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For several leukemia patients, allogeneic stem cell transplantation (allogeneic-SCT) is 
the unique therapeutic modality that could potentially cure their disease. Despite sig-
nificant progress made in clinical management of allogeneic-SCT, acute graft-versus-
host disease (aGVHD) and infectious complications remain the second and third cause 
of death after disease recurrence. Clinical options to restore immunocompetence after 
allogeneic-SCT are very limited as studies have raised awareness about the safety 
with regards to graft-versus-host disease (GVHD). Preclinical works are now focusing 
on strategies to improve thymic functions and to restore the peripheral niche that 
have been damaged by alloreactive T cells. In this mini review, we will provide a brief 
overview about the adverse effects of GVHD on the thymus and the peripheral niche 
and the resulting negative outcome on peripheral T cell homeostasis. Finally, we will 
discuss the potential relevance of coordinating our studies on thymic rejuvenation and 
improvement of the peripheral lymphoid niche to achieve optimal T cell regeneration in 
GVHD patients.

Keywords: interleukin-7, dendritic cells, lymphopenia, lymphocytes, stem cell transplantation, GvHD, iL-7,  
SDF-1α

KeY POinTS

•	 GVHD	effect	on	the	thymus.
•	 GVHD	effect	on	the	peripheral	niche.
•	 Addressing	the	dysfunction	of	the	thymus	and	the	peripheral	niche	to	improve	T cell	regeneration	
in	GVHD	patients.

inTRODUCTiOn

Allogeneic-SCT	was	developed	to	treat	leukemia	and	lymphoma	as	well	as	congenital	or	acquired	
hematologic	conditions.	Despite	important	side	effects,	allogeneic-SCT	remains	the	only	curative	
treatment	for	several	patients	with	high	risk	refractory	hematologic	cancers.	Acute	graft-versus-
host	 disease	 (aGVHD)	 is	 a	 serious	 complication	 of	 allogeneic-SCT	 that	 occurs	 when	 donor	
lymphocytes	react	to	normal	host-tissues.	Paradoxically,	alloreactive	T cells	can	improve	survival	
by	eliminating	residual	leukemia	cells	that	survive	SCT;	a	reaction	known	as	graft-versus-leukemia	
effect	(1).	Following	SCT,	donor	hematopoietic	stem	cells	home	to	the	bone	marrow	(BM)	and	
differentiate	 into	 white	 cells,	 megakaryocytes	 and	 erythrocytes.	While	 the	 recovery	 of	 innate	
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FiGURe 1 | Immune reconstitution after autologous and allogeneic-SCT. (A) Autologous-SCT: chemotherapeutic insults affect the BM and thymopoiesis. During this 
period, thymopoiesis is inefficient and T cell regeneration occurs primarily through HP of mature T cells contained in the graft. The production of DCs occurs 
relatively early after autologous SCT and combined with elevated systemic IL-7, produced by stromal cell of primary and secondary lymphoid organs, they induce 
HP of mature T cells. In younger patients, rapid thymopoiesis recovery contributes to normalize CD4+ T cell counts and T cell receptor diversity. (B) Allogeneic-SCT: 
the combined GVHD and chemotherapeutic insults to the thymus and the BM induce long-lasting dysfunction of thymopoiesis and the peripheral lymphoid niche. 
Damages to the BM microenvironment are mediated primarily by alloreactive CD4+ T cells. During GVHD, DC production is reduced and systemic IL-7 is low, which 
constrain HP of non-alloreactive naïve T cells. Depending on the severity of GVHD and patient’s age, the dysfunction of the thymus can persist for several years.
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immune	cells	 is	 relatively	 fast,	 regeneration	of	 lymphocytes	 is	
slower	and	can	be	further	delayed	by	aGVHD	(2,	3).	For	several	
years,	it	was	believed	that	the	failure	to	recover	T cells	post-SCT	
was	 essentially	 attributed	 to	 thymic	 dysfunction.	 Today,	 it	 is		
well	known	that	 the	size	of	 the	 lymphocyte	pool	 is	controlled	
by	 the	 thymus	 but	 also	 by	 the	 peripheral	 niche	 that	 provides	
resources	for	T cells	 to	survive	 in	the	periphery.	Recent	func-
tional	studies	have	demonstrated	a	significant	reduction	in	the	
bioavailability	of	peripheral	T cell	resources	in	graft-versus-host	
disease	(GVHD)	hosts,	which	contributes	to	the	more	 impor-
tant	 immunosuppression	 in	 allogeneic-SCT	 compared	 with	
autologous-SCT.	 As	 a	 result,	 lymphopenia	 is	 typically	 more	
severe	 in	 GVHD	 patients	 and	 clinical	 options	 to	 accelerate	
lymphocyte	 reconstitution	 are	 virtually	 inexistent	 because	 of	
the	risk	to	aggravate	aGVHD	(4,	5).	In	this	mini-review,	we	will	
address	how	aGVHD	affects	 thymopoiesis	 and	 the	peripheral	
niche,	 and	 we	 will	 propose	 potential	 strategies	 to	 improve	
immune	reconstitution	after	allogeneic-SCT.

