cysteine 488
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Figure 7: Suggested schematic diagram for the effect of CO on ROS-
Fyn-ER stress activation in LPS-induced AKI. LPS mediates ROS
leading to Fyn-ER stress signaling, which activates apoptosis
signaling (such as CHOP and pJNK) in AKI. CO attenuates ER
stress through suppression of Fyn activation in AKI. LPS-induced
ROS is connected to activation of Fyn, while CO is known to
reduce ROS levels. Thus, CO may become an alternative treatment
option against Fyn-mediated ER stress in AKI.
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of Fyn resulting in increased Fyn kinase activity in human
epidermal keratinocytes and murine embryonic fibroblasts
and subsequently activates JNK, a downstream target of
Fyn [59]. Consistently, in our study, LPS or H2O2 effectively
increased pJNK and other ER stress markers, as well as cellu-
lar apoptosis. Interestingly, these effects were all inhibited by
CORM2, NAC, 4-PBA, and PP2. CORM2 also suppressed
LPS- or H2O2-induced Fyn and c-Src activation. In addition,
LPS failed to increase ER stress responses under Fyn siRNA,
but not c-Src siRNA. These data indicate the potential sup-
pressive effect of CO on the ROS-Fyn-ER stress axis in AKI.

However, there are several unanswered questions such as
the following: (a) the delayed treatment of CORM2 on AKI
was not studied, (b) the detailed mechanisms involved in
the inhibition of H2O2-mediated Fyn-ER stress signaling by
CORM2 have not been explored, and (c) protocol of optimal
delivery and dosing and the possible treatment of CO in
human diseases have not been recognized yet. Further, toll-
like receptors (TLRs), mainly TLR4, are an important player
in inflammation and many other cellular processes in the
progression of AKI [60]. Treatment of CORM2 attenuated
the levels of TLR2 and TLR4/ROS and reduced inflammation
in the lung [61]. Thus, it needs to examine whether CORM2
can attenuate AKI via inhibition of TLRs. In addition, prema-
ture senescence estimated by β-galactosidase and p53/p21
expression in NRK52E cells [62] and M1 macrophage polar-
ization in RAW264.7 macrophages [63] have recently
showed to play a role in AKI. Therefore, the effect of CORM2
on LPS-induced senescence and macrophage polarization in
AKI needs to be investigated.

In conclusion, our results and existing evidence supports
that stress stimuli (such as LPS)-induced oxidative stress
mediates Fyn-ER stress signaling and that inhibition of oxi-
dative stress by CORM2 may have a protective effect against
AKI (Figure 7). In the present study, LPS significantly
induced kidney injury, oxidative stress, ER stress, tubular
apoptosis, and inflammation, which were all inhibited by
CORM2 in AKI mice and mProx cells. In addition, CORM2
suppressed LPS- or H2O2-induced Fyn activities in vivo and
in vitro. LPS failed to increase ER stress responses under
Fyn siRNA, but not c-Src siRNA, indicating the potential role
of Fyn in the ER stress response in AKI. These findings sug-
gest that treatment of CORM2 aimed at preventing ROS-
mediated Fyn-ER stress signaling may become a promising
option to treat AKI.
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