iMMUne ReCOnSTiTUTiOn  
in A nOn-GvHD SeTTinG

Lymphocyte	 regeneration	 can	 occur	 through	 thymopoiesis		
and/or	via	homeostatic	proliferation	(HP)	of	mature	lymphocytes	
(2).	 In	 younger	 patients,	 thymic	 regeneration	 typically	 occurs	

during	 the	first-year	 post-transplantation	 and	 is	 normally	 fol-
lowed	 by	 rapid	 normalization	 of	 T  cell	 counts	 (2).	 In	 adults,	
age-related	 thymic	 involution	combined	with	 therapy-induced	
cytotoxic	insults	result	in	prolonged	thymic	dysfunction.	During	
this	period,	T cell	regeneration	occurs	primarily	through	HP	of	
mature	lymphocytes	contained	in	the	graft	(Figure 1A).	In	addi-
tion	 to	 interleukin-7	(IL-7),	T cell	 receptor	 (TCR)	stimulation	
by	major	histocompatibility	complexes	(MHCs)	class	 I	or	 II	 is	
necessary	for	HP	of	CD8+	and	CD4+	lymphocytes,	respectively	
(6).	While	HP	is	sufficient	 for	restoring	CD8	counts,	 it	 is	nor-
mally	insufficient	for	CD4+	T lymphocytes	and	the	full	recovery	
of	the	CD4	subset	can	take	several	months	or	years	to	occur	and	
depends	 largely	 on	 thymic	 recovery	 (2).	 B  cell	 recovery	 takes	
between	3	and	6 months	to	occur	(7,	8),	whereas	DC	recovery	
after	 autologous-SCT	 is	 normally	 fast.	 Given	 that	 DCs	 are	
important	 for	NK cell	 homeostasis,	 they	 likely	 influenced	NK	
regeneration	 which	 also	 occurs	 within	 few	 weeks	 post-SCT		
(9,	10)	(Table 1).

iMMUne ReCOnSTiTUTiOn AFTeR 
ALLOGeneiC-SCT AnD GvHD

The	 immunosuppression	 that	 occurs	 after	 allogeneic-SCT	 is	
typically	 more	 important	 than	 the	 level	 of	 immunosuppres-
sion	 normally	 seen	 after	 autologous-SCT.	 Patients	 undergoing	
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TABLe 1 | Time line of immune reconstitution of immune cells after autologous 
and allogeneic-SCT (7, 11–17).

Cells subsets Autologous-SCT Allogeneic-SCT (years)

CD4+ lymphocytes >1 year >2
CD8+ lymphocytes 1–3 months 1–2
NK cells 1–2 months 1–2
Dendritic cells 1–2 months 1–2
B lymphocytes 3–6 months >2

FiGURe 2 | The effect of GVHD on lymphocyte numbers. Following chemotherapy, thymic insults induce thymic involution and loss of thymic output. Early  
after T cell infusion, CD4+ and CD8+ T cell counts increase as a consequence of HP and alloreactive T cell activation. At 1 month post-allogeneic-SCT, GVHD 
T cells induce damage to the thymus and the peripheral niche, resulting in severe thymic dysfunction and lower HP of T cells. During this period, patients are 
profoundly lymphopenic. After several months, the thymus may leak few autoreactive T cells, which contribute to the development of cGVHD. Autoreactive 
T cells can further damage the thymus and the peripheral niche, resulting in long lasting immunosuppression. At 1 year post-GVHD, rises in CD8 counts can 
occur through HP whereas HP of CD4+ T cells remains highly inefficient resulting in chronic CD4 lymphopenia that can persist for several years.
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Immunosuppressive	therapies	use	to	control	GVHD	can	affect	
lymphocyte	 reconstitution.	 Cyclosporine	 A	 and	 methotrexate	
alter	B cell	differentiation	and	thymocytes	and	peripheral	T cell	
survival	 by	 interfering	 with	 TCR	 signaling	 (7,	 25,	 26).	 Novel	
drugs	 used	 to	 control	 refractory	 cGVHD	 are	 tyrosine	 kinase	
inhibitors,	 which	 can	 interfere	 with	 TCR	 or	 IL-7	 signaling	 to	
reduce	lymphocyte	activation	with	potential	detrimental	effects	
on	T cell	survival	(27–29).	Thus,	in	addition	to	chemotherapeutic	
and	GVHD	insults	that	affect	lymphoid	organs,	the	prophylaxis	
used	to	control	GVHD	can	further	constrain	lymphocyte	regen-
eration	after	allogeneic-SCT.

GvHD eFFeCTS On THe THYMUS

The	rich	microenvironment	of	the	thymus	in	MHC-I	and	II	expres-
sion	by	 thymic	epithelial	 cells	 (TECs)	and	antigen-presenting	
cells	 render	 the	 thymus	 a	 significant	 target	 for	 alloreactive	
lymphocytes	 (30).	While	 studies	 have	 demonstrated	 that	 the	
thymic	recovery	that	occurs	after	autologous-SCT	is	associated	
with	 rapid	 normalization	 of	 the	 T  cell	 repertoire	 (2),	 thymic	
rebound	 that	 occurs	 after	 allogeneic-SCT	 is	 often	 insufficient	
for	 restoring	T cell	counts	and	diversity,	even	 in	children	(31,	
32).	 Such	 differences	 in	 TCR	 diversity	 following	 autologous	
and	allogeneic-SCT	suggest	 that	some	elements	of	 the	thymus	
undergo	significant	damages	by	alloreactivity.	Indeed,	thymic-
dependent	immune	reconstitution	of	T lymphocytes	is	severely	
impaired	 after	 allogeneic-SCT	 and	 further	 compromised	 by	
aGVHD	(20,	33).	The	contribution	of	cGVHD	T cells	to	thymic	
insults	 remains	 largely	 unknown	 since	 thymus	 atrophy	 is	
normally	severe	during	this	period.	However,	thymus	infiltra-
tion	 by	 autoreactive	 T  cells	 can	 occur	 in	mice	with	 systemic	

allogeneic-SCT	 experience	 a	 phase	 of	 profound	 lymphopenia	
that	can	last	several	months	or	years	(18,	19).	Depending	on	the	
severity	of	the	aGVHD,	the	regeneration	of	both	CD4+	and	CD8+	
lymphocytes	 can	 be	 further	 delayed.	 The	 current	 models	 put	
forth	to	explain	how	aGVHD	affects	T cell	reconstitution	relates	
to	two	primary	factors:	GVHD-mediated	damage	to	the	thymic	
microenvironment	essential	for	T cell	production	(20);	and	the	
dysfunction	of	the	peripheral	niche	essential	for	the	survival	and	
HP	 of	 naïve	CD4+	 and	CD8+	 T  lymphocytes	 in	 the	 periphery	
(Figure 1B)	(21–23).	These	animal	studies	have	provided	a	new	
model	 to	 explain	 the	 profound	 immunosuppression	 typically	
seen	in	GVHD	patients.

In	contrast,	the	effect	of	chronic	GVHD	(cGVHD)	on	T cell	
regeneration	is	not	as	well	understood.	cGVHD	occurs	normally	
after	aGVHD	and	during	this	period,	T cell	regeneration	is	already	
compromised.	While	 aGVHD	 is	mediated	 by	mature	 lympho-
cytes	contained	in	the	graft,	the	origin	of	cGVHD	appears	related	
to	leakage	and	release	of	donor-derived	autoreactive	lymphocytes	
by	the	thymus	(Figure 2).	As	a	result,	clinical	manifestations	are	
different	from	aGVHD	with	cGVHD	symptoms	resembling	those	
in	patients	with	systemic	autoimmune	diseases	(24).
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autoimmune	 diseases,	 suggesting	 a	 potential	 contribution	 of	
cGVHD	T cells	to	thymic	damage	(34).

Evaluation	of	thymopoiesis	can	be	measured	by	T-cell	receptor	
excision	circles	 (TREC)	 that	are	generated	 from	the	rearrange-
ment	of	the	V	and	J	segments	at	the	TCRα	 locus	and	thus	cor-
relate	with	 thymic	output	of	naïve	T  cells	 (35,	36).	Depending	
of	 the	 robustness	 of	 the	 thymic	 output	 before	 transplantation,	
clinical	outcomes	and	incidence	of	GVHD	may	vary	(37).	During	
GVHD,	TREC	 levels	 are	normally	 low	and	correlate	with	 low	
levels	of	recent	thymic	emigrants	(RTEs)	detected	in	the	blood	
(36,	 38–41).	 Other	 factors	 such	 as	 age,	 preparative	 regimen,	
source	of	stem	cells	could	also	affect	thymopoiesis	(42,	43).

Normal	 thymopoiesis	 proceeds	 in	 a	 thymic	microenviron-
ment	 composed	 of	 a	 cortex	 and	 a	 medulla	 separated	 by	 the	
cortico–medullary	junction.	TECs	are	the	major	component	of	
the	thymus	stroma	that	guide	thymocyte	development.	Cortical	
thymic	epithelial	cells	(cTECs)	and	medullary	thymic	epithelial	
cells	 (mTECs)	 have	 distinct	 functions	 and	 play	 a	 critical	 role	
during	positive	and	negative	selection	of	thymocytes	to	produce	
conventional	T cells	and	non-conventional	FOXP3+	regulatory	
CD4+	 T  cells	 (44–48).	 Following	 allogeneic-SCT,	 aGVHD	
induces	 loss	 of	 the	 delimitation	 between	 the	 cortex	 and	 the	
medulla	(49,	50).	Alloreactive	lymphocytes	can	eliminate	cTECs	
and	 mTECs,	 which	 explains	 the	 reduction	 of	 the	 number	 of	
mTECs	expressing	the	transcription	factor	AIRE	“autoimmune	
regulator”	during	GVHD	(51–53).	Loss	of	TECs	 is	 associated	
with	diminished	IL-7	production,	which	contributes	to	thymo-
cyte	death	and	loss	of	thymic	output	during	aGVHD	(54).	While	
GVHD	insults	to	cTECs	can	impair	positive	selection,	GVHD	
alteration	 to	 mTECs	 is	 more	 insidious	 and	 could	 impair	 the	
negative	selection	of	autoreactive	thymocytes	and	contribute	to	
cGVHD	(55,	56).	Furthermore,	several	DC	subsets	collaborate	
with	mTECs	 to	 induce	negative	 selection	of	 self-reactive	 thy-
mocytes	and	during	GVHD,	they	are	eliminated	by	alloreactive	
T cells,	which	lead	to	the	development	of	cGVHD	(57–60).	Thus,	
although	thymic	recovery	is	an	essential	step	toward	normaliza-
tion	of	T cell	counts,	the	production	of	self-reactive	T cells	dur-
ing/after	aGVHD	could	negatively	impact	the	benefit	of	thymic	
dependent	T  cell	 regeneration.	Effective	 thymic	 recovery	 in	 a	
GVHD	setting	will	need	to	 include	means	to	ensure	adequate	
positive	 and	negative	 selection	of	 thymocytes	 to	preclude	 the	
generation	of	 potentially	 autoreactive	 lymphocytes	 that	 could	
exacerbate	the	pathology.

GvHD eFFeCTS On THe PeRiPHeRAL 
niCHe

Several	 studies	have	demonstrated	 that	GVHD	induces	 signifi-
cant	damage	to	the	peripheral	niche	that	controls	T cell	homeo-
stasis	 (21–23).	 During	 lymphopenia,	 IL-7	 accumulates	 due	 to	
a	 reduced	 consumption	by	 the	 limited	number	of	T  cells	 (61).		
In	addition,	T cells	have	increased	accessibility	to	MHC-expressing	
DCs	 and	 the	 increase	 in	 both	 IL-7	 and	 MHC	 accessibility	
promotes	T  lymphocyte	HP	(61).	During	GVHD,	however,	 the	
lymphopenic	 environment	 is	 strikingly	 different	 and	 survival	
and	HP	of	T cells	are	impaired	(23,	62–64).	For	one,	alloreactiv-
ity	 induces	damages	 to	stromal	cells	of	primary	and	secondary	

lymphoid	organs,	the	primary	source	of	IL-7	(22,	65–67).	In	addi-
tion,	DC	regeneration	is	decreased	in	GVHD	(23).	CD4+	T cell	
HP	depends	on	MHC-II	presentation	by	DCs,	such	that	this	effect	
alone	 could	 explain	 the	 lack	 of	CD4	 regeneration.	However,	 it	
does	not	necessarily	explain	lack	of	CD8+	T cell	HP,	as	MHC-I	is	
ubiquitously	expressed,	and	CD8	HP	is	probably	not	exclusively	
dependent	 on	 MHC-I	 expressed	 by	 DCs.	 Additional	 studies		
are	needed	to	identify	elements	of	the	peripheral	niche	that	limit	
CD8	recovery	in	GVHD	hosts.

Several	 studies	 have	 demonstrated	 that	 DC	 numbers	 are	
reduced	during	GVHD	and	depletion/inactivation	of	recipient	
DCs	before	allogeneic-SCT	can	reduce	GVHD	(63,	68–71).	The	
mechanism	preventing	DC	regeneration	during	GVHD	 is	not	
fully	 understood	 (23,	64,	 72).	However,	 two	potential	mecha-
nisms	have	been	proposed	to	explain	diminished	DC	counts	in	
GVHD	hosts:	the	elimination	of	DCs	by	alloreactive	lymphocytes	
and	the	disruption	of	the	BM	microenvironment	that	constrains	
DC	production.	Indeed,	T cells	can	eliminate	DCs	after	priming	
(73–75)	 and	 following	 allogeneic-SCT,	 recipient	 and	 donor-
derived	 DCs	 can	 be	 eliminated	 by	 alloreactive	 lymphocytes	
(23).	However,	the	long-lasting	DC	depletion	that	occurs	during	
GVHD	is	unlikely	only	due	to	the	allo-immune	response	against	
mature	DCs	 since	 the	 elimination	of	 alloreactive	 lymphocytes	
post-GVHD	does	not	restore	DC	counts.

Damage	to	the	BM	microenvironment	can	induce	myelosup-
pression	after	allogeneic-SCT.	BM	stromal	cells	provide	growth	
factors	such	as	GM-CSF,	M-CSF,	and	Flt3-L,	which	are	essential	
for	 HSC	 differentiation	 into	 mature	 cells.	 However,	 little	 is	
known	about	how	 these	 factors	 are	 affected	by	GVHD	 in	 the	
BM.	While	serum	analysis	can	provide	some	insight	about	vari-
ation	of	these	factors,	the	evaluation	of	BM	biopsy	is	probably	
more	accurate	since	several	of	these	factors	are	also	produced	by	
immune	cells	(76).	For	example,	Flt3-L	levels	in	the	BM	differ	
from	those	seen	in	the	blood	of	GVHD	mice	(23).	The	retention/
egress	 of	 BM  cells	 is	 also	 important	 for	 the	 differentiation	 of	
DCs.	Stromal	derived	factor-1	alpha	(SDF-1α)	regulates	integrin	
expression	on	HSCs	and	during	GVHD,	SDF-1α	is	diminished	
(23).	Low	SDF-1α	levels	inside	the	BM	likely	explain	the	accu-
mulation	of	poorly	differentiated	DC	precursors	 found	 in	 the	
blood	during	GVHD	(64).	The	low	SDF-1α	levels	in	the	BM	are	
line	with	the	low	documented	B cell	levels	in	GVHD	(77).	Thus,	
access	 to	BM	 specimens	 is	 essential	 to	define	 the	 factors	 that	
limit	DC	 regeneration	 necessary	 for	maintaining	 both	 T	 and	
B cell	homeostasis.

ReSTORinG THYMOPOieSiS

Thymus	 rejuvenation	 represents	 the	 best	 option	 to	 restore	
T  cell	 repertoire	 diversity	 in	 transplanted	 patients.	 Today,	 the	
adoptive	transfer	of	T cell	precursors	and	the	transplantation	of	
thymic	 tissues	 are	 two	 interesting	options	 to	 achieve	 this	 goal.	
The	 administration	 of	 T  cell	 precursors	 has	 demonstrated	 its	
efficacy	 at	 correcting	 intrinsic	 defects	 to	 common	 lymphoid	
progenitors	 (CLPs)	 to	 improve	 thymopoiesis.	 However,	 these	
studies	were	 performed	 in	 a	 non-GVHD	 setting	 and	 although	
CLPs	are	decreased	during	GVHD	(23),	it	is	unclear	whether	the	
administration	of	T cell	precursors	could	improve	thymopoiesis	
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if	 the	 thymic	 epithelium	 has	 been	 damaged	 by	 alloreactive	
lymphocytes.	Nonetheless,	interaction	between	T cell	precursors	
and	TECs	may	help	TECs	to	recover	post-GVHD	(78,	79).	The	
administration	of	 keratinocyte	 growth	 factor	 (KGF)	protects	 the	
thymic	epithelium	from	GVHD	insults	in	mice	(80).	In	humans,	
however,	 KGF	 (Palifermin)	 has	 been	 tested	 for	 CD4+	 T  cell	
recovery	in	HIV	patients	but	the	benefits	were	quite	modest	(81).	
Thymic	restoration	is	currently	under	investigation	using	embry-
onic	 stem	cells	 and	promising	preclinical	 studies	 in	 rodents	have	
demonstrated	that	the	expansion	of	cTECs	and	mTECs,	lead	to		
increased	numbers	of	functional	T cells	in	the	periphery	(82).

Another	approach	to	restore	thymopoiesis	is	the	use	of	postna-
tal	allogeneic	cultured	thymus	tissue,	an	approach	that	improved	
thymic	 output	 in	 patients	 with	 DiGeorge	 syndrome	 (83,	 84).	
These	 patients	 are	 profoundly	 immunocompromised,	 which	
allow	 thymus	 engraftment	 without	 significant	 graft-rejection.	
Although	 such	 strategy	 has	 not	 been	 tested	 in	 allogeneic-SCT	
patients,	it	was	investigated	in	HIV	patients	(85).	However,	high	
rate	 of	 thymus	 rejection	 was	 observed.	 Immunosuppression	
appears	 essential	 for	 successful	 thymic	 engraftment	 and	T  cell	
depletion	prior	to	thymus	transplant	could	lower	the	rate	of	graft	
rejection	 in	 GVHD	 patients.	 However,	 it	 is	 not	 clear	 whether	
lower	 numbers	 of	 CLPs	 observed	 after	 aGVHD	 could	 affect	
thymic	 output.	 Interestingly,	 IL-21	 can	 improve	 thymopoiesis	
by	 expanding	 BM	 Lin−Sca1+c-kit+	 lymphoid	 progenitors	 after	
allogeneic-SCT	 (86).	Thus,	 combining	 thymus	 transplantation	
with	either	IL-21	therapy	or	T cell	precursor	therapy	could	yield	
better	thymic	recovery	following	allogeneic-SCT.

ReSTORinG THe PeRiPHeRAL niCHe

Approaches	to	improve	HP	of	mature	lymphocytes	after	alloge-
neic-SCT	have	demonstrated	 that	 the	benefit	on	T  cell	 regen-
eration	is	frequently	offset	by	excessive	GVHD	(4,	23,	87).	IL-7	
therapy	has	been	shown	to	expand	T cells	with	a	predominant	
effect	on	naïve	CD8+	cells	(88).	When	administered	early	post-
SCT,	IL-7	could	expand	GVHD	precursors	and	worsen	aGVHD	
(4).	At	 later	 time	points,	 alloreactive	T  cells	 are	 activated	 and	
express	 lower	 IL-7Rα	 levels,	which	 could	 explain	why	GVHD	
severity	is	less	affected	by	IL-7	therapy	(23,	89).	Similarly,	IL-15	
can	 improve	 lymphocyte	 reconstitution	 after	 T  cell	 depleted	
allogeneic-SCT	(90),	but	it	can	also	worsen	GVHD	(5,	91).	DCs	
are	the	most	potent	cell	type	to	initiate	T cell	activation	and	forc-
ing	their	recovery	following	allogeneic-SCT	can	present	signifi-
cant	risks.	For	instance,	Flt3-L	treatment	can	expand	most	DC	
subsets	in	mice	and	humans	(92)	and	when	administered	after	
allogeneic-SCT,	it	worsens	GVHD	(23).	In	contrast,	the	expan-
sion	of	DCs	by	SDF-1α	therapy	is	largely	restricted	to	the	DC1	
subset	and	resulted	in	a	decrease	in	GVHD	severity	(23).	Host	
DC1	have	been	shown	to	protect	against	aGVHD	(93,	94).	DC1	
cells	have	an	intrinsic	ability	to	cross	present	antigens	on	MHC-I	
molecules	and	they	are	poor	activators	of	CD4+	T cells	(95,	96),		
a	property	that	is	likely	important	for	preventing	unwanted	T cell	
activation	during	homeostatic	stimulation	of	naïve	lymphocytes.	
However,	there	are	several	different	subsets	of	DC	with	distinct	
functions,	and	it	 is	not	clear	which	subset	specifically	controls	
CD4	homeostasis,	 if	any	(97).	Thus,	depending	of	 the	cocktail	

of	cytokines	used	to	improve	T	and	DC	regeneration,	caution	is	
needed	as	the	risk	to	aggravate	GVHD	may	surpass	the	benefit	
on	T cell	regeneration.

Mesenchymal	 stem	 cells	 (MSCs)	 can	 be	 administered	 in	
patients	 to	diminish	GVHD	(98,	99).	MSCs	have	 immunosup-
pressive	properties	on	T cells	and	on	innate	immune	cells	(100–
102).	MSCs	produce	a	vast	array	of	cytokines	and	growth	factors	
known	to	affect	hematopoiesis	(103–107).	While	IL-7	production	
by	MSCs	may	help	 to	 improve	T cell	 survival,	 the	 secretion	of	
other	factors	like	SDF-1α	could	promote	DC	regeneration	(108).	
The	infusion	of	HLA	mismatch	MSCs	was	first	reported	to	reduce	
alloreactivity	 in	patients	with	steroid-refractory	aGVHD	(109).	
However,	 studies	 that	 follow	 showed	 a	 benefit	 highly	 variable	
and	 often	 transient	 with	 response	 rate	 higher	 in	 patients	 with	
mild	GVHD	(Grade-II)	(110–112).	MSC	therapy	can	effectively	
induce	 complete	 response	 in	 72%	 of	 patients	 (Grade	 II)	 with	
partial	response	for	patients	with	higher	grade	GVHD	(99,	113).	
Importantly,	the	use	of	MSCs	generated	from	pooled	BM	mono-
nuclear	cells	obtained	 from	multiple	allogeneic	donors	 showed	
surprising	efficacy	in	patients	with	grade	III-IV	refractory	GVHD	
(114,	115).	Thus,	 the	use	of	multiple	donors	 to	generate	MSCs	
could	perhaps	reduce	the	variability	inherent	to	individual	donor.	
The	development	of	effective	strategies	to	lower	GVHD	severity	
is	clearly	an	important	milestone	in	our	attempt	to	restore	T cell	
homeostasis.	 Such	 a	 reduction	 could	 diminish	 GVHD	 insults	
to	 the	 thymus	 and	 the	 peripheral	 niche,	 facilitating	 our	 future	
immune	 interventions	 to	 accelerate	 lymphocyte	 reconstitution	
in	patients.

ReSTORinG T CeLL HOMeOSTASiS 
AFTeR GvHD

In	most	clinical	settings	of	human	lymphopenia,	the	dysfunction	
of	the	thymus	represents	the	primary	limiting	factor	for	T cell	
regeneration.	However,	the	dysfunction	of	the	peripheral	niche	
is	 now	well	 documented	 and	 added	 to	 the	 dysfunction	of	 the	
thymus	and	together	they	contribute	to	the	very	poor	immune	
reconstitution	 that	 typically	 occurs	 in	 GVHD	 patients.	 In	 a	
setting	where	 the	peripheral	niche	remains	dysfunctional,	 it	 is	
not	clear	whether	restoring	thymopoiesis	would	be	sufficient	to	
increase	peripheral	T cell	counts.	DCs	and	IL-7	provide	critical	
survival	 signals	 to	RTEs	 for	 their	 expansion	 in	 the	 periphery.	
Depending	of	the	robustness	of	the	thymic	output,	T cell	immune	
reconstitution	may	vary	considerably	when	the	peripheral	niche	
is	dysfunctional.	The	absence	of	peripheral	DCs	could	result	into	
greater	competition	between	T cells	for	access	to	MHC	class	I–II,	
which	 could	 affect	 the	number	 and	 the	 diversity	 of	 the	T  cell	
repertoire.	Under	these	conditions,	the	repertoire	may	be	skewed	
toward	lymphocytes	with	the	highest	levels	of	self-reactivity.	In	
addition,	the	absence	of	peripheral	DCs	could	impede	self-tol-
erance	imposed	by	thymopoiesis	since	the	peripheral	DCs	pick	
up	peripheral	 self-antigens,	migrate	 to	 the	 thymus	and	 induce	
negative	selection	of	developing	self-reactive	 thymocytes	(116,	
117).	The	 failure	 to	present	 self-antigens	 through	MHC-II	has	
been	shown	to	induce	severe	autoimmunity	in	mice	transplanted	
with	MHC-II−/−	BM cells	(118).	As	a	result,	 the	feasibility	and	
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the	safety	of	restoring	thymopoiesis	in	GVHD	patients	remain	
largely	unknown.	Animal	models	used	to	study	T cell	homeosta-
sis	have	not	yet	addressed	the	capacity	of	the	thymus	to	restore	
T  cell	 counts	 in	 the	 absence	 of	 a	 functional	 peripheral	 niche.	
The	use	of	thymic	transplan	tation	in	GVHD	hosts	could	provide	
significant	insights	about	the	potential	benefits	and	limitations	
of	restoring	thymopoiesis	in	GVHD	patients.

COnCLUSiOn AnD PeRSPeCTiveS

Despite	 significant	 progress	 in	 our	 understanding	 of	 the	 biol-
ogy	 of	 T  cell	 depletion,	 therapies	 aimed	 at	 accelerating	 T  cell	
regeneration	remain	limited	and	are	still	in	clinical	development	
(119,	120).	The	effect	of	GVHD	on	T cell	homeostasis	is	multiple	
and	addressing	the	dysfunction	of	the	thymus	or	the	peripheral	
niche	alone	may	yield	disappointing	results	in	patients	undergo-
ing	allogeneic-SCT.	Under	 these	 circumstances,	 the	 coordinate	
use	 of	 IL-7,	 SDF-1α,	 T  cell	 precursors,	 embryonic	 stem	 cells,	
tissues	engineering	to	recreate	an	artificial	 thymus	and	thymus	
transplantation	 could	 provide	 superior	 benefits	 with	 regards	

to	T  cell	 regeneration	 in	GVHD	patients.	 In	 parallel,	we	 need	
to	 address	 the	 recovery	 of	 other	 immune	 cell	 subsets	 such	 as	
B-	 and/or	 NK  cells,	 which	 also	 provide	 immunocompetence	
to	 transplanted	 patients.	 Collaboration	 between	 clinicians	 and	
scientists	will	be	instrumental	to	the	successful	development	of	
new	animal	models	of	 thymic	 rejuvenation	 in	GVHD	hosts	 to	
address	the	dysfunction	of	peripheral	niche	in	order	to	guide	our	
future	immune	interventions	to	accelerate	and	restore	the	T cell	
compartment	in	humans.
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